mirror of
https://github.com/ttrftech/NanoVNA.git
synced 2025-12-06 03:31:59 +01:00
Start/stop generation feature (unstable on segment scan from CPU) Calibration on paused sweep (need more stack, need find better solution) Variable use optimization
2295 lines
58 KiB
C
2295 lines
58 KiB
C
/*
|
||
* Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
|
||
* All rights reserved.
|
||
*
|
||
* This is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3, or (at your option)
|
||
* any later version.
|
||
*
|
||
* The software is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with GNU Radio; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 51 Franklin Street,
|
||
* Boston, MA 02110-1301, USA.
|
||
*/
|
||
|
||
#include "ch.h"
|
||
#include "hal.h"
|
||
#include "usbcfg.h"
|
||
#include "si5351.h"
|
||
#include "nanovna.h"
|
||
#include "fft.h"
|
||
|
||
#include <chprintf.h>
|
||
//#include <stdlib.h>
|
||
#include <string.h>
|
||
//#include <ctype.h>
|
||
#include <math.h>
|
||
|
||
/*
|
||
* Shell settings
|
||
*/
|
||
// If need run shell as thread (use more amount of memory fore stack), after enable this need reduce spi_buffer size, by default shell run in main thread
|
||
//#define VNA_SHELL_THREAD
|
||
|
||
static BaseSequentialStream *shell_stream = (BaseSequentialStream *)&SDU1;
|
||
|
||
// Shell new line
|
||
#define VNA_SHELL_NEWLINE_STR "\r\n"
|
||
// Shell command promt
|
||
#define VNA_SHELL_PROMPT_STR "ch> "
|
||
// Shell max arguments
|
||
#define VNA_SHELL_MAX_ARGUMENTS 4
|
||
// Shell max command line size
|
||
#define VNA_SHELL_MAX_LENGTH 48
|
||
// Shell command functions prototypes
|
||
typedef void (*vna_shellcmd_t)(int argc, char *argv[]);
|
||
#define VNA_SHELL_FUNCTION(command_name) static void command_name(int argc, char *argv[])
|
||
|
||
// Shell command line buffer
|
||
static char shell_line[VNA_SHELL_MAX_LENGTH];
|
||
|
||
//#define ENABLED_DUMP
|
||
//#define ENABLE_THREADS_COMMAND
|
||
//#define ENABLE_TIME_COMMAND
|
||
|
||
static void apply_error_term_at(int i);
|
||
static void apply_edelay_at(int i);
|
||
static void cal_interpolate(int s);
|
||
void update_frequencies(void);
|
||
void set_frequencies(uint32_t start, uint32_t stop, uint16_t points);
|
||
|
||
static bool sweep(bool break_on_operation);
|
||
static void transform_domain(void);
|
||
|
||
static MUTEX_DECL(mutex);
|
||
|
||
#define DRIVE_STRENGTH_AUTO (-1)
|
||
#define FREQ_HARMONICS (config.harmonic_freq_threshold)
|
||
#define IS_HARMONIC_MODE(f) ((f) > FREQ_HARMONICS)
|
||
// Obsolete, always use interpolate
|
||
#define cal_auto_interpolate TRUE
|
||
|
||
static int32_t frequency_offset = 5000;
|
||
static uint32_t frequency = 10000000;
|
||
static int8_t drive_strength = DRIVE_STRENGTH_AUTO;
|
||
int8_t sweep_enabled = TRUE;
|
||
volatile int8_t sweep_once = FALSE;
|
||
volatile uint8_t redraw_request = 0; // contains REDRAW_XXX flags
|
||
int16_t vbat = 0;
|
||
|
||
static THD_WORKING_AREA(waThread1, 640);
|
||
static THD_FUNCTION(Thread1, arg)
|
||
{
|
||
(void)arg;
|
||
chRegSetThreadName("sweep");
|
||
|
||
while (1) {
|
||
bool completed = false;
|
||
if (sweep_enabled || sweep_once) {
|
||
chMtxLock(&mutex);
|
||
completed = sweep(true);
|
||
sweep_once = FALSE;
|
||
chMtxUnlock(&mutex);
|
||
} else {
|
||
__WFI();
|
||
}
|
||
|
||
chMtxLock(&mutex);
|
||
ui_process();
|
||
|
||
if (sweep_enabled) {
|
||
if (vbat != -1) {
|
||
adc_stop(ADC1);
|
||
vbat = adc_vbat_read(ADC1);
|
||
touch_start_watchdog();
|
||
draw_battery_status();
|
||
}
|
||
|
||
// calculate trace coordinates and plot only if scan completed
|
||
if (completed) {
|
||
if ((domain_mode & DOMAIN_MODE) == DOMAIN_TIME)
|
||
transform_domain();
|
||
plot_into_index(measured);
|
||
redraw_request |= REDRAW_CELLS;
|
||
|
||
if (uistat.marker_tracking) {
|
||
int i = marker_search();
|
||
if (i != -1 && active_marker != -1) {
|
||
markers[active_marker].index = i;
|
||
redraw_request |= REDRAW_MARKER;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// plot trace and other indications as raster
|
||
draw_all(completed); // flush markmap only if scan completed to prevent remaining traces
|
||
chMtxUnlock(&mutex);
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
pause_sweep(void)
|
||
{
|
||
sweep_enabled = FALSE;
|
||
}
|
||
|
||
static inline void
|
||
resume_sweep(void)
|
||
{
|
||
sweep_enabled = TRUE;
|
||
}
|
||
|
||
void
|
||
toggle_sweep(void)
|
||
{
|
||
sweep_enabled = !sweep_enabled;
|
||
}
|
||
|
||
static float
|
||
bessel0(float x) {
|
||
const float eps = 0.0001;
|
||
|
||
float ret = 0;
|
||
float term = 1;
|
||
float m = 0;
|
||
|
||
while (term > eps * ret) {
|
||
ret += term;
|
||
++m;
|
||
term *= (x*x) / (4*m*m);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static float
|
||
kaiser_window(float k, float n, float beta) {
|
||
if (beta == 0.0) return 1.0;
|
||
float r = (2 * k) / (n - 1) - 1;
|
||
return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta);
|
||
}
|
||
|
||
static void
|
||
transform_domain(void)
|
||
{
|
||
// use spi_buffer as temporary buffer
|
||
// and calculate ifft for time domain
|
||
float* tmp = (float*)spi_buffer;
|
||
|
||
uint8_t window_size = POINTS_COUNT, offset = 0;
|
||
uint8_t is_lowpass = FALSE;
|
||
switch (domain_mode & TD_FUNC) {
|
||
case TD_FUNC_BANDPASS:
|
||
offset = 0;
|
||
window_size = POINTS_COUNT;
|
||
break;
|
||
case TD_FUNC_LOWPASS_IMPULSE:
|
||
case TD_FUNC_LOWPASS_STEP:
|
||
is_lowpass = TRUE;
|
||
offset = POINTS_COUNT;
|
||
window_size = POINTS_COUNT*2;
|
||
break;
|
||
}
|
||
|
||
float beta = 0.0;
|
||
switch (domain_mode & TD_WINDOW) {
|
||
case TD_WINDOW_MINIMUM:
|
||
beta = 0.0; // this is rectangular
|
||
break;
|
||
case TD_WINDOW_NORMAL:
|
||
beta = 6.0;
|
||
break;
|
||
case TD_WINDOW_MAXIMUM:
|
||
beta = 13;
|
||
break;
|
||
}
|
||
|
||
|
||
for (int ch = 0; ch < 2; ch++) {
|
||
memcpy(tmp, measured[ch], sizeof(measured[0]));
|
||
for (int i = 0; i < POINTS_COUNT; i++) {
|
||
float w = kaiser_window(i+offset, window_size, beta);
|
||
tmp[i*2+0] *= w;
|
||
tmp[i*2+1] *= w;
|
||
}
|
||
for (int i = POINTS_COUNT; i < FFT_SIZE; i++) {
|
||
tmp[i*2+0] = 0.0;
|
||
tmp[i*2+1] = 0.0;
|
||
}
|
||
if (is_lowpass) {
|
||
for (int i = 1; i < POINTS_COUNT; i++) {
|
||
tmp[(FFT_SIZE-i)*2+0] = tmp[i*2+0];
|
||
tmp[(FFT_SIZE-i)*2+1] = -tmp[i*2+1];
|
||
}
|
||
}
|
||
|
||
fft256_inverse((float(*)[2])tmp);
|
||
memcpy(measured[ch], tmp, sizeof(measured[0]));
|
||
for (int i = 0; i < POINTS_COUNT; i++) {
|
||
measured[ch][i][0] /= (float)FFT_SIZE;
|
||
if (is_lowpass) {
|
||
measured[ch][i][1] = 0.0;
|
||
} else {
|
||
measured[ch][i][1] /= (float)FFT_SIZE;
|
||
}
|
||
}
|
||
if ( (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP ) {
|
||
for (int i = 1; i < POINTS_COUNT; i++) {
|
||
measured[ch][i][0] += measured[ch][i-1][0];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Shell commands output
|
||
static int shell_printf(const char *fmt, ...) {
|
||
va_list ap;
|
||
int formatted_bytes;
|
||
va_start(ap, fmt);
|
||
formatted_bytes = chvprintf(shell_stream, fmt, ap);
|
||
va_end(ap);
|
||
return formatted_bytes;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_pause)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
pause_sweep();
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_resume)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
// restore frequencies array and cal
|
||
update_frequencies();
|
||
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
|
||
cal_interpolate(lastsaveid);
|
||
|
||
resume_sweep();
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_reset)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
if (argc == 1) {
|
||
if (strcmp(argv[0], "dfu") == 0) {
|
||
shell_printf("Performing reset to DFU mode\r\n");
|
||
enter_dfu();
|
||
return;
|
||
}
|
||
}
|
||
shell_printf("Performing reset\r\n");
|
||
|
||
rccEnableWWDG(FALSE);
|
||
WWDG->CFR = 0x60;
|
||
WWDG->CR = 0xff;
|
||
|
||
/* wait forever */
|
||
while (1)
|
||
;
|
||
}
|
||
|
||
const int8_t gain_table[] = {
|
||
0, // 0 ~ 300MHz
|
||
40, // 300 ~ 600MHz
|
||
50, // 600 ~ 900MHz
