NanoVNA/ui.c
2020-07-13 06:56:49 +03:00

2468 lines
64 KiB
C

/*
* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "chprintf.h"
#include "nanovna.h"
//#include <stdlib.h>
#include <string.h>
uistat_t uistat = {
digit: 6,
current_trace: 0,
lever_mode: LM_MARKER,
marker_delta: FALSE,
marker_tracking : FALSE,
};
#define NO_EVENT 0
#define EVT_BUTTON_SINGLE_CLICK 0x01
#define EVT_BUTTON_DOUBLE_CLICK 0x02
#define EVT_BUTTON_DOWN_LONG 0x04
#define EVT_UP 0x10
#define EVT_DOWN 0x20
#define EVT_REPEAT 0x40
#define BUTTON_DOWN_LONG_TICKS 5000 /* 500ms */
#define BUTTON_DOUBLE_TICKS 2500 /* 250ms */
#define BUTTON_REPEAT_TICKS 200 /* 20ms */
#define BUTTON_DEBOUNCE_TICKS 400 /* 40ms */
/* lever switch assignment */
#define BIT_UP1 3
#define BIT_PUSH 2
#define BIT_DOWN1 1
#define READ_PORT() palReadPort(GPIOA)
#define BUTTON_MASK 0b1111
static uint16_t last_button = 0b0000;
static systime_t last_button_down_ticks;
static systime_t last_button_repeat_ticks;
volatile uint8_t operation_requested = OP_NONE;
int8_t previous_marker = -1;
#ifdef __USE_SD_CARD__
#if SPI_BUFFER_SIZE < 2048
#error "SPI_BUFFER_SIZE for SD card support need size = 2048"
#else
// Fat file system work area (at the end of spi_buffer)
static FATFS *fs_volume = (FATFS *)(((uint8_t*)(&spi_buffer[SPI_BUFFER_SIZE])) - sizeof(FATFS));
// FatFS file object (at the end of spi_buffer)
static FIL *fs_file = ( FIL*)(((uint8_t*)(&spi_buffer[SPI_BUFFER_SIZE])) - sizeof(FATFS) - sizeof(FIL));
// Filename object (at the end of spi_buffer)
static char *fs_filename = ( char*)(((uint8_t*)(&spi_buffer[SPI_BUFFER_SIZE])) - sizeof(FATFS) - sizeof(FIL) - FF_LFN_BUF - 4);
#endif
#endif
enum {
UI_NORMAL, UI_MENU, UI_NUMERIC, UI_KEYPAD
};
// Keypad structures
// Enum for keypads_list
enum {
KM_START, KM_STOP, KM_CENTER, KM_SPAN, KM_CW, KM_SCALE, KM_REFPOS, KM_EDELAY, KM_VELOCITY_FACTOR, KM_SCALEDELAY, KM_NONE
};
typedef struct {
uint8_t x:4;
uint8_t y:4;
uint8_t c;
} keypads_t;
typedef struct {
const keypads_t *keypad_type;
const char *name;
} keypads_list;
// Max keyboard input length
#define NUMINPUT_LEN 10
static uint8_t ui_mode = UI_NORMAL;
static const keypads_t *keypads;
static uint8_t keypad_mode;
static uint8_t keypads_last_index;
static char kp_buf[NUMINPUT_LEN+1];
static int8_t kp_index = 0;
static uint8_t menu_current_level = 0;
static int8_t selection = 0;
// UI menu structure
// Type of menu item:
#define MT_NONE 0x00
#define MT_BLANK 0x01
#define MT_SUBMENU 0x02
#define MT_CALLBACK 0x03
#define MT_CANCEL 0x04
#define MT_CLOSE 0x05
//#define MT_ADV_CALLBACK 0x06
// Call back functions for MT_CALLBACK type
typedef void (*menuaction_cb_t)(int item, uint16_t data);
#define UI_FUNCTION_CALLBACK(ui_function_name) void ui_function_name(int item, uint16_t data)
//typedef void (*menuaction_acb_t)(int item, uint16_t data, uint16_t cmd);
//#define UI_FUNCTION_ADV_CALLBACK(ui_function_name) void ui_function_name(int item, uint16_t data, uint16_t cmd)
// Set structure align as WORD (save flash memory)
#pragma pack(push, 2)
typedef struct {
uint8_t type;
uint8_t data;
char *label;
const void *reference;
} menuitem_t;
#pragma pack(pop)
// Touch screen
#define EVT_TOUCH_NONE 0
#define EVT_TOUCH_DOWN 1
#define EVT_TOUCH_PRESSED 2
#define EVT_TOUCH_RELEASED 3
static int8_t last_touch_status = EVT_TOUCH_NONE;
static int16_t last_touch_x;
static int16_t last_touch_y;
//int16_t touch_cal[4] = { 1000, 1000, 10*16, 12*16 };
//int16_t touch_cal[4] = { 620, 600, 130, 180 };
//int awd_count;
//int touch_x, touch_y;
#define KP_CONTINUE 0
#define KP_DONE 1
#define KP_CANCEL 2
static void ui_mode_normal(void);
static void ui_mode_menu(void);
static void ui_mode_numeric(int _keypad_mode);
static void ui_mode_keypad(int _keypad_mode);
static void draw_menu(void);
static void leave_ui_mode(void);
static void erase_menu_buttons(void);
static void ui_process_keypad(void);
static void ui_process_numeric(void);
static void touch_position(int *x, int *y);
static void menu_move_back(bool leave_ui);
static void menu_push_submenu(const menuitem_t *submenu);
static int btn_check(void)
{
systime_t ticks;
// Debounce input
while(TRUE){
ticks = chVTGetSystemTimeX();
if(ticks - last_button_down_ticks > BUTTON_DEBOUNCE_TICKS)
break;
chThdSleepMilliseconds(10);
}
int status = 0;
uint16_t cur_button = READ_PORT() & BUTTON_MASK;
// Detect only changed and pressed buttons
uint16_t button_set = (last_button ^ cur_button) & cur_button;
last_button_down_ticks = ticks;
last_button = cur_button;
if (button_set & (1<<BIT_PUSH))
status |= EVT_BUTTON_SINGLE_CLICK;
if (button_set & (1<<BIT_UP1))
status |= EVT_UP;
if (button_set & (1<<BIT_DOWN1))
status |= EVT_DOWN;
return status;
}
static int btn_wait_release(void)
{
while (TRUE) {
systime_t ticks = chVTGetSystemTimeX();
systime_t dt = ticks - last_button_down_ticks;
// Debounce input
// if (dt < BUTTON_DEBOUNCE_TICKS){
// chThdSleepMilliseconds(10);
// continue;
// }
chThdSleepMilliseconds(1);
uint16_t cur_button = READ_PORT() & BUTTON_MASK;
uint16_t changed = last_button ^ cur_button;
if (dt >= BUTTON_DOWN_LONG_TICKS && (cur_button & (1<<BIT_PUSH)))
return EVT_BUTTON_DOWN_LONG;
else if (changed & (1<<BIT_PUSH)) // release
return EVT_BUTTON_SINGLE_CLICK;
if (changed) {
// finished
last_button = cur_button;
last_button_down_ticks = ticks;
return 0;
}
if (dt > BUTTON_DOWN_LONG_TICKS &&
ticks > last_button_repeat_ticks) {
int status = 0;
if (cur_button & (1<<BIT_DOWN1))
status |= EVT_DOWN | EVT_REPEAT;
if (cur_button & (1<<BIT_UP1))
status |= EVT_UP | EVT_REPEAT;
last_button_repeat_ticks = ticks + BUTTON_REPEAT_TICKS;
return status;
}
}
}
#if 0
#define SWAP_16(x,y) {uint16_t t = x;x=y;y=t;}
static void bubbleSort(uint16_t *v, int n) {