|
||
75, // 900 ~ 1200MHz
|
||
85, // 1200 ~ 1500MHz
|
||
95, // 1500MHz ~
|
||
95, // 1800MHz ~
|
||
95, // 2100MHz ~
|
||
95 // 2400MHz ~
|
||
};
|
||
|
||
#define DELAY_GAIN_CHANGE 2
|
||
|
||
static int
|
||
adjust_gain(uint32_t newfreq)
|
||
{
|
||
int new_order = newfreq / FREQ_HARMONICS;
|
||
int old_order = frequency / FREQ_HARMONICS;
|
||
if (new_order != old_order) {
|
||
tlv320aic3204_set_gain(gain_table[new_order], gain_table[new_order]);
|
||
return DELAY_GAIN_CHANGE;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int set_frequency(uint32_t freq)
|
||
{
|
||
int delay = adjust_gain(freq);
|
||
int8_t ds = drive_strength;
|
||
if (ds == DRIVE_STRENGTH_AUTO) {
|
||
ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA;
|
||
}
|
||
delay += si5351_set_frequency_with_offset(freq, frequency_offset, ds);
|
||
|
||
frequency = freq;
|
||
return delay;
|
||
}
|
||
|
||
// Use macro, std isdigit more big
|
||
#define _isdigit(c) (c >= '0' && c <= '9')
|
||
// Rewrite universal standart str to value functions to more compact
|
||
//
|
||
// Convert string to int32
|
||
static int32_t my_atoi(const char *p){
|
||
int32_t value = 0;
|
||
uint32_t c;
|
||
bool neg = false;
|
||
|
||
if (*p == '-') {neg = true; p++;}
|
||
if (*p == '+') p++;
|
||
while ((c = *p++ - '0') < 10)
|
||
value = value * 10 + c;
|
||
return neg ? -value : value;
|
||
}
|
||
|
||
// Convert string to uint32
|
||
uint32_t my_atoui(const char *p){
|
||
uint32_t value = 0;
|
||
uint32_t c;
|
||
if (*p == '+') p++;
|
||
while ((c = *p++ - '0') < 10)
|
||
value = value * 10 + c;
|
||
return value;
|
||
}
|
||
|
||
double
|
||
my_atof(const char *p)
|
||
{
|
||
int neg = FALSE;
|
||
if (*p == '-')
|
||
neg = TRUE;
|
||
if (*p == '-' || *p == '+')
|
||
p++;
|
||
double x = my_atoi(p);
|
||
while (_isdigit((int)*p))
|
||
p++;
|
||
if (*p == '.') {
|
||
double d = 1.0f;
|
||
p++;
|
||
while (_isdigit((int)*p)) {
|
||
d /= 10;
|
||
x += d * (*p - '0');
|
||
p++;
|
||
}
|
||
}
|
||
if (*p == 'e' || *p == 'E') {
|
||
p++;
|
||
int exp = my_atoi(p);
|
||
while (exp > 0) {
|
||
x *= 10;
|
||
exp--;
|
||
}
|
||
while (exp < 0) {
|
||
x /= 10;
|
||
exp++;
|
||
}
|
||
}
|
||
if (neg)
|
||
x = -x;
|
||
return x;
|
||
}
|
||
|
||
//
|
||
// Function used for search substring v in list
|
||
// Example need search parameter "center" in "start|stop|center|span|cw" getStringIndex return 2
|
||
// If not found return -1
|
||
// Used for easy parse command arguments
|
||
static int getStringIndex(char *v, const char *list){
|
||
int i = 0;
|
||
while(1){
|
||
char *p = v;
|
||
while (1){
|
||
char c = *list; if (c == '|') c = 0;
|
||
if (c == *p++){
|
||
// Found, return index
|
||
if (c == 0) return i;
|
||
list++; // Compare next symbol
|
||
continue;
|
||
}
|
||
break; // Not equal, break
|
||
}
|
||
// Set new substring ptr
|
||
while (1){
|
||
// End of string, not found
|
||
if (*list == 0 ) return -1;
|
||
if (*list++ == '|') break;
|
||
}
|
||
i++;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_offset)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: offset {frequency offset(Hz)}\r\n");
|
||
return;
|
||
}
|
||
frequency_offset = my_atoui(argv[0]);
|
||
set_frequency(frequency);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_freq)
|
||
{
|
||
if (argc != 1) {
|
||
goto usage;
|
||
}
|
||
uint32_t freq = my_atoui(argv[0]);
|
||
|
||
pause_sweep();
|
||
set_frequency(freq);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: freq {frequency(Hz)}\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_power)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: power {0-3|-1}\r\n");
|
||
return;
|
||
}
|
||
drive_strength = my_atoi(argv[0]);
|
||
set_frequency(frequency);
|
||
}
|
||
|
||
#ifdef ENABLE_TIME_COMMAND
|
||
#if HAL_USE_RTC == FALSE
|
||
#error "Error cmd_time require define HAL_USE_RTC = TRUE in halconf.h"
|
||
#endif
|
||
VNA_SHELL_FUNCTION(cmd_time)
|
||
{
|
||
RTCDateTime timespec;
|
||
(void)argc;
|
||
(void)argv;
|
||
rtcGetTime(&RTCD1, ×pec);
|
||
shell_printf("%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond);
|
||
}
|
||
#endif
|
||
|
||
VNA_SHELL_FUNCTION(cmd_dac)
|
||
{
|
||
int value;
|
||
if (argc != 1) {
|
||
shell_printf("usage: dac {value(0-4095)}\r\n"\
|
||
"current value: %d\r\n", config.dac_value);
|
||
return;
|
||
}
|
||
value = my_atoi(argv[0]);
|
||
config.dac_value = value;
|
||
dacPutChannelX(&DACD2, 0, value);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_threshold)
|
||
{
|
||
uint32_t value;
|
||
if (argc != 1) {
|
||
shell_printf("usage: threshold {frequency in harmonic mode}\r\n"\
|
||
"current: %d\r\n", config.harmonic_freq_threshold);
|
||
return;
|
||
}
|
||
value = my_atoui(argv[0]);
|
||
config.harmonic_freq_threshold = value;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_saveconfig)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
config_save();
|
||
shell_printf("Config saved.\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_clearconfig)
|
||
{
|
||
if (argc != 1) {
|
||
shell_printf("usage: clearconfig {protection key}\r\n");
|
||
return;
|
||
}
|
||
|
||
if (strcmp(argv[0], "1234") != 0) {
|
||
shell_printf("Key unmatched.\r\n");
|
||
return;
|
||
}
|
||
|
||
clear_all_config_prop_data();
|
||
shell_printf("Config and all cal data cleared.\r\n"\
|
||
"Do reset manually to take effect. Then do touch cal and save.\r\n");
|
||
}
|
||
|
||
static struct {
|
||
int16_t rms[2];
|
||
int16_t ave[2];
|
||
int callback_count;
|
||
|
||
#if 0
|
||
int32_t last_counter_value;
|
||
int32_t interval_cycles;
|
||
int32_t busy_cycles;
|
||
#endif
|
||
} stat;
|
||
|
||
int16_t rx_buffer[AUDIO_BUFFER_LEN * 2];
|
||
|
||
#ifdef ENABLED_DUMP
|
||
int16_t dump_buffer[AUDIO_BUFFER_LEN];
|
||
int16_t dump_selection = 0;
|
||
#endif
|
||
|
||
volatile int16_t wait_count = 0;
|
||
|
||
float measured[2][POINTS_COUNT][2];
|
||
|
||
static void
|
||
wait_dsp(int count)
|
||
{
|
||
wait_count = count;
|
||
//reset_dsp_accumerator();
|
||
while (wait_count)
|
||
__WFI();
|
||
}
|
||
|
||
#ifdef ENABLED_DUMP
|
||
static void
|
||
duplicate_buffer_to_dump(int16_t *p)
|
||
{
|
||
if (dump_selection == 1)
|
||
p = samp_buf;
|
||
else if (dump_selection == 2)
|
||
p = ref_buf;
|
||
memcpy(dump_buffer, p, sizeof dump_buffer);
|
||
}
|
||
#endif
|
||
|
||
void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n)
|
||
{
|
||
#if PORT_SUPPORTS_RT
|
||
int32_t cnt_s = port_rt_get_counter_value();
|
||
int32_t cnt_e;
|
||
#endif
|
||
int16_t *p = &rx_buffer[offset];
|
||
(void)i2sp;
|
||
(void)n;
|
||
|
||
if (wait_count > 0) {
|
||
if (wait_count == 1)
|
||
dsp_process(p, n);
|
||
#ifdef ENABLED_DUMP
|
||
duplicate_buffer_to_dump(p);
|
||
#endif
|
||
--wait_count;
|
||
}
|
||
|
||
#if PORT_SUPPORTS_RT
|
||
cnt_e = port_rt_get_counter_value();
|
||
stat.interval_cycles = cnt_s - stat.last_counter_value;
|
||
stat.busy_cycles = cnt_e - cnt_s;
|
||
stat.last_counter_value = cnt_s;
|
||
#endif
|
||
stat.callback_count++;
|
||
}
|
||
|
||
static const I2SConfig i2sconfig = {
|
||
NULL, // TX Buffer
|
||
rx_buffer, // RX Buffer
|
||
AUDIO_BUFFER_LEN * 2,
|
||
NULL, // tx callback
|
||
i2s_end_callback, // rx callback
|
||
0, // i2scfgr
|
||
2 // i2spr
|
||
};
|
||
|
||
VNA_SHELL_FUNCTION(cmd_data)
|
||
{
|
||
int i;
|
||
int sel = 0;
|
||
float (*array)[2];
|
||
if (argc == 1)
|
||
sel = my_atoi(argv[0]);
|
||
|
||
if (sel == 0 || sel == 1)
|
||
array = measured[sel];
|
||
else if (sel >= 2 && sel < 7)
|
||
array = cal_data[sel-2];
|
||
else
|
||
goto usage;
|
||
for (i = 0; i < sweep_points; i++)
|
||
shell_printf("%f %f\r\n", array[i][0], array[i][1]);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: data [array]\r\n");
|
||
}
|
||
|
||
#ifdef ENABLED_DUMP
|
||
VNA_SHELL_FUNCTION(cmd_dump)
|
||
{
|
||
int i, j;
|
||
int len;
|
||
|
||
if (argc == 1)
|
||
dump_selection = my_atoi(argv[0]);
|
||
|
||
wait_dsp(3);
|
||
|
||
len = AUDIO_BUFFER_LEN;
|
||
if (dump_selection == 1 || dump_selection == 2)
|
||
len /= 2;
|
||
for (i = 0; i < len; ) {
|
||
for (j = 0; j < 16; j++, i++) {
|
||