bool swapped = true;
int i = 0, j;
while (i < n - 1 && swapped) { // keep going while we swap in the unordered part
swapped = false;
for (j = n - 1; j > i; j--) { // unordered part
if (v[j] < v[j - 1]) {
SWAP_16(v[j], v[j - 1]);
swapped = true;
}
}
i++;
}
}
#endif
// ADC read count for measure X and Y (2^N count)
#define TOUCH_X_N 3
#define TOUCH_Y_N 3
static int
touch_measure_y(void)
{
// drive low to high on X line (At this state after touch_prepare_sense)
// palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_OUTPUT_PUSHPULL); //
// palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_OUTPUT_PUSHPULL); //
// drive low to high on X line (coordinates from top to bottom)
palClearPad(GPIOB, GPIOB_XN);
// palSetPad(GPIOA, GPIOA_XP);
// open Y line (At this state after touch_prepare_sense)
// palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_INPUT_ANALOG); // <- ADC_TOUCH_Y channel
// chThdSleepMilliseconds(20);
uint32_t v = 0, cnt = 1<<TOUCH_Y_N;
do{v+=adc_single_read(ADC_TOUCH_Y);}while(--cnt);
return v>>TOUCH_Y_N;
}
static int
touch_measure_x(void)
{
// drive high to low on Y line (coordinates from left to right)
palSetPad(GPIOB, GPIOB_YN);
palClearPad(GPIOA, GPIOA_YP);
// Set Y line as output
palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_OUTPUT_PUSHPULL);
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_OUTPUT_PUSHPULL);
// Set X line as input
palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_INPUT_ANALOG); // <- ADC_TOUCH_X channel
uint32_t v = 0, cnt = 1<<TOUCH_X_N;
do{v+=adc_single_read(ADC_TOUCH_X);}while(--cnt);
return v>>TOUCH_X_N;
}
void
touch_prepare_sense(void)
{
// Set Y line as input
palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_INPUT_PULLDOWN); // Use pull
// drive high on X line (for touch sense on Y)
palSetPad(GPIOB, GPIOB_XN);
palSetPad(GPIOA, GPIOA_XP);
// force high X line
palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_OUTPUT_PUSHPULL);
palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_OUTPUT_PUSHPULL);
// chThdSleepMilliseconds(10); // Wait 10ms for denounce touch
}
void
touch_start_watchdog(void)
{
touch_prepare_sense();
adc_start_analog_watchdogd(ADC_TOUCH_Y);
}
static inline int
touch_status(void)
{
// touch_prepare_sense();
return adc_single_read(ADC_TOUCH_Y) > TOUCH_THRESHOLD;
}
static int
touch_check(void)
{
int stat = touch_status();
if (stat) {
int y = touch_measure_y();
int x = touch_measure_x();
touch_prepare_sense();
if (touch_status())
{
last_touch_x = x;
last_touch_y = y;
}
}
if (stat != last_touch_status) {
last_touch_status = stat;
return stat ? EVT_TOUCH_PRESSED : EVT_TOUCH_RELEASED;
}
return stat ? EVT_TOUCH_DOWN : EVT_TOUCH_NONE;
}
static inline void
touch_wait_release(void)
{
while (touch_check() != EVT_TOUCH_RELEASED)
;
}
static inline void
touch_wait_pressed(void)
{
while (touch_check() != EVT_TOUCH_PRESSED)
;
}
void
touch_cal_exec(void)
{
int x1, x2, y1, y2;
adc_stop();
ili9341_set_foreground(DEFAULT_FG_COLOR);
ili9341_set_background(DEFAULT_BG_COLOR);
ili9341_clear_screen();
ili9341_line(0, 0, 0, 32);
ili9341_line(0, 0, 32, 0);
ili9341_drawstring("TOUCH UPPER LEFT", 10, 10);
touch_wait_release();
x1 = last_touch_x;
y1 = last_touch_y;
ili9341_clear_screen();
ili9341_line(LCD_WIDTH-1, LCD_HEIGHT-1, LCD_WIDTH-1, LCD_HEIGHT-32);
ili9341_line(LCD_WIDTH-1, LCD_HEIGHT-1, LCD_WIDTH-32, LCD_HEIGHT-1);
ili9341_drawstring("TOUCH LOWER RIGHT", LCD_WIDTH-17*(FONT_WIDTH)-10, LCD_HEIGHT-FONT_GET_HEIGHT-10);
touch_wait_release();
x2 = last_touch_x;
y2 = last_touch_y;
config.touch_cal[0] = x1;
config.touch_cal[1] = y1;
config.touch_cal[2] = (x2 - x1) * 16 / LCD_WIDTH;
config.touch_cal[3] = (y2 - y1) * 16 / LCD_HEIGHT;
//redraw_all();
touch_start_watchdog();
}
void
touch_draw_test(void)
{
int x0, y0;
int x1, y1;
adc_stop();
ili9341_set_foreground(DEFAULT_FG_COLOR);
ili9341_set_background(DEFAULT_BG_COLOR);
ili9341_clear_screen();
ili9341_drawstring("TOUCH TEST: DRAG PANEL, PRESS BUTTON TO FINISH", OFFSETX, LCD_HEIGHT - FONT_GET_HEIGHT);
do {
if (touch_check() == EVT_TOUCH_PRESSED){
touch_position(&x0, &y0);
do {
chThdSleepMilliseconds(50);
touch_position(&x1, &y1);
ili9341_line(x0, y0, x1, y1);
x0 = x1;
y0 = y1;
} while (touch_check() != EVT_TOUCH_RELEASED);
}
}while (!(btn_check() & EVT_BUTTON_SINGLE_CLICK));
touch_start_watchdog();
}
static void
touch_position(int *x, int *y)
{
*x = (last_touch_x - config.touch_cal[0]) * 16 / config.touch_cal[2];
*y = (last_touch_y - config.touch_cal[1]) * 16 / config.touch_cal[3];
}
static void
show_version(void)
{
int x = 5, y = 5, i = 1;
// adc_stop();
ili9341_set_foreground(DEFAULT_FG_COLOR);
ili9341_set_background(DEFAULT_BG_COLOR);
ili9341_clear_screen();
uint16_t shift = 0b000100000;
ili9341_drawstring_size(BOARD_NAME, x , y, 3);
y+=FONT_GET_HEIGHT*3+3-5;
while (info_about[i]) {
do {shift>>=1; y+=5;} while (shift&1);
ili9341_drawstring(info_about[i++], x, y+=FONT_STR_HEIGHT+3-5);
}
// Update battery and time
y+=3*FONT_STR_HEIGHT;
uint16_t cnt = 0;
while (true) {
if (touch_check() == EVT_TOUCH_PRESSED)
break;
if (btn_check() & EVT_BUTTON_SINGLE_CLICK)
break;
chThdSleepMilliseconds(40);
if ((cnt++)&0x07) continue; // Not update time so fast
#ifdef __USE_RTC__
char buffer[32];
uint32_t tr = rtc_get_tr_bin(); // TR read first
uint32_t dr = rtc_get_dr_bin(); // DR read second
plot_printf(buffer, sizeof(buffer), "Time: 20%02d/%02d/%02d %02d:%02d:%02d",
RTC_DR_YEAR(dr),
RTC_DR_MONTH(dr),
RTC_DR_DAY(dr),
RTC_TR_HOUR(dr),
RTC_TR_MIN(dr),
RTC_TR_SEC(dr));
ili9341_drawstring(buffer, x, y);
#endif
// uint32_t vbat = adc_vbat_read();
// plot_printf(buffer, sizeof(buffer), "Battery: %d.%03dV", vbat/1000, vbat%1000);
// ili9341_drawstring(buffer, x, y + FONT_STR_HEIGHT + 2);
}
// touch_start_watchdog();
}
void
enter_dfu(void)
{
adc_stop();
int x = 5, y = 20;
ili9341_set_foreground(DEFAULT_FG_COLOR);
ili9341_set_background(DEFAULT_BG_COLOR);
// leave a last message
ili9341_clear_screen();
ili9341_drawstring("DFU: Device Firmware Update Mode\n"
"To exit DFU mode, please reset device yourself.", x, y);
// see __early_init in ./NANOVNA_STM32_F072/board.c
*((unsigned long *)BOOT_FROM_SYTEM_MEMORY_MAGIC_ADDRESS) = BOOT_FROM_SYTEM_MEMORY_MAGIC;
NVIC_SystemReset();
}
static void
select_lever_mode(int mode)
{
if (uistat.lever_mode != mode) {
uistat.lever_mode = mode;
redraw_request |= REDRAW_FREQUENCY | REDRAW_MARKER;
}
}
static UI_FUNCTION_CALLBACK(menu_calop_cb)
{
cal_collect(data);
selection = item+1;
draw_cal_status();
draw_menu();
}
static UI_FUNCTION_CALLBACK(menu_caldone_cb)
{
extern const menuitem_t menu_save[];
//extern const menuitem_t menu_cal[];
(void)item;
(void)data;
cal_done();
draw_cal_status();
menu_move_back(false);
menu_push_submenu(menu_save);
}
static UI_FUNCTION_CALLBACK(menu_cal2_cb)
{
(void)data;
switch (item) {
case 2: // RESET
cal_status = 0;
break;
case 3: // CORRECTION
// toggle applying correction
cal_status ^= CALSTAT_APPLY;
break;
}
draw_menu();
draw_cal_status();
//menu_move_back();
}
static UI_FUNCTION_CALLBACK(menu_recall_cb)
{
(void)item;
load_properties(data);
// menu_move_back();
// ui_mode_normal();
update_grid();
draw_cal_status();
}
static UI_FUNCTION_CALLBACK(menu_config_cb)
{
(void)data;
switch (item) {
case 0:
touch_cal_exec();
break;
case 1:
touch_draw_test();
break;
case 4:
show_version();
break;
}
redraw_frame();
request_to_redraw_grid();
draw_menu();
}
static UI_FUNCTION_CALLBACK(menu_config_save_cb)
{
(void)item;
(void)data;
config_save();
menu_move_back(true);
}
static UI_FUNCTION_CALLBACK(menu_dfu_cb)
{
(void)item;
(void)data;
enter_dfu();
}
static UI_FUNCTION_CALLBACK(menu_save_cb)
{
(void)item;
if (caldata_save(data) == 0) {
menu_move_back(true);
draw_cal_status();
}
}
static void
choose_active_trace(void)
{
int i;
if (trace[uistat.current_trace].enabled)
// do nothing
return;
for (i = 0; i < TRACES_MAX; i++)
if (trace[i].enabled) {
uistat.current_trace = i;
return;
}
}
static UI_FUNCTION_CALLBACK(menu_trace_cb)
{
(void)item;
if (trace[data].enabled) {
if (data == uistat.current_trace) {
// disable if active trace is selected
trace[data].enabled = FALSE;
choose_active_trace();
} else {
// make active selected trace
uistat.current_trace = data;
}
} else {
trace[data].enabled = TRUE;
uistat.current_trace = data;
}
request_to_redraw_grid();
draw_menu();
}
static UI_FUNCTION_CALLBACK(menu_format_cb)
{
(void)item;
set_trace_type(uistat.current_trace, data);
request_to_redraw_grid();
ui_mode_normal();
//redraw_all();
}
static UI_FUNCTION_CALLBACK(menu_channel_cb)
{
(void)item;
set_trace_channel(uistat.current_trace, data);
menu_move_back(true);
}
static UI_FUNCTION_CALLBACK(menu_transform_window_cb)
{
(void)item;
// TODO
domain_mode = (domain_mode & ~TD_WINDOW) | data;
ui_mode_normal();
}
static UI_FUNCTION_CALLBACK(menu_transform_cb)
{
(void)item;
(void)data;
domain_mode ^= DOMAIN_TIME;
select_lever_mode(LM_MARKER);
ui_mode_normal();
}
static UI_FUNCTION_CALLBACK(menu_transform_filter_cb)
{
(void)item;
domain_mode = (domain_mode & ~TD_FUNC) | data;
ui_mode_normal();
}
static UI_FUNCTION_CALLBACK(menu_bandwidth_cb)
{
(void)item;
config.bandwidth = data;
draw_frequencies();
draw_menu();
}
static UI_FUNCTION_CALLBACK(menu_points_cb)
{
(void)item;
set_sweep_points(data);
draw_menu();
}
static void
choose_active_marker(void)
{
int i;
for (i = 0; i < MARKERS_MAX; i++)
if (markers[i].enabled) {
active_marker = i;
return;
}
active_marker = -1;
}
static UI_FUNCTION_CALLBACK(menu_keyboard_cb)
{
(void)item;
if (data == KM_SCALE && trace[uistat.current_trace].type == TRC_DELAY) {
data = KM_SCALEDELAY;
}
if (btn_wait_release() & EVT_BUTTON_DOWN_LONG) {
ui_mode_numeric(data);
// ui_process_numeric();
} else {
ui_mode_keypad(data);
ui_process_keypad();
}
}
static UI_FUNCTION_CALLBACK(menu_pause_cb)
{
(void)item;
(void)data;
toggle_sweep();
//menu_move_back();
//ui_mode_normal();
draw_menu();
}
static uint32_t
get_marker_frequency(int marker)
{
if (marker < 0 || marker >= MARKERS_MAX)
return 0;
if (!markers[marker].enabled)
return 0;
return frequencies[markers[marker].index];
}
static UI_FUNCTION_CALLBACK(menu_marker_op_cb)
{
uint32_t freq = get_marker_frequency(active_marker);
if (freq == 0)
return; // no active marker
switch (item) {
case 0: /* MARKER->START */
case 1: /* MARKER->STOP */
case 2: /* MARKER->CENTER */
set_sweep_frequency(data, freq);
break;
case 3: /* MARKERS->SPAN */
{
if (previous_marker == -1 || active_marker == previous_marker) {
// if only 1 marker is active, keep center freq and make span the marker comes to the edge
uint32_t center = get_sweep_frequency(ST_CENTER);
uint32_t span = center > freq ? center - freq : freq - center;
set_sweep_frequency(ST_SPAN, span * 2);
} else {
// if 2 or more marker active, set start and stop freq to each marker
uint32_t freq2 = get_marker_frequency(previous_marker);
if (freq2 == 0)
return;
if (freq > freq2) {
freq2 = freq;
freq = get_marker_frequency(previous_marker);
}
set_sweep_frequency(ST_START, freq);
set_sweep_frequency(ST_STOP, freq2);
}
}
break;
case 4: /* MARKERS->EDELAY */
{
if (uistat.current_trace == -1)
break;
float (*array)[2] = measured[trace[uistat.current_trace].channel];
float v = groupdelay_from_array(markers[active_marker].index, array);
set_electrical_delay(electrical_delay + (v / 1e-12));
}
break;
}
ui_mode_normal();
draw_cal_status();
//redraw_all();
}
static UI_FUNCTION_CALLBACK(menu_marker_search_cb)
{
(void)data;