shell_printf("%04x ", 0xffff & (int)dump_buffer[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
VNA_SHELL_FUNCTION(cmd_capture)
|
||
{
|
||
// read pixel count at one time (PART*2 bytes required for read buffer)
|
||
(void)argc;
|
||
(void)argv;
|
||
int i, y;
|
||
#if SPI_BUFFER_SIZE < (3*320 + 1)
|
||
#error "Low size of spi_buffer for cmd_capture"
|
||
#endif
|
||
// read 2 row pixel time (read buffer limit by 2/3 + 1 from spi_buffer size)
|
||
for (y=0; y < 240; y+=2){
|
||
// use uint16_t spi_buffer[2048] (defined in ili9341) for read buffer
|
||
uint8_t *buf = (uint8_t *)spi_buffer;
|
||
ili9341_read_memory(0, y, 320, 2, 2*320, spi_buffer);
|
||
for (i = 0; i < 4*320; i++) {
|
||
streamPut(shell_stream, *buf++);
|
||
}
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
VNA_SHELL_FUNCTION(cmd_gamma)
|
||
{
|
||
float gamma[2];
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
pause_sweep();
|
||
chMtxLock(&mutex);
|
||
wait_dsp(4);
|
||
calculate_gamma(gamma);
|
||
chMtxUnlock(&mutex);
|
||
|
||
shell_printf("%d %d\r\n", gamma[0], gamma[1]);
|
||
}
|
||
#endif
|
||
|
||
static void (*sample_func)(float *gamma) = calculate_gamma;
|
||
|
||
VNA_SHELL_FUNCTION(cmd_sample)
|
||
{
|
||
if (argc!=1) goto usage;
|
||
// 0 1 2
|
||
static const char cmd_sample_list[] = "gamma|ampl|ref";
|
||
switch (getStringIndex(argv[1], cmd_sample_list)){
|
||
case 0:sample_func = calculate_gamma; return;
|
||
case 1:sample_func = fetch_amplitude; return;
|
||
case 2:sample_func = fetch_amplitude_ref; return;
|
||
default:break;
|
||
}
|
||
usage:
|
||
shell_printf("usage: sample {%s}\r\n", cmd_sample_list);
|
||
}
|
||
|
||
config_t config = {
|
||
.magic = CONFIG_MAGIC,
|
||
.dac_value = 1922,
|
||
.grid_color = DEFAULT_GRID_COLOR,
|
||
.menu_normal_color = DEFAULT_MENU_COLOR,
|
||
.menu_active_color = DEFAULT_MENU_ACTIVE_COLOR,
|
||
.trace_color = { DEFAULT_TRACE_1_COLOR, DEFAULT_TRACE_2_COLOR, DEFAULT_TRACE_3_COLOR, DEFAULT_TRACE_4_COLOR },
|
||
// .touch_cal = { 693, 605, 124, 171 }, // 2.4 inch LCD panel
|
||
.touch_cal = { 338, 522, 153, 192 }, // 2.8 inch LCD panel
|
||
.harmonic_freq_threshold = 300000000
|
||
};
|
||
|
||
properties_t current_props;
|
||
properties_t *active_props = ¤t_props;
|
||
|
||
// NanoVNA Default settings
|
||
static const trace_t def_trace[TRACES_MAX] = {//enable, type, channel, reserved, scale, refpos
|
||
{ 1, TRC_LOGMAG, 0, 0, 10.0, NGRIDY-1 },
|
||
{ 1, TRC_LOGMAG, 1, 0, 10.0, NGRIDY-1 },
|
||
{ 1, TRC_SMITH, 0, 0, 1.0, 0 },
|
||
{ 1, TRC_PHASE, 1, 0, 90.0, NGRIDY/2 }
|
||
};
|
||
|
||
static const marker_t def_markers[MARKERS_MAX] = {
|
||
{ 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 }
|
||
};
|
||
|
||
// Load propeties default settings
|
||
void loadDefaultProps(void){
|
||
current_props.magic = CONFIG_MAGIC;
|
||
current_props._frequency0 = 50000; // start = 50kHz
|
||
current_props._frequency1 = 900000000; // end = 900MHz
|
||
current_props._sweep_points = POINTS_COUNT;
|
||
current_props._cal_status = 0;
|
||
//This data not loaded by default
|
||
//current_props._frequencies[POINTS_COUNT];
|
||
//current_props._cal_data[5][POINTS_COUNT][2];
|
||
//=============================================
|
||
current_props._electrical_delay = 0.0;
|
||
memcpy(current_props._trace, def_trace, sizeof(def_trace));
|
||
memcpy(current_props._markers, def_markers, sizeof(def_markers));
|
||
current_props._velocity_factor = 0.7;
|
||
current_props._active_marker = 0;
|
||
current_props._domain_mode = 0;
|
||
current_props._marker_smith_format = MS_RLC;
|
||
}
|
||
|
||
void
|
||
ensure_edit_config(void)
|
||
{
|
||
if (active_props == ¤t_props)
|
||
return;
|
||
|
||
//memcpy(¤t_props, active_props, sizeof(config_t));
|
||
active_props = ¤t_props;
|
||
// move to uncal state
|
||
cal_status = 0;
|
||
}
|
||
|
||
#define DELAY_CHANNEL_CHANGE 2
|
||
|
||
// main loop for measurement
|
||
bool sweep(bool break_on_operation)
|
||
{
|
||
int i, delay;
|
||
// blink LED while scanning
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
for (i = 0; i < sweep_points; i++) { // 5300
|
||
delay = set_frequency(frequencies[i]); // 700
|
||
tlv320aic3204_select(0); // 60 CH0:REFLECT
|
||
wait_dsp(delay); // 1900
|
||
// calculate reflection coefficient
|
||
(*sample_func)(measured[0][i]); // 60
|
||
|
||
tlv320aic3204_select(1); // 60 CH1:TRANSMISSION
|
||
wait_dsp(DELAY_CHANNEL_CHANGE); // 1700
|
||
// calculate transmission coefficient
|
||
(*sample_func)(measured[1][i]); // 60
|
||
// ======== 170 ===========
|
||
if (cal_status & CALSTAT_APPLY)
|
||
apply_error_term_at(i);
|
||
|
||
if (electrical_delay != 0)
|
||
apply_edelay_at(i);
|
||
|
||
// back to toplevel to handle ui operation
|
||
if (operation_requested && break_on_operation)
|
||
return false;
|
||
}
|
||
// blink LED while scanning
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
return true;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_scan)
|
||
{
|
||
uint32_t start, stop;
|
||
int16_t points = sweep_points;
|
||
|
||
if (argc != 2 && argc != 3) {
|
||
shell_printf("usage: scan {start(Hz)} {stop(Hz)} [points]\r\n");
|
||
return;
|
||
}
|
||
|
||
start = my_atoui(argv[0]);
|
||
stop = my_atoui(argv[1]);
|
||
if (start == 0 || stop == 0 || start > stop) {
|
||
shell_printf("frequency range is invalid\r\n");
|
||
return;
|
||
}
|
||
if (argc == 3) {
|
||
points = my_atoi(argv[2]);
|
||
if (points <= 0 || points > sweep_points) {
|
||
shell_printf("sweep points exceeds range\r\n");
|
||
return;
|
||
}
|
||
}
|
||
|
||
pause_sweep();
|
||
chMtxLock(&mutex);
|
||
set_frequencies(start, stop, points);
|
||
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
|
||
cal_interpolate(lastsaveid);
|
||
|
||
sweep_once = TRUE;
|
||
chMtxUnlock(&mutex);
|
||
|
||
// wait finishing sweep
|
||
while (sweep_once)
|
||
chThdSleepMilliseconds(10);
|
||
}
|
||
|
||
static void
|
||
update_marker_index(void)
|
||
{
|
||
int m;
|
||
int i;
|
||
for (m = 0; m < MARKERS_MAX; m++) {
|
||
if (!markers[m].enabled)
|
||
continue;
|
||
uint32_t f = markers[m].frequency;
|
||
uint32_t fstart = get_sweep_frequency(ST_START);
|
||
uint32_t fstop = get_sweep_frequency(ST_STOP);
|
||
if (f < fstart) {
|
||
markers[m].index = 0;
|
||
markers[m].frequency = fstart;
|
||
} else if (f >= fstop) {
|
||
markers[m].index = sweep_points-1;
|
||
markers[m].frequency = fstop;
|
||
} else {
|
||
for (i = 0; i < sweep_points-1; i++) {
|
||
if (frequencies[i] <= f && f < frequencies[i+1]) {
|
||
markers[m].index = f < (frequencies[i]/2 + frequencies[i+1]/2) ? i : i+1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
set_frequencies(uint32_t start, uint32_t stop, uint16_t points)
|
||
{
|
||
uint32_t i;
|
||
uint32_t step = (points - 1);
|
||
uint32_t span = stop - start;
|
||
uint32_t delta = span / step;
|
||
uint32_t error = span % step;
|
||
uint32_t f = start, df = step>>1;
|
||
for (i = 0; i <= step; i++, f+=delta) {
|
||
frequencies[i] = f;
|
||
df+=error;
|
||
if (df >=step) {
|
||
f++;
|
||
df-=step;
|
||
}
|
||
}
|
||
// disable at out of sweep range
|
||
for (; i < sweep_points; i++)
|
||
frequencies[i] = 0;
|
||
}
|
||
|
||
void
|
||
update_frequencies(void)
|
||
{
|
||
uint32_t start, stop;
|
||
if (frequency0 < frequency1) {
|
||
start = frequency0;
|
||
stop = frequency1;
|
||
} else {
|
||
start = frequency1;
|
||
stop = frequency0;
|
||
}
|
||
|
||
set_frequencies(start, stop, sweep_points);
|
||
// operation_requested|= OP_FREQCHANGE;
|
||
|
||
update_marker_index();
|
||
|
||
// set grid layout
|
||
update_grid();
|
||
}
|
||
|
||
static void
|
||
freq_mode_startstop(void)
|
||
{
|
||
if (frequency0 > frequency1) {
|
||
ensure_edit_config();
|
||
uint32_t f = frequency1;
|
||
frequency1 = frequency0;
|
||
frequency0 = f;
|
||
}
|
||
}
|
||
|
||
static void
|
||
freq_mode_centerspan(void)
|
||
{
|
||
if (frequency0 <= frequency1) {
|
||
ensure_edit_config();
|
||
uint32_t f = frequency1;
|
||
frequency1 = frequency0;
|
||
frequency0 = f;
|
||
}
|
||
}
|
||
|
||
void
|
||
set_sweep_frequency(int type, uint32_t freq)
|
||
{
|
||
int cal_applied = cal_status & CALSTAT_APPLY;
|
||
|
||