int i = -1;
if (active_marker == -1)
return;
switch (item) {
case 0: /* maximum */
case 1: /* minimum */
set_marker_search(item);
i = marker_search();
break;
case 2: /* search Left */
i = marker_search_left(markers[active_marker].index);
uistat.marker_tracking = false;
break;
case 3: /* search right */
i = marker_search_right(markers[active_marker].index);
uistat.marker_tracking = false;
break;
case 4: /* tracking */
uistat.marker_tracking = !uistat.marker_tracking;
break;
}
if (i != -1)
markers[active_marker].index = i;
draw_menu();
redraw_marker(active_marker);
select_lever_mode(LM_SEARCH);
}
static UI_FUNCTION_CALLBACK(menu_marker_smith_cb)
{
(void)item;
marker_smith_format = data;
redraw_marker(active_marker);
draw_menu();
}
static void
active_marker_select(int item)
{
if (item == -1) {
active_marker = previous_marker;
previous_marker = -1;
if (active_marker == -1) {
choose_active_marker();
}
} else {
if (previous_marker != active_marker)
previous_marker = active_marker;
active_marker = item;
}
}
static UI_FUNCTION_CALLBACK(menu_marker_sel_cb)
{
(void)data;
int t;
if (item >= 0 && item < MARKERS_MAX) {
if (markers[item].enabled) {
if (item == active_marker) {
// disable if active trace is selected
markers[item].enabled = FALSE;
active_marker_select(-1);
} else {
active_marker_select(item);
}
} else {
markers[item].enabled = TRUE;
active_marker_select(item);
}
} else if (item == 4) { /* all off */
for (t = 0; t < MARKERS_MAX; t++)
markers[t].enabled = FALSE;
previous_marker = -1;
active_marker = -1;
} else if (item == 5) { /* marker delta */
uistat.marker_delta = !uistat.marker_delta;
}
redraw_marker(active_marker);
draw_menu();
}
#ifdef __USE_SD_CARD__
#define SAVE_S1P_FILE 1
#define SAVE_S2P_FILE 2
static const char s1_file_header[] =
"!File created by NanoVNA\r\n"\
"# HZ S RI R 50\r\n";
static const char s1_file_param[] =
"%10d % f % f\r\n";
static const char s2_file_header[] =
"!File created by NanoVNA\r\n"\
"# HZ S RI R 50\r\n";
static const char s2_file_param[] =
"%10d % f % f % f % f 0 0 0 0\r\n";
static UI_FUNCTION_CALLBACK(menu_sdcard_cb)
{
(void)item;
char *buf = (char *)spi_buffer;
// shell_printf("S file\r\n");
FRESULT res = f_mount(fs_volume, "", 1);
// shell_printf("Mount = %d\r\n", res);
if (res != FR_OK)
return;
// Prepare filename = .s1p or .s2p and open for write
#if FF_USE_LFN >= 1
uint32_t tr = rtc_get_tr_bcd(); // TR read first
uint32_t dr = rtc_get_dr_bcd(); // DR read second
plot_printf(fs_filename, FF_LFN_BUF, "VNA_%06X_%06X.s%dp", dr, tr, data);
#else
plot_printf(fs_filename, FF_LFN_BUF, "%08X.s%dp", rtc_get_FAT(), data);
#endif
int i;
UINT size;
// UINT total_size = 0;
// systime_t time = chVTGetSystemTimeX();
res = f_open(fs_file, fs_filename, FA_CREATE_ALWAYS | FA_READ | FA_WRITE);
// shell_printf("Open %s, = %d\r\n", fs_filename, res);
if (res == FR_OK){
// Write S1P file
if (data == SAVE_S1P_FILE){
// write s1p header (not write NULL terminate at end)
res = f_write(fs_file, s1_file_header, sizeof(s1_file_header)-1, &size);
// total_size+=size;
// Write all points data
for (i = 0; i < sweep_points && res == FR_OK; i++) {
size = plot_printf(buf, 128, s1_file_param, frequencies[i], measured[0][i][0], measured[0][i][1]);
// total_size+=size;
res = f_write(fs_file, buf, size, &size);
}
}
// Write S2P file
else if (data == SAVE_S2P_FILE){
// Write s2p header (not write NULL terminate at end)
res = f_write(fs_file, s2_file_header, sizeof(s2_file_header)-1, &size);
// total_size+=size;
// Write all points data
for (i = 0; i < sweep_points && res == FR_OK; i++) {
size = plot_printf(buf, 128, s2_file_param, frequencies[i], measured[0][i][0], measured[0][i][1], measured[1][i][0], measured[1][i][1]);
// total_size+=size;
res = f_write(fs_file, buf, size, &size);
}
}
res = f_close(fs_file);
// shell_printf("Close = %d\r\n", res);
// testLog();
// time = chVTGetSystemTimeX() - time;
// shell_printf("Total time: %dms (write %d byte/sec)\r\n", time/10, total_size*10000/time);
}
ili9341_fill(LCD_WIDTH/2-96, LCD_HEIGHT/2-30, 96*2, 60, config.menu_normal_color);
ili9341_set_foreground(DEFAULT_MENU_TEXT_COLOR);
ili9341_set_background(config.menu_normal_color);
ili9341_drawstring("SAVE TRACE", LCD_WIDTH/2-5*FONT_WIDTH, LCD_HEIGHT/2-20);
ili9341_drawstring(res == FR_OK ? fs_filename : " Fail write ", LCD_WIDTH/2-76, LCD_HEIGHT/2);
chThdSleepMilliseconds(2000);
request_to_redraw_grid();
ui_mode_normal();
}
static const menuitem_t menu_sdcard[] = {
{ MT_CALLBACK, SAVE_S1P_FILE, "SAVE S1P", menu_sdcard_cb },
{ MT_CALLBACK, SAVE_S2P_FILE, "SAVE S2P", menu_sdcard_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
#endif
static const menuitem_t menu_calop[] = {
{ MT_CALLBACK, CAL_OPEN, "OPEN", menu_calop_cb },
{ MT_CALLBACK, CAL_SHORT, "SHORT", menu_calop_cb },
{ MT_CALLBACK, CAL_LOAD, "LOAD", menu_calop_cb },
{ MT_CALLBACK, CAL_ISOLN, "ISOLN", menu_calop_cb },
{ MT_CALLBACK, CAL_THRU, "THRU", menu_calop_cb },
{ MT_CALLBACK, 0, "DONE", menu_caldone_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_save[] = {
{ MT_CALLBACK, 0, "SAVE 0", menu_save_cb },
{ MT_CALLBACK, 1, "SAVE 1", menu_save_cb },
{ MT_CALLBACK, 2, "SAVE 2", menu_save_cb },
{ MT_CALLBACK, 3, "SAVE 3", menu_save_cb },
{ MT_CALLBACK, 4, "SAVE 4", menu_save_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_cal[] = {
{ MT_SUBMENU, 0, "CALIBRATE", menu_calop },
{ MT_SUBMENU, 0, "SAVE", menu_save },
{ MT_CALLBACK, 0, "RESET", menu_cal2_cb },
{ MT_CALLBACK, 0, "CORRECTION", menu_cal2_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_trace[] = {
{ MT_CALLBACK, 0, "TRACE 0", menu_trace_cb },
{ MT_CALLBACK, 1, "TRACE 1", menu_trace_cb },
{ MT_CALLBACK, 2, "TRACE 2", menu_trace_cb },