// Check frequency for out of bounds (minimum SPAN can be any value)
|
||
if (type!=ST_SPAN && freq < START_MIN)
|
||
freq = START_MIN;
|
||
if (freq > STOP_MAX)
|
||
freq = STOP_MAX;
|
||
|
||
switch (type) {
|
||
case ST_START:
|
||
freq_mode_startstop();
|
||
if (frequency0 != freq) {
|
||
ensure_edit_config();
|
||
frequency0 = freq;
|
||
// if start > stop then make start = stop
|
||
if (frequency1 < freq)
|
||
frequency1 = freq;
|
||
}
|
||
break;
|
||
case ST_STOP:
|
||
freq_mode_startstop();
|
||
if (frequency1 != freq) {
|
||
ensure_edit_config();
|
||
frequency1 = freq;
|
||
// if start > stop then make start = stop
|
||
if (frequency0 > freq)
|
||
frequency0 = freq;
|
||
}
|
||
break;
|
||
case ST_CENTER:
|
||
freq_mode_centerspan();
|
||
uint32_t center = FREQ_CENTER();
|
||
if (center != freq) {
|
||
uint32_t span = FREQ_SPAN();
|
||
ensure_edit_config();
|
||
if (freq < START_MIN + span/2) {
|
||
span = (freq - START_MIN) * 2;
|
||
}
|
||
if (freq > STOP_MAX - span/2) {
|
||
span = (STOP_MAX - freq) * 2;
|
||
}
|
||
frequency0 = freq + span/2;
|
||
frequency1 = freq - span/2;
|
||
}
|
||
break;
|
||
case ST_SPAN:
|
||
freq_mode_centerspan();
|
||
if (frequency0 - frequency1 != freq) {
|
||
ensure_edit_config();
|
||
uint32_t center = frequency0/2 + frequency1/2;
|
||
if (center < START_MIN + freq/2) {
|
||
center = START_MIN + freq/2;
|
||
}
|
||
if (center > STOP_MAX - freq/2) {
|
||
center = STOP_MAX - freq/2;
|
||
}
|
||
frequency1 = center - freq/2;
|
||
frequency0 = center + freq/2;
|
||
}
|
||
break;
|
||
case ST_CW:
|
||
freq_mode_centerspan();
|
||
if (frequency0 != freq || frequency1 != freq) {
|
||
ensure_edit_config();
|
||
frequency0 = freq;
|
||
frequency1 = freq;
|
||
}
|
||
break;
|
||
}
|
||
update_frequencies();
|
||
if (cal_auto_interpolate && cal_applied)
|
||
cal_interpolate(lastsaveid);
|
||
}
|
||
|
||
uint32_t
|
||
get_sweep_frequency(int type)
|
||
{
|
||
if (frequency0 <= frequency1) {
|
||
switch (type) {
|
||
case ST_START: return frequency0;
|
||
case ST_STOP: return frequency1;
|
||
case ST_CENTER: return frequency0/2 + frequency1/2;
|
||
case ST_SPAN: return frequency1 - frequency0;
|
||
case ST_CW: return frequency0/2 + frequency1/2;
|
||
}
|
||
} else {
|
||
switch (type) {
|
||
case ST_START: return frequency1;
|
||
case ST_STOP: return frequency0;
|
||
case ST_CENTER: return frequency0/2 + frequency1/2;
|
||
case ST_SPAN: return frequency0 - frequency1;
|
||
case ST_CW: return frequency0/2 + frequency1/2;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_sweep)
|
||
{
|
||
if (argc == 0) {
|
||
shell_printf("%d %d %d\r\n", frequency0, frequency1, sweep_points);
|
||
return;
|
||
} else if (argc > 3) {
|
||
goto usage;
|
||
}
|
||
uint32_t value0 = 0;
|
||
uint32_t value1 = 0;
|
||
if (argc >=1) value0 = my_atoui(argv[0]);
|
||
if (argc >=2) value1 = my_atoui(argv[1]);
|
||
#if MAX_FREQ_TYPE!=5
|
||
#error "Sweep mode possibly changed, check cmd_sweep function"
|
||
#endif
|
||
// Parse sweep {start|stop|center|span|cw} {freq(Hz)}
|
||
// get enum ST_START, ST_STOP, ST_CENTER, ST_SPAN, ST_CW
|
||
static const char sweep_cmd[] = "start|stop|center|span|cw";
|
||
if (argc == 2 && value0 == 0) {
|
||
int type = getStringIndex(argv[0], sweep_cmd);
|
||
if (type == -1)
|
||
goto usage;
|
||
set_sweep_frequency(type, value1);
|
||
return;
|
||
}
|
||
// Parse sweep {start(Hz)} [stop(Hz)]
|
||
if (value0)
|
||
set_sweep_frequency(ST_START, value0);
|
||
if (value1)
|
||
set_sweep_frequency(ST_STOP, value1);
|
||
return;
|
||
usage:
|
||
shell_printf("usage: sweep {start(Hz)} [stop(Hz)]\r\n"\
|
||
"\tsweep {%s} {freq(Hz)}\r\n", sweep_cmd);
|
||
}
|
||
|
||
|
||
static void
|
||
eterm_set(int term, float re, float im)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
cal_data[term][i][0] = re;
|
||
cal_data[term][i][1] = im;
|
||
}
|
||
}
|
||
|
||
static void
|
||
eterm_copy(int dst, int src)
|
||
{
|
||
memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]);
|
||
}
|
||
|
||
#if 0
|
||
const struct open_model {
|
||
float c0;
|
||
float c1;
|
||
float c2;
|
||
float c3;
|
||
} open_model = { 50, 0, -300, 27 };
|
||
#endif
|
||
|
||
#if 0
|
||
static void
|
||
adjust_ed(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
|
||
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
|
||
// prepare 1/s11ao to avoid dividing complex
|
||
float c = 1000e-15;
|
||
float z0 = 50;
|
||
//float z = 2 * M_PI * frequencies[i] * c * z0;
|
||
float z = 0.02;
|
||
cal_data[ETERM_ED][i][0] += z;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
eterm_calc_es(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
|
||
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
|
||
// prepare 1/s11ao for effeiciency
|
||
float c = 50e-15;
|
||
//float c = 1.707e-12;
|
||
float z0 = 50;
|
||
float z = 2 * M_PI * frequencies[i] * c * z0;
|
||
float sq = 1 + z*z;
|
||
float s11aor = (1 - z*z) / sq;
|
||
float s11aoi = 2*z / sq;
|
||
|
||
// S11mo’= S11mo - Ed
|
||
// S11ms’= S11ms - Ed
|
||
float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1];
|
||
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
|
||
// Es = (S11mo'/s11ao + S11ms’)/(S11mo' - S11ms’)
|
||
float numr = s11sr + s11or * s11aor - s11oi * s11aoi;
|
||
float numi = s11si + s11oi * s11aor + s11or * s11aoi;
|
||
float denomr = s11or - s11sr;
|
||
float denomi = s11oi - s11si;
|
||
sq = denomr*denomr+denomi*denomi;
|
||
cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq;
|
||
cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq;
|
||
}
|
||
cal_status &= ~CALSTAT_OPEN;
|
||
cal_status |= CALSTAT_ES;
|
||
}
|
||
|
||
static void
|
||
eterm_calc_er(int sign)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// Er = sign*(1-sign*Es)S11ms'
|
||
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
|
||
float esr = cal_data[ETERM_ES][i][0];
|
||
float esi = cal_data[ETERM_ES][i][1];
|
||
if (sign > 0) {
|
||
esr = -esr;
|
||
esi = -esi;
|
||
}
|
||
esr = 1 + esr;
|
||
float err = esr * s11sr - esi * s11si;
|
||
float eri = esr * s11si + esi * s11sr;
|
||
if (sign < 0) {
|
||
err = -err;
|
||
eri = -eri;
|
||
}
|
||
cal_data[ETERM_ER][i][0] = err;
|
||
cal_data[ETERM_ER][i][1] = eri;
|
||
}
|
||
cal_status &= ~CALSTAT_SHORT;
|
||
cal_status |= CALSTAT_ER;
|
||
}
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
static void
|
||
eterm_calc_et(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// Et = 1/(S21mt - Ex)
|
||
float etr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0];
|
||
float eti = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1];
|
||
float sq = etr*etr + eti*eti;
|
||
float invr = etr / sq;
|
||
float invi = -eti / sq;
|
||
cal_data[ETERM_ET][i][0] = invr;
|
||
cal_data[ETERM_ET][i][1] = invi;
|
||
}
|
||
cal_status &= ~CALSTAT_THRU;
|
||
cal_status |= CALSTAT_ET;
|
||
}
|
||
|
||
#if 0
|
||
void apply_error_term(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
// S11m' = S11m - Ed
|
||
// S11a = S11m' / (Er + Es S11m')
|
||
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
|
||
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
|
||
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
|
||
float sq = err*err + eri*eri;
|
||
float s11ar = (s11mr * err + s11mi * eri) / sq;
|
||
float s11ai = (s11mi * err - s11mr * eri) / sq;
|
||
measured[0][i][0] = s11ar;
|
||
measured[0][i][1] = s11ai;
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
// S21m' = S21m - Ex
|
||
// S21a = S21m' (1-EsS11a)Et
|
||
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
|
||
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
|
||
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
|
||
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
|
||
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
|
||
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
|
||
float s21ar = s21mr * etr - s21mi * eti;
|
||
float s21ai = s21mi * etr + s21mr * eti;
|
||
measured[1][i][0] = s21ar;
|
||
measured[1][i][1] = s21ai;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void apply_error_term_at(int i)
|
||
{
|
||
// S11m' = S11m - Ed
|
||
// S11a = S11m' / (Er + Es S11m')
|
||
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
|
||
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
|
||
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
|
||
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
|
||
float sq = err*err + eri*eri;
|
||
float s11ar = (s11mr * err + s11mi * eri) / sq;
|
||
float s11ai = (s11mi * err - s11mr * eri) / sq;
|
||
measured[0][i][0] = s11ar;
|
||
measured[0][i][1] = s11ai;
|
||
|
||
// CAUTION: Et is inversed for efficiency
|
||
// S21m' = S21m - Ex
|
||
// S21a = S21m' (1-EsS11a)Et
|
||
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
|
||
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
|
||
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
|
||
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
|
||
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
|
||
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
|
||
float s21ar = s21mr * etr - s21mi * eti;
|
||
float s21ai = s21mi * etr + s21mr * eti;
|
||
measured[1][i][0] = s21ar;
|
||
measured[1][i][1] = s21ai;
|
||
}
|
||
|
||
static void apply_edelay_at(int i)
|
||
{
|
||
float w = 2 * M_PI * electrical_delay * frequencies[i] * 1E-12;
|
||
float s = sin(w);
|
||
float c = cos(w);
|
||
float real = measured[0][i][0];
|
||
float imag = measured[0][i][1];
|
||
measured[0][i][0] = real * c - imag * s;
|
||
measured[0][i][1] = imag * c + real * s;
|
||
real = measured[1][i][0];
|
||
imag = measured[1][i][1];
|
||
measured[1][i][0] = real * c - imag * s;
|
||
measured[1][i][1] = imag * c + real * s;
|
||
}
|
||
|
||
void
|
||
cal_collect(int type)
|
||
{
|
||
ensure_edit_config();
|
||
|
||
switch (type) {
|
||
case CAL_LOAD:
|
||
cal_status |= CALSTAT_LOAD;
|
||
memcpy(cal_data[CAL_LOAD], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_OPEN:
|
||
cal_status |= CALSTAT_OPEN;
|
||
cal_status &= ~(CALSTAT_ES|CALSTAT_APPLY);
|
||
memcpy(cal_data[CAL_OPEN], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_SHORT:
|
||
cal_status |= CALSTAT_SHORT;
|
||
cal_status &= ~(CALSTAT_ER|CALSTAT_APPLY);
|
||
memcpy(cal_data[CAL_SHORT], measured[0], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_THRU:
|
||
cal_status |= CALSTAT_THRU;
|
||
memcpy(cal_data[CAL_THRU], measured[1], sizeof measured[0]);
|
||
break;
|
||
|
||
case CAL_ISOLN:
|
||
cal_status |= CALSTAT_ISOLN;
|
||
memcpy(cal_data[CAL_ISOLN], measured[1], sizeof measured[0]);
|
||
break;
|
||
}
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
void
|
||
cal_done(void)
|
||
{
|
||
ensure_edit_config();
|
||
if (!(cal_status & CALSTAT_LOAD))
|
||
eterm_set(ETERM_ED, 0.0, 0.0);
|
||
//adjust_ed();
|
||
if ((cal_status & CALSTAT_SHORT) && (cal_status & CALSTAT_OPEN)) {
|
||
eterm_calc_es();
|
||
eterm_calc_er(-1);
|
||
} else if (cal_status & CALSTAT_OPEN) {
|
||
eterm_copy(CAL_SHORT, CAL_OPEN);
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
eterm_calc_er(1);
|
||
} else if (cal_status & CALSTAT_SHORT) {
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
cal_status &= ~CALSTAT_SHORT;
|
||
eterm_calc_er(-1);
|
||
} else {
|
||
eterm_set(ETERM_ER, 1.0, 0.0);
|
||
eterm_set(ETERM_ES, 0.0, 0.0);
|
||
}
|
||
|
||
if (!(cal_status & CALSTAT_ISOLN))
|
||
eterm_set(ETERM_EX, 0.0, 0.0);
|
||
if (cal_status & CALSTAT_THRU) {
|
||
eterm_calc_et();
|
||
} else {
|
||
eterm_set(ETERM_ET, 1.0, 0.0);
|
||
}
|
||
|
||
cal_status |= CALSTAT_APPLY;
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
static void
|
||
cal_interpolate(int s)
|
||
{
|
||
const properties_t *src = caldata_ref(s);
|
||
int i, j;
|
||
int eterm;
|
||
if (src == NULL)
|
||
return;
|
||
|
||
ensure_edit_config();
|
||
|
||
// lower than start freq of src range
|
||
for (i = 0; i < sweep_points; i++) {
|
||
if (frequencies[i] >= src->_frequencies[0])
|
||
break;
|
||
|
||
// fill cal_data at head of src range
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][0][0];
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][0][1];
|
||
}
|
||
}
|
||
|
||
j = 0;
|
||
for (; i < sweep_points; i++) {
|
||
uint32_t f = frequencies[i];
|
||
|
||
for (; j < sweep_points-1; j++) {
|
||
if (src->_frequencies[j] <= f && f < src->_frequencies[j+1]) {
|
||
// found f between freqs at j and j+1
|
||
float k1 = (float)(f - src->_frequencies[j])
|
||
/ (src->_frequencies[j+1] - src->_frequencies[j]);
|
||
|
||
// avoid glitch between freqs in different harmonics mode
|
||
if (IS_HARMONIC_MODE(src->_frequencies[j]) != IS_HARMONIC_MODE(src->_frequencies[j+1])) {
|
||
// assume f[j] < f[j+1]
|
||
k1 = IS_HARMONIC_MODE(f) ? 1.0 : 0.0;
|
||
}
|
||
|
||
float k0 = 1.0 - k1;
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][j][0] * k0 + src->_cal_data[eterm][j+1][0] * k1;
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][j][1] * k0 + src->_cal_data[eterm][j+1][1] * k1;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
if (j == sweep_points-1)
|
||
break;
|
||
}
|
||
|
||
// upper than end freq of src range
|
||
for (; i < sweep_points; i++) {
|
||
// fill cal_data at tail of src
|
||
for (eterm = 0; eterm < 5; eterm++) {
|
||
cal_data[eterm][i][0] = src->_cal_data[eterm][sweep_points-1][0];
|
||
cal_data[eterm][i][1] = src->_cal_data[eterm][sweep_points-1][1];
|
||
}
|
||
}
|
||
|
||
cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED;
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_cal)
|
||
{
|
||
static const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" };
|
||
|
||
if (argc == 0) {
|
||
int i;
|
||
for (i = 0; i < 9; i++) {
|
||
if (cal_status & (1<<i))
|
||
shell_printf("%s ", items[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
return;
|
||
}
|
||
redraw_request|=REDRAW_CAL_STATUS;
|
||
// 0 1 2 3 4 5 6 7 8 9 10
|
||
static const char cmd_cal_list[] = "load|open|short|thru|isoln|done|on|off|reset|data|in";
|
||
switch (getStringIndex(argv[0], cmd_cal_list)){
|
||
case 0:cal_collect(CAL_LOAD ); return;
|
||
case 1:cal_collect(CAL_OPEN ); return;
|
||
case 2:cal_collect(CAL_SHORT); return;
|
||
case 3:cal_collect(CAL_THRU ); return;
|
||
case 4:cal_collect(CAL_ISOLN); return;
|
||
case 5:cal_done(); return;
|
||
case 6:cal_status|= CALSTAT_APPLY;return;
|
||
case 7:cal_status&=~CALSTAT_APPLY;return;
|
||
case 8:cal_status = 0; return;
|
||
case 9:
|
||
shell_printf("%f %f\r\n", cal_data[CAL_LOAD ][0][0], cal_data[CAL_LOAD ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_OPEN ][0][0], cal_data[CAL_OPEN ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_SHORT][0][0], cal_data[CAL_SHORT][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_THRU ][0][0], cal_data[CAL_THRU ][0][1]);
|
||
shell_printf("%f %f\r\n", cal_data[CAL_ISOLN][0][0], cal_data[CAL_ISOLN][0][1]);
|
||
return;
|
||
case 10:
|
||
cal_interpolate((argc > 1) ? my_atoi(argv[1]) : 0);
|
||
return;
|
||
default:break;
|
||
}
|
||
shell_printf("usage: cal [%s]\r\n", cmd_cal_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_save)
|
||
{
|
||
if (argc != 1)
|
||
goto usage;
|
||
|
||
int id = my_atoi(argv[0]);
|
||
if (id < 0 || id >= SAVEAREA_MAX)
|
||
goto usage;
|
||
caldata_save(id);
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
return;
|
||
|
||
usage:
|
||
shell_printf("save {id}\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_recall)
|
||
{
|
||
if (argc != 1)
|
||
goto usage;
|
||
|
||
int id = my_atoi(argv[0]);
|
||
if (id < 0 || id >= SAVEAREA_MAX)
|
||
goto usage;
|
||
// Check for success
|
||
if (caldata_recall(id) == -1)
|
||
shell_printf("Err, default load\r\n");
|
||
update_frequencies();
|
||
redraw_request |= REDRAW_CAL_STATUS;
|
||
return;
|
||
usage:
|
||
shell_printf("recall {id}\r\n");
|
||
}
|
||
|
||
static const struct {
|
||
const char *name;
|
||
uint16_t refpos;
|
||
float scale_unit;
|
||
} trace_info[] = {
|
||
{ "LOGMAG", NGRIDY-1, 10.0 },
|
||
{ "PHASE", NGRIDY/2, 90.0 },
|
||
{ "DELAY", NGRIDY/2, 1e-9 },
|
||
{ "SMITH", 0, 1.00 },
|
||
{ "POLAR", 0, 1.00 },
|
||
{ "LINEAR", 0, 0.125},
|
||
{ "SWR", 0, 0.25 },
|
||
{ "REAL", NGRIDY/2, 0.25 },
|
||
{ "IMAG", NGRIDY/2, 0.25 },
|
||
{ "R", NGRIDY/2, 100.0 },
|
||
{ "X", NGRIDY/2, 100.0 }