{ MT_CALLBACK, 3, "TRACE 3", menu_trace_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_format2[] = {
{ MT_CALLBACK, TRC_POLAR, "POLAR", menu_format_cb },
{ MT_CALLBACK, TRC_LINEAR, "LINEAR", menu_format_cb },
{ MT_CALLBACK, TRC_REAL, "REAL", menu_format_cb },
{ MT_CALLBACK, TRC_IMAG, "IMAG", menu_format_cb },
{ MT_CALLBACK, TRC_R, "RESISTANCE", menu_format_cb },
{ MT_CALLBACK, TRC_X, "REACTANCE", menu_format_cb },
{ MT_CALLBACK, TRC_Q, "Q FACTOR", menu_format_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_format[] = {
{ MT_CALLBACK, TRC_LOGMAG, "LOGMAG", menu_format_cb },
{ MT_CALLBACK, TRC_PHASE, "PHASE", menu_format_cb },
{ MT_CALLBACK, TRC_DELAY, "DELAY", menu_format_cb },
{ MT_CALLBACK, TRC_SMITH, "SMITH", menu_format_cb },
{ MT_CALLBACK, TRC_SWR, "SWR", menu_format_cb },
{ MT_SUBMENU, 0, S_RARROW" MORE", menu_format2 },
//{ MT_CALLBACK, TRC_LINEAR, "LINEAR", menu_format_cb },
//{ MT_CALLBACK, TRC_SWR, "SWR", menu_format_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_scale[] = {
{ MT_CALLBACK, KM_SCALE, "SCALE/DIV", menu_keyboard_cb },
{ MT_CALLBACK, KM_REFPOS, "REFERENCE\nPOSITION", menu_keyboard_cb },
{ MT_CALLBACK, KM_EDELAY, "ELECTRICAL\nDELAY", menu_keyboard_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_channel[] = {
{ MT_CALLBACK, 0, "CH0\nREFLECT", menu_channel_cb },
{ MT_CALLBACK, 1, "CH1\nTHROUGH", menu_channel_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_transform_window[] = {
{ MT_CALLBACK, TD_WINDOW_MINIMUM, "MINIMUM", menu_transform_window_cb },
{ MT_CALLBACK, TD_WINDOW_NORMAL, "NORMAL", menu_transform_window_cb },
{ MT_CALLBACK, TD_WINDOW_MAXIMUM, "MAXIMUM", menu_transform_window_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_transform[] = {
{ MT_CALLBACK, 0, "TRANSFORM\nON", menu_transform_cb },
{ MT_CALLBACK, TD_FUNC_LOWPASS_IMPULSE, "LOW PASS\nIMPULSE", menu_transform_filter_cb },
{ MT_CALLBACK, TD_FUNC_LOWPASS_STEP, "LOW PASS\nSTEP", menu_transform_filter_cb },
{ MT_CALLBACK, TD_FUNC_BANDPASS, "BANDPASS", menu_transform_filter_cb },
{ MT_SUBMENU, 0, "WINDOW", menu_transform_window },
{ MT_CALLBACK, KM_VELOCITY_FACTOR, "VELOCITY\nFACTOR", menu_keyboard_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_bandwidth[] = {
{ MT_CALLBACK, BANDWIDTH_2000, "2 kHz", menu_bandwidth_cb },
{ MT_CALLBACK, BANDWIDTH_1000, "1 kHz", menu_bandwidth_cb },
{ MT_CALLBACK, BANDWIDTH_333, "333 Hz", menu_bandwidth_cb },
{ MT_CALLBACK, BANDWIDTH_100, "100 Hz", menu_bandwidth_cb },
{ MT_CALLBACK, BANDWIDTH_30, "30 Hz", menu_bandwidth_cb },
{ MT_CALLBACK, BANDWIDTH_10, "10 Hz", menu_bandwidth_cb },
{ MT_CANCEL, 255, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_display[] = {
{ MT_SUBMENU, 0, "TRACE", menu_trace },
{ MT_SUBMENU, 0, "FORMAT", menu_format },
{ MT_SUBMENU, 0, "SCALE", menu_scale },
{ MT_SUBMENU, 0, "CHANNEL", menu_channel },
{ MT_SUBMENU, 0, "TRANSFORM", menu_transform },
{ MT_SUBMENU, 0, "BANDWIDTH", menu_bandwidth },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_sweep_points[] = {
{ MT_CALLBACK, POINTS_SET_51, " 51 points", menu_points_cb },
{ MT_CALLBACK, POINTS_SET_101, "101 points", menu_points_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_stimulus[] = {
{ MT_CALLBACK, KM_START, "START", menu_keyboard_cb },
{ MT_CALLBACK, KM_STOP, "STOP", menu_keyboard_cb },
{ MT_CALLBACK, KM_CENTER, "CENTER", menu_keyboard_cb },
{ MT_CALLBACK, KM_SPAN, "SPAN", menu_keyboard_cb },
{ MT_CALLBACK, KM_CW, "CW FREQ", menu_keyboard_cb },
{ MT_CALLBACK, 0, "PAUSE\nSWEEP", menu_pause_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker_sel[] = {
{ MT_CALLBACK, 1, "MARKER 1", menu_marker_sel_cb },
{ MT_CALLBACK, 2, "MARKER 2", menu_marker_sel_cb },
{ MT_CALLBACK, 3, "MARKER 3", menu_marker_sel_cb },
{ MT_CALLBACK, 4, "MARKER 4", menu_marker_sel_cb },
{ MT_CALLBACK, 0, "ALL OFF", menu_marker_sel_cb },
{ MT_CALLBACK, 0, "DELTA", menu_marker_sel_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker_ops[] = {
{ MT_CALLBACK, ST_START, S_RARROW"START", menu_marker_op_cb },
{ MT_CALLBACK, ST_STOP, S_RARROW"STOP", menu_marker_op_cb },
{ MT_CALLBACK, ST_CENTER, S_RARROW"CENTER", menu_marker_op_cb },
{ MT_CALLBACK, ST_SPAN, S_RARROW"SPAN", menu_marker_op_cb },
{ MT_CALLBACK, 0, S_RARROW"EDELAY", menu_marker_op_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker_search[] = {
//{ MT_CALLBACK, "OFF", menu_marker_search_cb },
{ MT_CALLBACK, 0, "MAXIMUM", menu_marker_search_cb },
{ MT_CALLBACK, 0, "MINIMUM", menu_marker_search_cb },
{ MT_CALLBACK, 0, "SEARCH\n" S_LARROW" LEFT", menu_marker_search_cb },
{ MT_CALLBACK, 0, "SEARCH\n" S_RARROW" RIGHT", menu_marker_search_cb },
{ MT_CALLBACK, 0, "TRACKING", menu_marker_search_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker_smith[] = {
{ MT_CALLBACK, MS_LIN, "LIN", menu_marker_smith_cb },
{ MT_CALLBACK, MS_LOG, "LOG", menu_marker_smith_cb },
{ MT_CALLBACK, MS_REIM,"Re+Im", menu_marker_smith_cb },
{ MT_CALLBACK, MS_RX, "R+jX", menu_marker_smith_cb },
{ MT_CALLBACK, MS_RLC, "R+L/C", menu_marker_smith_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker[] = {
{ MT_SUBMENU, 0, "SELECT\nMARKER", menu_marker_sel },
{ MT_SUBMENU, 0, "SEARCH", menu_marker_search },
{ MT_SUBMENU, 0, "OPERATIONS", menu_marker_ops },
{ MT_SUBMENU, 0, "SMITH\nVALUE", menu_marker_smith },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_recall[] = {
{ MT_CALLBACK, 0, "RECALL 0", menu_recall_cb },
{ MT_CALLBACK, 1, "RECALL 1", menu_recall_cb },
{ MT_CALLBACK, 2, "RECALL 2", menu_recall_cb },
{ MT_CALLBACK, 3, "RECALL 3", menu_recall_cb },
{ MT_CALLBACK, 4, "RECALL 4", menu_recall_cb },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_dfu[] = {
{ MT_CALLBACK, 0, "RESET AND\nENTER DFU", menu_dfu_cb },