|
||
};
|
||
|
||
static const char * const trc_channel_name[] = {
|
||
"CH0", "CH1"
|
||
};
|
||
|
||
const char *get_trace_typename(int t)
|
||
{
|
||
return trace_info[trace[t].type].name;
|
||
}
|
||
|
||
void set_trace_type(int t, int type)
|
||
{
|
||
int enabled = type != TRC_OFF;
|
||
int force = FALSE;
|
||
|
||
if (trace[t].enabled != enabled) {
|
||
trace[t].enabled = enabled;
|
||
force = TRUE;
|
||
}
|
||
if (trace[t].type != type) {
|
||
trace[t].type = type;
|
||
// Set default trace refpos
|
||
trace[t].refpos = trace_info[type].refpos;
|
||
// Set default trace scale
|
||
trace[t].scale = trace_info[type].scale_unit;
|
||
force = TRUE;
|
||
}
|
||
if (force) {
|
||
plot_into_index(measured);
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
void set_trace_channel(int t, int channel)
|
||
{
|
||
if (trace[t].channel != channel) {
|
||
trace[t].channel = channel;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
void set_trace_scale(int t, float scale)
|
||
{
|
||
if (trace[t].scale != scale) {
|
||
trace[t].scale = scale;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
float get_trace_scale(int t)
|
||
{
|
||
return trace[t].scale;
|
||
}
|
||
|
||
void set_trace_refpos(int t, float refpos)
|
||
{
|
||
if (trace[t].refpos != refpos) {
|
||
trace[t].refpos = refpos;
|
||
force_set_markmap();
|
||
}
|
||
}
|
||
|
||
float get_trace_refpos(int t)
|
||
{
|
||
return trace[t].refpos;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_trace)
|
||
{
|
||
int t;
|
||
if (argc == 0) {
|
||
for (t = 0; t < TRACES_MAX; t++) {
|
||
if (trace[t].enabled) {
|
||
const char *type = get_trace_typename(t);
|
||
const char *channel = trc_channel_name[trace[t].channel];
|
||
float scale = get_trace_scale(t);
|
||
float refpos = get_trace_refpos(t);
|
||
shell_printf("%d %s %s %f %f\r\n", t, type, channel, scale, refpos);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (strcmp(argv[0], "all") == 0 &&
|
||
argc > 1 && strcmp(argv[1], "off") == 0) {
|
||
for (t = 0; t < TRACES_MAX; t++)
|
||
set_trace_type(t, TRC_OFF);
|
||
goto exit;
|
||
}
|
||
|
||
t = my_atoi(argv[0]);
|
||
if (t < 0 || t >= TRACES_MAX)
|
||
goto usage;
|
||
if (argc == 1) {
|
||
const char *type = get_trace_typename(t);
|
||
const char *channel = trc_channel_name[trace[t].channel];
|
||
shell_printf("%d %s %s\r\n", t, type, channel);
|
||
return;
|
||
}
|
||
#if MAX_TRACE_TYPE!=12
|
||
#error "Trace type enum possibly changed, check cmd_trace function"
|
||
#endif
|
||
// enum TRC_LOGMAG, TRC_PHASE, TRC_DELAY, TRC_SMITH, TRC_POLAR, TRC_LINEAR, TRC_SWR, TRC_REAL, TRC_IMAG, TRC_R, TRC_X, TRC_OFF
|
||
static const char cmd_type_list[] = "logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|off";
|
||
int type = getStringIndex(argv[1], cmd_type_list);
|
||
if (type >= 0){
|
||
set_trace_type(t, type);
|
||
goto check_ch_num;
|
||
}
|
||
// 0 1
|
||
static const char cmd_scale_ref_list[] = "scale|refpos";
|
||
if (argc >= 3){
|
||
switch (getStringIndex(argv[1], cmd_scale_ref_list)){
|
||
case 0:
|
||
//trace[t].scale = my_atof(argv[2]);
|
||
set_trace_scale(t, my_atof(argv[2]));
|
||
goto exit;
|
||
case 1:
|
||
//trace[t].refpos = my_atof(argv[2]);
|
||
set_trace_refpos(t, my_atof(argv[2]));
|
||
goto exit;
|
||
default:
|
||
goto usage;
|
||
}
|
||
}
|
||
check_ch_num:
|
||
if (argc > 2) {
|
||
int src = my_atoi(argv[2]);
|
||
if (src != 0 && src != 1)
|
||
goto usage;
|
||
trace[t].channel = src;
|
||
}
|
||
exit:
|
||
return;
|
||
usage:
|
||
shell_printf("trace {0|1|2|3|all} [%s] [src]\r\n"\
|
||
"trace {0|1|2|3} {%s} {value}\r\n", cmd_type_list, cmd_scale_ref_list);
|
||
}
|
||
|
||
|
||
void set_electrical_delay(float picoseconds)
|
||
{
|
||
if (electrical_delay != picoseconds) {
|
||
electrical_delay = picoseconds;
|
||
force_set_markmap();
|
||
}
|
||
redraw_request |= REDRAW_MARKER;
|
||
}
|
||
|
||
float get_electrical_delay(void)
|
||
{
|
||
return electrical_delay;
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_edelay)
|
||
{
|
||
if (argc == 0) {
|
||
shell_printf("%f\r\n", electrical_delay);
|
||
return;
|
||
}
|
||
if (argc > 0) {
|
||
set_electrical_delay(my_atof(argv[0]));
|
||
}
|
||
}
|
||
|
||
|
||
VNA_SHELL_FUNCTION(cmd_marker)
|
||
{
|
||
int t;
|
||
if (argc == 0) {
|
||
for (t = 0; t < MARKERS_MAX; t++) {
|
||
if (markers[t].enabled) {
|
||
shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
redraw_request |= REDRAW_MARKER;
|
||
if (strcmp(argv[0], "off") == 0) {
|
||
active_marker = -1;
|
||
for (t = 0; t < MARKERS_MAX; t++)
|
||
markers[t].enabled = FALSE;
|
||
return;
|
||
}
|
||
t = my_atoi(argv[0])-1;
|
||
if (t < 0 || t >= MARKERS_MAX)
|
||
goto usage;
|
||
if (argc == 1) {
|
||
shell_printf("%d %d %d\r\n", t+1, markers[t].index, frequency);
|
||
active_marker = t;
|
||
// select active marker
|
||
markers[t].enabled = TRUE;
|
||
return;
|
||
}
|
||
static const char cmd_marker_list[] = "on|off";
|
||
switch (getStringIndex(argv[1], cmd_marker_list)){
|
||
case 0: markers[t].enabled = TRUE; active_marker = t; return;
|
||
case 1: markers[t].enabled =FALSE; if (active_marker == t) active_marker = -1; return;
|
||
default:
|
||
// select active marker and move to index
|
||
markers[t].enabled = TRUE;
|
||
int index = my_atoi(argv[1]);
|
||
markers[t].index = index;
|
||
markers[t].frequency = frequencies[index];
|
||
active_marker = t;
|
||
return;
|
||
}
|
||
usage:
|
||
shell_printf("marker [n] [%s|{index}]\r\n", cmd_marker_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_touchcal)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
//extern int16_t touch_cal[4];
|
||
int i;
|
||
|
||
shell_printf("first touch upper left, then lower right...");
|
||
touch_cal_exec();
|
||
shell_printf("done\r\n");
|
||
|
||
shell_printf("touch cal params: ");
|
||
for (i = 0; i < 4; i++) {
|
||
shell_printf("%d ", config.touch_cal[i]);
|
||
}
|
||
shell_printf("\r\n");
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_touchtest)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
do {
|
||
touch_draw_test();
|
||
} while(argc);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_frequencies)
|
||
{
|
||
int i;
|
||
(void)argc;
|
||
(void)argv;
|
||
for (i = 0; i < sweep_points; i++) {
|
||
if (frequencies[i] != 0)
|
||
shell_printf("%d\r\n", frequencies[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_domain_mode(int mode) // accept DOMAIN_FREQ or DOMAIN_TIME
|
||
{
|
||
if (mode != (domain_mode & DOMAIN_MODE)) {
|
||
domain_mode = (domain_mode & ~DOMAIN_MODE) | (mode & DOMAIN_MODE);
|
||
redraw_request |= REDRAW_FREQUENCY;
|
||
uistat.lever_mode = LM_MARKER;
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_timedomain_func(int func) // accept TD_FUNC_LOWPASS_IMPULSE, TD_FUNC_LOWPASS_STEP or TD_FUNC_BANDPASS
|
||
{
|
||
domain_mode = (domain_mode & ~TD_FUNC) | (func & TD_FUNC);
|
||
}
|
||
|
||
static void
|
||
set_timedomain_window(int func) // accept TD_WINDOW_MINIMUM/TD_WINDOW_NORMAL/TD_WINDOW_MAXIMUM
|
||
{
|
||
domain_mode = (domain_mode & ~TD_WINDOW) | (func & TD_WINDOW);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_transform)
|
||
{
|
||
int i;
|
||
if (argc == 0) {
|
||
goto usage;
|
||
}
|
||
// 0 1 2 3 4 5 6 7
|
||
static const char cmd_transform_list[] = "on|off|impulse|step|bandpass|minimum|normal|maximum";
|
||
for (i = 0; i < argc; i++) {
|
||
switch (getStringIndex(argv[i], cmd_transform_list)){
|
||
case 0:set_domain_mode(DOMAIN_TIME);return;
|
||
case 1:set_domain_mode(DOMAIN_FREQ);return;
|
||
case 2:set_timedomain_func(TD_FUNC_LOWPASS_IMPULSE);return;
|
||
case 3:set_timedomain_func(TD_FUNC_LOWPASS_STEP);return;
|
||
case 4:set_timedomain_func(TD_FUNC_BANDPASS);return;
|
||
case 5:set_timedomain_window(TD_WINDOW_MINIMUM);return;
|
||
case 6:set_timedomain_window(TD_WINDOW_NORMAL);return;
|
||
case 7:set_timedomain_window(TD_WINDOW_MAXIMUM);return;
|
||
default: goto usage;
|
||
}
|
||
}
|
||
return;
|
||
usage:
|
||
shell_printf("usage: transform {%s} [...]\r\n", cmd_transform_list);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_test)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