{ MT_CANCEL, 0, S_LARROW"CANCEL", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_config[] = {
{ MT_CALLBACK, 0, "TOUCH CAL", menu_config_cb },
{ MT_CALLBACK, 0, "TOUCH TEST", menu_config_cb },
{ MT_CALLBACK, 0, "SAVE", menu_config_save_cb },
{ MT_SUBMENU, 0, "SWEEP\nPOINTS", menu_sweep_points },
{ MT_CALLBACK, 0, "VERSION", menu_config_cb },
{ MT_SUBMENU, 0, S_RARROW"DFU", menu_dfu },
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_top[] = {
{ MT_SUBMENU, 0, "DISPLAY", menu_display },
{ MT_SUBMENU, 0, "MARKER", menu_marker },
{ MT_SUBMENU, 0, "STIMULUS", menu_stimulus },
{ MT_SUBMENU, 0, "CAL", menu_cal },
{ MT_SUBMENU, 0, "RECALL", menu_recall },
#ifdef __USE_SD_CARD__
{ MT_SUBMENU, 0, "SD CARD", menu_sdcard },
#endif
{ MT_SUBMENU, 0, "CONFIG", menu_config },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
#define MENU_STACK_DEPTH_MAX 4
const menuitem_t *menu_stack[MENU_STACK_DEPTH_MAX] = {
menu_top, NULL, NULL, NULL
};
static void
ensure_selection(void)
{
const menuitem_t *menu = menu_stack[menu_current_level];
int i;
for (i = 0; menu[i].type != MT_NONE; i++)
;
if (selection < 0)
selection = -1;
else if (selection >= i)
selection = i-1;
}
static void
menu_move_back(bool leave_ui)
{
if (menu_current_level == 0)
return;
menu_current_level--;
ensure_selection();
erase_menu_buttons();
if (leave_ui)
ui_mode_normal();
else
draw_menu();
}
static void
menu_push_submenu(const menuitem_t *submenu)
{
if (menu_current_level < MENU_STACK_DEPTH_MAX-1)
menu_current_level++;
menu_stack[menu_current_level] = submenu;
ensure_selection();
erase_menu_buttons();
draw_menu();
}
/*
static void
menu_move_top(void)
{
if (menu_current_level == 0)
return;
menu_current_level = 0;
ensure_selection();
erase_menu_buttons();
draw_menu();
}
*/
static void
menu_invoke(int item)
{
const menuitem_t *menu = menu_stack[menu_current_level];
menu = &menu[item];
switch (menu->type) {
case MT_NONE:
case MT_BLANK:
case MT_CLOSE:
ui_mode_normal();
break;
case MT_CANCEL:
menu_move_back(false);
break;
case MT_CALLBACK: {
menuaction_cb_t cb = (menuaction_cb_t)menu->reference;
if (cb == NULL)
return;
(*cb)(item, menu->data);
break;
}
case MT_SUBMENU:
menu_push_submenu((const menuitem_t*)menu->reference);
break;
}
}
// Key names
#define KP_0 0
#define KP_1 1
#define KP_2 2
#define KP_3 3
#define KP_4 4
#define KP_5 5
#define KP_6 6
#define KP_7 7
#define KP_8 8
#define KP_9 9
#define KP_PERIOD 10
#define KP_MINUS 11
#define KP_X1 12
#define KP_K 13
#define KP_M 14
#define KP_G 15
#define KP_BS 16
#define KP_INF 17
#define KP_DB 18
#define KP_PLUSMINUS 19
#define KP_KEYPAD 20
#define KP_N 21
#define KP_P 22
// Stop
#define KP_NONE 255
static const keypads_t keypads_freq[] = {
{ 1, 3, KP_PERIOD },
{ 0, 3, KP_0 },
{ 0, 2, KP_1 },
{ 1, 2, KP_2 },
{ 2, 2, KP_3 },
{ 0, 1, KP_4 },
{ 1, 1, KP_5 },
{ 2, 1, KP_6 },
{ 0, 0, KP_7 },
{ 1, 0, KP_8 },
{ 2, 0, KP_9 },
{ 3, 0, KP_G },
{ 3, 1, KP_M },
{ 3, 2, KP_K },
{ 3, 3, KP_X1 },
{ 2, 3, KP_BS },
{ 0, 0, KP_NONE}
};
static const keypads_t keypads_scale[] = {
{ 1, 3, KP_PERIOD },
{ 0, 3, KP_0 },
{ 0, 2, KP_1 },
{ 1, 2, KP_2 },
{ 2, 2, KP_3 },
{ 0, 1, KP_4 },
{ 1, 1, KP_5 },
{ 2, 1, KP_6 },
{ 0, 0, KP_7 },
{ 1, 0, KP_8 },
{ 2, 0, KP_9 },
{ 3, 3, KP_X1 },
{ 2, 3, KP_BS },
{ 0, 0, KP_NONE }
};
static const keypads_t keypads_time[] = {
{ 1, 3, KP_PERIOD },
{ 0, 3, KP_0 },
{ 0, 2, KP_1 },
{ 1, 2, KP_2 },
{ 2, 2, KP_3 },
{ 0, 1, KP_4 },
{ 1, 1, KP_5 },
{ 2, 1, KP_6 },
{ 0, 0, KP_7 },
{ 1, 0, KP_8 },
{ 2, 0, KP_9 },
{ 3, 1, KP_N },
{ 3, 2, KP_P },
{ 3, 3, KP_MINUS },
{ 2, 3, KP_BS },
{ 0, 0, KP_NONE }
};
static const keypads_list keypads_mode_tbl[KM_NONE] = {
{keypads_freq , "START" }, // start
{keypads_freq , "STOP" }, // stop
{keypads_freq , "CENTER" }, // center
{keypads_freq , "SPAN" }, // span
{keypads_freq , "CW FREQ" }, // cw freq
{keypads_scale, "SCALE" }, // scale
{keypads_scale, "REFPOS" }, // refpos
{keypads_time , "EDELAY" }, // electrical delay
{keypads_scale, "VELOCITY%"}, // velocity factor
{keypads_time , "DELAY" } // scale of delay
};
static void
draw_button(uint16_t x, uint16_t y, uint16_t w, uint16_t h, uint16_t border_colour, uint16_t bg_colour)
{
// background
const uint16_t bw = MENU_BUTTON_BORDER;
ili9341_fill(x + bw, y + bw, w - (bw * 2), h - (bw * 2), bg_colour);
ili9341_fill(x, y, w, bw, border_colour); // top
ili9341_fill(x + w - bw, y, bw, h, border_colour); // right
ili9341_fill(x, y, bw, h, border_colour); // left
ili9341_fill(x, y + h - bw, w, bw, border_colour); // bottom
}
static void
draw_keypad(void)
{
int i = 0;
while (keypads[i].c != KP_NONE) {
uint16_t bg = config.menu_normal_color;
if (i == selection)
bg = config.menu_active_color;
ili9341_set_foreground(DEFAULT_MENU_TEXT_COLOR);
ili9341_set_background(bg);
int x = KP_GET_X(keypads[i].x);
int y = KP_GET_Y(keypads[i].y);
draw_button(x, y, KP_WIDTH, KP_HEIGHT, DEFAULT_BG_COLOR, bg);
ili9341_drawfont(keypads[i].c,
x + (KP_WIDTH - NUM_FONT_GET_WIDTH) / 2,
y + (KP_HEIGHT - NUM_FONT_GET_HEIGHT) / 2);
i++;
}
}
static void
draw_numeric_area_frame(void)
{
ili9341_fill(0, LCD_HEIGHT-NUM_INPUT_HEIGHT, LCD_WIDTH, NUM_INPUT_HEIGHT, config.menu_normal_color);
ili9341_set_foreground(DEFAULT_MENU_TEXT_COLOR);
ili9341_set_background(config.menu_normal_color);
ili9341_drawstring(keypads_mode_tbl[keypad_mode].name, 10, LCD_HEIGHT-(FONT_GET_HEIGHT+NUM_INPUT_HEIGHT)/2);
//ili9341_drawfont(KP_KEYPAD, 300, 216);
}
static void
draw_numeric_input(const char *buf)
{
int i;
int x;
int focused = FALSE;
uint16_t xsim = 0b0010010000000000;
for (i = 0, x = 10 + 10 * FONT_WIDTH + 4; i < 10 && buf[i]; i++, xsim<<=1) {
uint16_t fg = DEFAULT_MENU_TEXT_COLOR;
uint16_t bg = config.menu_normal_color;
int c = buf[i];
if (c == '.')