|
||
#if 0
|
||
int i;
|
||
for (i = 0; i < 100; i++) {
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
set_frequency(10000000);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
set_frequency(90000000);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
int i;
|
||
int mode = 0;
|
||
if (argc >= 1)
|
||
mode = my_atoi(argv[0]);
|
||
|
||
for (i = 0; i < 20; i++) {
|
||
palClearPad(GPIOC, GPIOC_LED);
|
||
ili9341_test(mode);
|
||
palSetPad(GPIOC, GPIOC_LED);
|
||
chThdSleepMilliseconds(50);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
//extern adcsample_t adc_samples[2];
|
||
//shell_printf("adc: %d %d\r\n", adc_samples[0], adc_samples[1]);
|
||
int i;
|
||
int x, y;
|
||
for (i = 0; i < 50; i++) {
|
||
test_touch(&x, &y);
|
||
shell_printf("adc: %d %d\r\n", x, y);
|
||
chThdSleepMilliseconds(200);
|
||
}
|
||
//extern int touch_x, touch_y;
|
||
//shell_printf("adc: %d %d\r\n", touch_x, touch_y);
|
||
#endif
|
||
|
||
while (argc > 1) {
|
||
int x, y;
|
||
touch_position(&x, &y);
|
||
shell_printf("touch: %d %d\r\n", x, y);
|
||
chThdSleepMilliseconds(200);
|
||
}
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_gain)
|
||
{
|
||
int rvalue;
|
||
int lvalue = 0;
|
||
if (argc != 1 && argc != 2) {
|
||
shell_printf("usage: gain {lgain(0-95)} [rgain(0-95)]\r\n");
|
||
return;
|
||
}
|
||
rvalue = my_atoi(argv[0]);
|
||
if (argc == 2)
|
||
lvalue = my_atoi(argv[1]);
|
||
tlv320aic3204_set_gain(lvalue, rvalue);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_port)
|
||
{
|
||
int port;
|
||
if (argc != 1) {
|
||
shell_printf("usage: port {0:TX 1:RX}\r\n");
|
||
return;
|
||
}
|
||
port = my_atoi(argv[0]);
|
||
tlv320aic3204_select(port);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_stat)
|
||
{
|
||
int16_t *p = &rx_buffer[0];
|
||
int32_t acc0, acc1;
|
||
int32_t ave0, ave1;
|
||
int32_t count = AUDIO_BUFFER_LEN;
|
||
int i;
|
||
(void)argc;
|
||
(void)argv;
|
||
acc0 = acc1 = 0;
|
||
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
|
||
acc0 += p[i];
|
||
acc1 += p[i+1];
|
||
}
|
||
ave0 = acc0 / count;
|
||
ave1 = acc1 / count;
|
||
acc0 = acc1 = 0;
|
||
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
|
||
acc0 += (p[i] - ave0)*(p[i] - ave0);
|
||
acc1 += (p[i+1] - ave1)*(p[i+1] - ave1);
|
||
}
|
||
stat.rms[0] = sqrtf(acc0 / count);
|
||
stat.rms[1] = sqrtf(acc1 / count);
|
||
stat.ave[0] = ave0;
|
||
stat.ave[1] = ave1;
|
||
|
||
shell_printf("average: %d %d\r\n", stat.ave[0], stat.ave[1]);
|
||
shell_printf("rms: %d %d\r\n", stat.rms[0], stat.rms[1]);
|
||
shell_printf("callback count: %d\r\n", stat.callback_count);
|
||
//shell_printf("interval cycle: %d\r\n", stat.interval_cycles);
|
||
//shell_printf("busy cycle: %d\r\n", stat.busy_cycles);
|
||
//shell_printf("load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles);
|
||
// extern int awd_count;
|
||
// shell_printf("awd: %d\r\n", awd_count);
|
||
}
|
||
|
||
|
||
#ifndef VERSION
|
||
#define VERSION "unknown"
|
||
#endif
|
||
|
||
const char NANOVNA_VERSION[] = VERSION;
|
||
|
||
VNA_SHELL_FUNCTION(cmd_version)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("%s\r\n", NANOVNA_VERSION);
|
||
}
|
||
|
||
VNA_SHELL_FUNCTION(cmd_vbat)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("%d mV\r\n", vbat);
|
||
}
|
||
|
||
#ifdef ENABLE_THREADS_COMMAND
|
||
#if CH_CFG_USE_REGISTRY == FALSE
|
||
#error "Threads Requite enabled CH_CFG_USE_REGISTRY in chconf.h"
|
||
#endif
|
||
VNA_SHELL_FUNCTION(cmd_threads) {
|
||
static const char *states[] = {CH_STATE_NAMES};
|
||
thread_t *tp;
|
||
(void)argc;
|
||
(void)argv;
|
||
shell_printf("stklimit| stack|stk free| addr|refs|prio| state| name"VNA_SHELL_NEWLINE_STR);
|
||
tp = chRegFirstThread();
|
||
do {
|
||
uint32_t max_stack_use = 0U;
|
||
#if (CH_DBG_ENABLE_STACK_CHECK == TRUE) || (CH_CFG_USE_DYNAMIC == TRUE)
|
||
uint32_t stklimit = (uint32_t)tp->wabase;
|
||
#if CH_DBG_FILL_THREADS == TRUE
|
||
uint8_t *p = (uint8_t *)tp->wabase; while(p[max_stack_use]==CH_DBG_STACK_FILL_VALUE) max_stack_use++;
|
||
#endif
|
||
#else
|
||
uint32_t stklimit = 0U;
|
||
#endif
|
||
|
||
|
||
shell_printf("%08x|%08x|%08x|%08x|%4u|%4u|%9s|%12s"VNA_SHELL_NEWLINE_STR,
|
||
stklimit, (uint32_t)tp->ctx.sp, max_stack_use, (uint32_t)tp,
|
||
(uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state],
|
||
tp->name == NULL ? "" : tp->name);
|
||
tp = chRegNextThread(tp);
|
||
} while (tp != NULL);
|
||
}
|
||
#endif
|
||
|
||
//=============================================================================
|
||
VNA_SHELL_FUNCTION(cmd_help);
|
||
|
||
#pragma pack(push, 2)
|
||
typedef struct {
|
||
const char *sc_name;
|
||
vna_shellcmd_t sc_function;
|
||
uint16_t flags;
|
||
} VNAShellCommand;
|
||
#pragma pack(pop)
|
||
|
||
// Some commands can executed only if process thread not in main cycle
|
||
#define CMD_WAIT_MUTEX 1
|
||
static const VNAShellCommand commands[] =
|
||
{
|
||
{"version" , cmd_version , 0},
|
||
{"reset" , cmd_reset , 0},
|
||
{"freq" , cmd_freq , CMD_WAIT_MUTEX},
|
||
{"offset" , cmd_offset , 0},
|
||
#ifdef ENABLE_TIME_COMMAND
|
||
{"time" , cmd_time , 0},
|
||
#endif
|
||
{"dac" , cmd_dac , 0},
|
||
{"saveconfig" , cmd_saveconfig , 0},
|
||
{"clearconfig" , cmd_clearconfig , 0},
|
||
{"data" , cmd_data , CMD_WAIT_MUTEX},
|
||
#ifdef ENABLED_DUMP
|
||
{"dump" , cmd_dump , 0},
|
||
#endif
|
||
{"frequencies" , cmd_frequencies , 0},
|
||
{"port" , cmd_port , 0},
|
||
{"stat" , cmd_stat , 0},
|
||
{"gain" , cmd_gain , 0},
|
||
{"power" , cmd_power , 0},
|
||
{"sample" , cmd_sample , 0},
|
||
// {"gamma" , cmd_gamma , 0},
|
||
{"scan" , cmd_scan , 0}, // Wait mutex hardcoded in cmd, need wait one sweep manually
|
||
{"sweep" , cmd_sweep , 0},
|
||
{"test" , cmd_test , 0},
|
||
{"touchcal" , cmd_touchcal , CMD_WAIT_MUTEX},
|
||
{"touchtest" , cmd_touchtest , CMD_WAIT_MUTEX},
|
||
{"pause" , cmd_pause , 0},
|
||
{"resume" , cmd_resume , 0},
|
||
{"cal" , cmd_cal , CMD_WAIT_MUTEX},
|
||
{"save" , cmd_save , 0},
|
||
{"recall" , cmd_recall , CMD_WAIT_MUTEX},
|
||
{"trace" , cmd_trace , 0},
|
||
{"marker" , cmd_marker , 0},
|
||
{"edelay" , cmd_edelay , 0},
|
||
{"capture" , cmd_capture , CMD_WAIT_MUTEX},
|
||
{"vbat" , cmd_vbat , 0},
|
||
{"transform" , cmd_transform , 0},
|
||
{"threshold" , cmd_threshold , 0},
|
||
{"help" , cmd_help , 0},
|
||
#ifdef ENABLE_THREADS_COMMAND
|
||
{"threads" , cmd_threads , 0},
|
||
#endif
|
||
{NULL , NULL , 0}
|
||
};
|
||
|
||
VNA_SHELL_FUNCTION(cmd_help)
|
||
{
|
||
(void)argc;
|
||
(void)argv;
|
||
const VNAShellCommand *scp = commands;
|
||
shell_printf("Commands:");
|
||
while (scp->sc_name != NULL) {
|
||
shell_printf(" %s", scp->sc_name);
|
||
scp++;
|
||
}
|
||
shell_printf(VNA_SHELL_NEWLINE_STR);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* VNA shell functions
|
||
*/
|
||
|
||
//
|
||
// Read command line from shell_stream
|
||
//
|
||
static int VNAShell_readLine(char *line, int max_size){
|
||
// Read line from input stream
|
||
uint8_t c;
|
||
char *ptr = line;
|
||
while (1){
|
||
// Return 0 only if stream not active
|
||
if (streamRead(shell_stream, &c, 1) == 0)
|
||
return 0;
|
||
// Backspace or Delete
|
||
if (c == 8 || c == 0x7f) {
|
||
if (ptr != line) {
|
||
static const char backspace[] = {0x08,0x20,0x08,0x00};
|
||
shell_printf(backspace);
|
||
ptr--;
|
||
}
|
||
continue;
|
||
}
|
||
// New line (Enter)
|
||
if (c == '\r') {
|
||
shell_printf(VNA_SHELL_NEWLINE_STR);
|
||
*ptr = 0;
|
||
return 1;
|
||
}
|
||
// Others (skip)
|
||
if (c < 0x20)
|
||
continue;
|
||
// Store
|
||
if (ptr < line + max_size - 1) {
|
||
streamPut(shell_stream, c); // Echo
|
||
*ptr++ = (char)c;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// Macros for convert define value to string
|
||
#define STR1(x) #x
|
||
#define define_to_STR(x) STR1(x)
|
||
//
|
||
// Parse and run command line
|
||
//
|
||
static void VNAShell_executeLine(char *line){
|
||
// Parse and execute line
|
||
char *args[VNA_SHELL_MAX_ARGUMENTS + 1];
|
||
int n = 0;
|
||
char *lp = line, *ep;
|
||
while (*lp!=0){
|
||
// Skipping white space and tabs at string begin.
|
||
while (*lp==' ' || *lp=='\t') lp++;
|
||
// If an argument starts with a double quote then its delimiter is another quote, else delimiter is white space.
|
||
ep = (*lp == '"') ? strpbrk(++lp, "\"") : strpbrk( lp, " \t");
|
||
// Store in args string
|
||
args[n++]=lp;
|
||
// Stop, end of input string
|
||
if ((lp = ep) == NULL)
|
||
break;
|
||
// Argument limits check
|
||
if (n > VNA_SHELL_MAX_ARGUMENTS) {
|
||
shell_printf("too many arguments, max "define_to_STR(VNA_SHELL_MAX_ARGUMENTS)""VNA_SHELL_NEWLINE_STR);
|
||
return;
|
||
}
|
||
// Set zero at the end of string and continue check
|
||
*lp++ = 0;
|
||
}
|
||
if (n == 0)
|
||
return;
|
||
// Execute line
|
||
const VNAShellCommand *scp;
|
||
for (scp = commands; scp->sc_name!=NULL;scp++) {
|
||
if (strcmp(scp->sc_name, args[0]) == 0) {
|
||
if (scp->flags&CMD_WAIT_MUTEX) {
|
||
chMtxLock(&mutex);
|
||
scp->sc_function(n-1, &args[1]);
|
||
chMtxUnlock(&mutex);
|
||
}
|
||
else
|
||
scp->sc_function(n-1, &args[1]);
|
||
return;
|
||
}
|
||
}
|
||
shell_printf("%s?"VNA_SHELL_NEWLINE_STR, args[0]);
|
||
}
|
||
|
||
#ifdef VNA_SHELL_THREAD
|
||
static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442);
|
||
THD_FUNCTION(myshellThread, p) {
|
||
(void)p;
|
||
chRegSetThreadName("shell");
|
||
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
|
||
while (true) {
|
||
shell_printf(VNA_SHELL_PROMPT_STR);
|
||
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
|
||
VNAShell_executeLine(shell_line);
|
||
else // Putting a delay in order to avoid an endless loop trying to read an unavailable stream.
|
||
osalThreadSleepMilliseconds(100);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// I2C clock bus setting: depend from STM32_I2C1SW in mcuconf.h
|
||
static const I2CConfig i2ccfg = {
|
||
.timingr = // TIMINGR register initialization. (use I2C timing configuration tool for STM32F3xx and STM32F0xx microcontrollers (AN4235))
|
||
#if STM32_I2C1SW == STM32_I2C1SW_HSI
|
||
// STM32_I2C1SW == STM32_I2C1SW_HSI (HSI=8MHz)
|
||
// 400kHz @ HSI 8MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual)
|
||
STM32_TIMINGR_PRESC(0U) |
|
||
STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(1U) |
|
||
STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U),
|
||
// Old values voodoo magic 400kHz @ HSI 8MHz
|
||
//0x00300506,
|
||
#elif STM32_I2C1SW == STM32_I2C1SW_SYSCLK
|
||
// STM32_I2C1SW == STM32_I2C1SW_SYSCLK (SYSCLK = 48MHz)
|
||
// 400kHz @ SYSCLK 48MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual)
|
||
STM32_TIMINGR_PRESC(5U) |
|
||
STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(3U) |
|
||
STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U),
|
||
#else
|
||
#error "Need Define STM32_I2C1SW and set correct TIMINGR settings"
|
||
#endif
|
||
.cr1 = 0, // CR1 register initialization.
|
||
.cr2 = 0 // CR2 register initialization.
|
||
};
|
||
|
||
static DACConfig dac1cfg1 = {
|
||
//init: 2047U,
|
||
init: 1922U,
|
||
datamode: DAC_DHRM_12BIT_RIGHT
|
||
};
|
||
|
||
|
||
// Main thread stack size defined in makefile USE_PROCESS_STACKSIZE = 0x200
|
||
// Profile stack usage (enable threads command by def ENABLE_THREADS_COMMAND) show:
|
||
// Stack maximum usage = 472 bytes (need test more and run all commands), free stack = 40 bytes
|
||
//
|
||
int main(void)
|
||
{
|
||
halInit();
|
||
chSysInit();
|
||
|
||
chMtxObjectInit(&mutex);
|
||
|
||
//palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
|
||
//palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
|
||
i2cStart(&I2CD1, &i2ccfg);
|
||
si5351_init();
|
||
|
||
// MCO on PA8
|
||
//palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0));
|
||
/*
|
||
* Initializes a serial-over-USB CDC driver.
|
||
*/
|
||
sduObjectInit(&SDU1);
|
||
sduStart(&SDU1, &serusbcfg);
|
||
/*
|
||
* Activates the USB driver and then the USB bus pull-up on D+.
|
||
* Note, a delay is inserted in order to not have to disconnect the cable
|
||
* after a reset.
|
||
*/
|
||
usbDisconnectBus(serusbcfg.usbp);
|
||
chThdSleepMilliseconds(100);
|
||
usbStart(serusbcfg.usbp, &usbcfg);
|
||
usbConnectBus(serusbcfg.usbp);
|
||
|
||
/*
|
||
* SPI LCD Initialize
|
||
*/
|
||
ili9341_init();
|
||
|
||
/* restore config */
|
||
config_recall();
|
||
/* restore frequencies and calibration 0 slot properties from flash memory */
|
||
caldata_recall(0);
|
||
|
||
dac1cfg1.init = config.dac_value;
|
||
/*
|
||
* Starting DAC1 driver, setting up the output pin as analog as suggested
|
||
* by the Reference Manual.
|
||
*/
|
||
dacStart(&DACD2, &dac1cfg1);
|
||
|
||
/* initial frequencies */
|
||
update_frequencies();
|
||
|
||
/*
|
||
* I2S Initialize
|
||
*/
|
||
tlv320aic3204_init();
|
||
i2sInit();
|
||
i2sObjectInit(&I2SD2);
|
||
i2sStart(&I2SD2, &i2sconfig);
|
||
i2sStartExchange(&I2SD2);
|
||
|
||
ui_init();
|
||
//Initialize graph plotting
|
||
plot_init();
|
||
redraw_frame();
|
||
chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO-1, Thread1, NULL);
|
||
|
||
while (1) {
|
||
if (SDU1.config->usbp->state == USB_ACTIVE) {
|
||
#ifdef VNA_SHELL_THREAD
|
||
#if CH_CFG_USE_WAITEXIT == FALSE
|
||
#error "VNA_SHELL_THREAD use chThdWait, need enable CH_CFG_USE_WAITEXIT in chconf.h"
|
||
#endif
|
||
thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2),
|
||
NORMALPRIO + 1,
|
||
myshellThread, NULL);
|
||
chThdWait(shelltp);
|
||
#else
|
||
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
|
||
do {
|
||
shell_printf(VNA_SHELL_PROMPT_STR);
|
||
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
|
||
VNAShell_executeLine(shell_line);
|
||
else
|
||
chThdSleepMilliseconds(200);
|
||
} while (SDU1.config->usbp->state == USB_ACTIVE);
|
||
#endif
|
||
}
|
||
chThdSleepMilliseconds(1000);
|
||
}
|
||
}
|
||
|
||
/* The prototype shows it is a naked function - in effect this is just an
|
||
assembly function. */
|
||
void HardFault_Handler( void );
|
||
|
||
void hard_fault_handler_c(uint32_t *sp) __attribute__( ( naked ) );;
|
||
|
||
void HardFault_Handler(void)
|
||
{
|
||
uint32_t* sp;
|
||
//__asm volatile ("mrs %0, msp \n\t": "=r" (sp) );
|
||
__asm volatile ("mrs %0, psp \n\t": "=r" (sp) );
|
||
hard_fault_handler_c(sp);
|
||
}
|
||
|
||
void hard_fault_handler_c(uint32_t* sp)
|
||
{
|
||
(void)sp;
|
||
while (true) {}
|
||
}
|