c = KP_PERIOD;
else if (c == '-')
c = KP_MINUS;
else// if (c >= '0' && c <= '9')
c = c - '0';
if (ui_mode == UI_NUMERIC && uistat.digit == 8-i) {
fg = DEFAULT_SPEC_INPUT_COLOR;
focused = TRUE;
// if (uistat.digit_mode)
// bg = DEFAULT_MENU_COLOR;
}
ili9341_set_foreground(fg);
ili9341_set_background(bg);
if (c >= 0) // c is number
ili9341_drawfont(c, x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4);
else if (focused) // c not number, but focused
ili9341_drawfont(0, x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4);
else // erase
ili9341_fill(x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4, NUM_FONT_GET_HEIGHT, NUM_FONT_GET_WIDTH+2+8, bg);
x += xsim&0x8000 ? NUM_FONT_GET_WIDTH+2+8 : NUM_FONT_GET_WIDTH+2;
}
// erase last
ili9341_fill(x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4, NUM_FONT_GET_WIDTH+2+8, NUM_FONT_GET_WIDTH+2+8, config.menu_normal_color);
}
static int
menu_is_multiline(const char *label)
{
int n = 1;
while (*label)
if (*label++ == '\n')
n++;
return n;
}
static void
menu_item_modify_attribute(const menuitem_t *menu, int item,
uint16_t *fg, uint16_t *bg)
{
bool swap = false;
if (menu == menu_trace && item < TRACES_MAX) {
if (trace[item].enabled){
*bg = config.trace_color[item];
if (item == selection) *fg = ~config.trace_color[item];
}
} else if (menu == menu_marker_sel) {
if ((item < 4 && markers[item].enabled) ||
(item == 5 && uistat.marker_delta))
swap = true;
else if (item == 5 && uistat.marker_delta)
swap = true;
} else if (menu == menu_marker_search) {
if (item == 4 && uistat.marker_tracking)
swap = true;
} else if (menu == menu_marker_smith) {
if (marker_smith_format == item)
swap = true;
} else if (menu == menu_calop) {
if ((item == 0 && (cal_status & CALSTAT_OPEN))
|| (item == 1 && (cal_status & CALSTAT_SHORT))
|| (item == 2 && (cal_status & CALSTAT_LOAD))
|| (item == 3 && (cal_status & CALSTAT_ISOLN))
|| (item == 4 && (cal_status & CALSTAT_THRU)))
swap = true;
} else if (menu == menu_stimulus) {
if (item == 5 /* PAUSE */ && !(sweep_mode&SWEEP_ENABLE))
swap = true;
} else if (menu == menu_cal) {
if (item == 3 /* CORRECTION */ && (cal_status & CALSTAT_APPLY))
swap = true;
} else if (menu == menu_bandwidth) {
if (menu_bandwidth[item].data == config.bandwidth)
swap = true;
} else if (menu == menu_sweep_points) {
if (menu_sweep_points[item].data == sweep_points)
swap = true;
} else if (menu == menu_transform) {
if ((item == 0 && (domain_mode & DOMAIN_MODE) == DOMAIN_TIME)
|| (item == 1 && (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_IMPULSE)
|| (item == 2 && (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP)
|| (item == 3 && (domain_mode & TD_FUNC) == TD_FUNC_BANDPASS)
) swap = true;
} else if (menu == menu_transform_window) {
if ((item == 0 && (domain_mode & TD_WINDOW) == TD_WINDOW_MINIMUM)
|| (item == 1 && (domain_mode & TD_WINDOW) == TD_WINDOW_NORMAL)
|| (item == 2 && (domain_mode & TD_WINDOW) == TD_WINDOW_MAXIMUM)
) swap = true;
}
if (swap) {uint16_t t = *bg;*bg=*fg;*fg = t;}
}
static void
draw_menu_buttons(const menuitem_t *menu)
{
int i = 0, y = 0;
for (i = 0; i < MENU_BUTTON_MAX; i++, y+=MENU_BUTTON_HEIGHT) {
if (menu[i].type == MT_NONE)
break;
if (menu[i].type == MT_BLANK)
continue;
uint16_t bg = config.menu_normal_color;
uint16_t fg = DEFAULT_MENU_TEXT_COLOR;
// focus only in MENU mode but not in KEYPAD mode
if (ui_mode == UI_MENU && i == selection)
bg = config.menu_active_color;
menu_item_modify_attribute(menu, i, &fg, &bg);
ili9341_set_foreground(fg);
ili9341_set_background(bg);
draw_button(LCD_WIDTH-MENU_BUTTON_WIDTH, y, MENU_BUTTON_WIDTH, MENU_BUTTON_HEIGHT, fg, bg);
int lines = menu_is_multiline(menu[i].label);
ili9341_drawstring(menu[i].label, LCD_WIDTH-MENU_BUTTON_WIDTH+MENU_BUTTON_BORDER+4, y+(MENU_BUTTON_HEIGHT-lines*FONT_GET_HEIGHT)/2);
}
for (; i < MENU_BUTTON_MAX; i++, y+=MENU_BUTTON_HEIGHT) {
ili9341_fill(LCD_WIDTH-MENU_BUTTON_WIDTH, y, MENU_BUTTON_WIDTH, MENU_BUTTON_HEIGHT, DEFAULT_BG_COLOR);
}
}
static void
menu_select_touch(int i)
{
selection = i;
draw_menu();
touch_wait_release();
selection = -1;
menu_invoke(i);
}
static void
menu_apply_touch(int touch_x, int touch_y)
{
const menuitem_t *menu = menu_stack[menu_current_level];
int i;
for (i = 0; i < MENU_BUTTON_MAX; i++) {
if (menu[i].type == MT_NONE)
break;
if (menu[i].type == MT_BLANK)
continue;
int y = MENU_BUTTON_HEIGHT*i;
if (y < touch_y && touch_y < y+MENU_BUTTON_HEIGHT && LCD_WIDTH-MENU_BUTTON_WIDTH < touch_x) {
menu_select_touch(i);
return;
}
}
touch_wait_release();
ui_mode_normal();
}
static void
draw_menu(void)
{
draw_menu_buttons(menu_stack[menu_current_level]);
}
static void
erase_menu_buttons(void)
{
// ili9341_fill(LCD_WIDTH-MENU_BUTTON_WIDTH, 0, MENU_BUTTON_WIDTH, MENU_BUTTON_HEIGHT*MENU_BUTTON_MAX, DEFAULT_BG_COLOR);
}
static void
erase_numeric_input(void)
{
ili9341_fill(0, LCD_HEIGHT-NUM_INPUT_HEIGHT, LCD_WIDTH, NUM_INPUT_HEIGHT, DEFAULT_BG_COLOR);
}
static void
leave_ui_mode()
{
if (ui_mode == UI_MENU) {
request_to_draw_cells_behind_menu();
erase_menu_buttons();
} else if (ui_mode == UI_NUMERIC) {
request_to_draw_cells_behind_numeric_input();
erase_numeric_input();
}
draw_frequencies();
}
static void
fetch_numeric_target(void)
{
switch (keypad_mode) {
case KM_START:
uistat.value = get_sweep_frequency(ST_START);
break;
case KM_STOP:
uistat.value = get_sweep_frequency(ST_STOP);
break;
case KM_CENTER:
uistat.value = get_sweep_frequency(ST_CENTER);
break;
case KM_SPAN:
uistat.value = get_sweep_frequency(ST_SPAN);
break;
case KM_CW:
uistat.value = get_sweep_frequency(ST_CW);
break;
case KM_SCALE:
uistat.value = get_trace_scale(uistat.current_trace) * 1000;
break;
case KM_REFPOS:
uistat.value = get_trace_refpos(uistat.current_trace) * 1000;
break;
case KM_EDELAY:
uistat.value = get_electrical_delay();
break;
case KM_VELOCITY_FACTOR:
uistat.value = velocity_factor * 100;
break;
case KM_SCALEDELAY:
uistat.value = get_trace_scale(uistat.current_trace) * 1e12;
break;
}
{
uint32_t x = uistat.value;
int n = 0;
for (; x >= 10 && n < 9; n++)
x /= 10;
uistat.digit = n;
}
// uistat.previous_value = uistat.value;
}
static void
set_numeric_value(void)
{
switch (keypad_mode) {
case KM_START:
set_sweep_frequency(ST_START, uistat.value);
break;
case KM_STOP:
set_sweep_frequency(ST_STOP, uistat.value);
break;
case KM_CENTER:
set_sweep_frequency(ST_CENTER, uistat.value);
break;
case KM_SPAN:
set_sweep_frequency(ST_SPAN, uistat.value);
break;
case KM_CW:
set_sweep_frequency(ST_CW, uistat.value);
break;
case KM_SCALE:
set_trace_scale(uistat.current_trace, uistat.value / 1000.0);
break;
case KM_REFPOS:
set_trace_refpos(uistat.current_trace, uistat.value / 1000.0);
break;
case KM_EDELAY:
set_electrical_delay(uistat.value);
break;
case KM_VELOCITY_FACTOR:
velocity_factor = uistat.value/100.0;
break;
}
}
static void
draw_numeric_area(void)
{
char buf[10];
plot_printf(buf, sizeof buf, "%9d", uistat.value);
draw_numeric_input(buf);
}
static void
ui_mode_menu(void)
{
if (ui_mode == UI_MENU)
return;
ui_mode = UI_MENU;
/* narrowen plotting area */
area_width = AREA_WIDTH_NORMAL - MENU_BUTTON_WIDTH;
area_height = AREA_HEIGHT_NORMAL;
ensure_selection();
draw_menu();
}
static void
ui_mode_numeric(int _keypad_mode)
{
if (ui_mode == UI_NUMERIC)
return;
leave_ui_mode();
// keypads array
keypad_mode = _keypad_mode;
ui_mode = UI_NUMERIC;
area_width = AREA_WIDTH_NORMAL;
area_height = LCD_HEIGHT-NUM_INPUT_HEIGHT;//AREA_HEIGHT_NORMAL - 32;
draw_numeric_area_frame();
fetch_numeric_target();
draw_numeric_area();
}
static void
ui_mode_keypad(int _keypad_mode)
{
if (ui_mode == UI_KEYPAD)
return;
// keypads array
keypad_mode = _keypad_mode;
keypads = keypads_mode_tbl[keypad_mode].keypad_type;
int i;
for (i = 0; keypads[i+1].c != KP_NONE; i++)
;
keypads_last_index = i;
ui_mode = UI_KEYPAD;
area_width = AREA_WIDTH_NORMAL - MENU_BUTTON_WIDTH;
area_height = LCD_HEIGHT-NUM_INPUT_HEIGHT;
draw_menu();
draw_keypad();
draw_numeric_area_frame();
draw_numeric_input("");
}
static void
ui_mode_normal(void)
{
if (ui_mode == UI_NORMAL)
return;
area_width = AREA_WIDTH_NORMAL;
area_height = AREA_HEIGHT_NORMAL;
leave_ui_mode();
ui_mode = UI_NORMAL;
}
static void
lever_move_marker(int status)
{
do {
if (active_marker >= 0 && markers[active_marker].enabled) {
if ((status & EVT_DOWN) && markers[active_marker].index > 0) {
markers[active_marker].index--;
}
if ((status & EVT_UP) && markers[active_marker].index < sweep_points-1) {
markers[active_marker].index++;
}
markers[active_marker].frequency = frequencies[markers[active_marker].index];
redraw_marker(active_marker);
}
status = btn_wait_release();
} while (status != 0);
}
static void
lever_search_marker(int status)
{
int i = -1;
if (active_marker >= 0) {
if (status & EVT_DOWN)
i = marker_search_left(markers[active_marker].index);
else if (status & EVT_UP)
i = marker_search_right(markers[active_marker].index);
if (i != -1){
markers[active_marker].index = i;
redraw_marker(active_marker);
}
}
}
// ex. 10942 -> 10000
// 6791 -> 5000
// 341 -> 200
static uint32_t
step_round(uint32_t v)
{
// decade step
uint32_t x = 1;
for (x = 1; x*10 < v; x*= 10)
;
// 1-2-5 step
if (x * 2 > v)
return x;
else if (x * 5 > v)
return x * 2;
else
return x * 5;
}
static void
lever_zoom_span(int status)
{
uint32_t span = get_sweep_frequency(ST_SPAN);
if (status & EVT_UP) {
span = step_round(span - 1);
} else if (status & EVT_DOWN) {
span = step_round(span + 1);
span = step_round(span * 3);
}
set_sweep_frequency(ST_SPAN, span);
}
static void
lever_move(int status, int mode)
{
uint32_t center = get_sweep_frequency(mode);
uint32_t span = get_sweep_frequency(ST_SPAN);
span = step_round(span / 3);
if (status & EVT_UP) {
set_sweep_frequency(mode, center + span);
} else if (status & EVT_DOWN) {
set_sweep_frequency(mode, center - span);
}
}
#define STEPRATIO 0.2
static void
lever_edelay(int status)
{
float value = get_electrical_delay();
float ratio = STEPRATIO;
if (value < 0)
ratio = -ratio;
if (status & EVT_UP) {
value = (1 - ratio) * value;
} else if (status & EVT_DOWN) {
value = (1 + ratio) * value;
}
set_electrical_delay(value);
}
static void
ui_process_normal(void)
{
int status = btn_check();
if (status != 0) {
if (status & EVT_BUTTON_SINGLE_CLICK) {
ui_mode_menu();
} else {
switch (uistat.lever_mode) {
case LM_MARKER: lever_move_marker(status); break;
case LM_SEARCH: lever_search_marker(status); break;
case LM_CENTER:
lever_move(status, FREQ_IS_STARTSTOP() ? ST_START : ST_CENTER);
break;
case LM_SPAN:
if (FREQ_IS_STARTSTOP())
lever_move(status, ST_STOP);
else
lever_zoom_span(status);
break;
case LM_EDELAY:
lever_edelay(status);
break;
}
}
}
}
static void
ui_process_menu(void)
{
int status = btn_check();
if (status != 0) {
if (status & EVT_BUTTON_SINGLE_CLICK) {
menu_invoke(selection);
} else {
do {
if (status & EVT_UP) {
// close menu if next item is sentinel
if (menu_stack[menu_current_level][selection+1].type == MT_NONE)
goto menuclose;
selection++;
}
if (status & EVT_DOWN) {
if (selection == 0)
goto menuclose;
selection--;
}
draw_menu();
chThdSleepMilliseconds(200);
status = btn_wait_release();
} while (status != 0);
}
}
return;
menuclose:
ui_mode_normal();
}
static int
keypad_click(int key)
{
int c = keypads[key].c;
if ((c >= KP_X1 && c <= KP_G) || c == KP_N || c == KP_P) {
int32_t scale = 1;
if (c >= KP_X1 && c <= KP_G) {
int n = c - KP_X1;
while (n-- > 0)
scale *= 1000;
} else if (c == KP_N) {
scale *= 1000;
}
/* numeric input done */
double value = my_atof(kp_buf) * scale;
switch (keypad_mode) {
case KM_START:
set_sweep_frequency(ST_START, value);
break;
case KM_STOP:
set_sweep_frequency(ST_STOP, value);
break;
case KM_CENTER:
set_sweep_frequency(ST_CENTER, value);
break;
case KM_SPAN:
set_sweep_frequency(ST_SPAN, value);
break;
case KM_CW:
set_sweep_frequency(ST_CW, value);
break;
case KM_SCALE:
set_trace_scale(uistat.current_trace, value);
break;
case KM_REFPOS:
set_trace_refpos(uistat.current_trace, value);
break;
case KM_EDELAY:
set_electrical_delay(value); // pico seconds
break;
case KM_VELOCITY_FACTOR:
velocity_factor = value / 100.0;
break;
case KM_SCALEDELAY:
set_trace_scale(uistat.current_trace, value * 1e-12); // pico second
break;
}
return KP_DONE;
} else if (c <= 9 && kp_index < NUMINPUT_LEN) {
kp_buf[kp_index++] = '0' + c;
} else if (c == KP_PERIOD && kp_index < NUMINPUT_LEN) {
// check period in former input
int j;
for (j = 0; j < kp_index && kp_buf[j] != '.'; j++)
;
// append period if there are no period
if (kp_index == j)
kp_buf[kp_index++] = '.';
} else if (c == KP_MINUS) {
if (kp_index == 0)
kp_buf[kp_index++] = '-';
} else if (c == KP_BS) {
if (kp_index == 0) {
return KP_CANCEL;
}
--kp_index;
}
kp_buf[kp_index] = '\0';
draw_numeric_input(kp_buf);
return KP_CONTINUE;
}
static int
keypad_apply_touch(void)
{
int touch_x, touch_y;
int i = 0;
touch_position(&touch_x, &touch_y);
while (keypads[i].c != KP_NONE) {
int x = KP_GET_X(keypads[i].x);
int y = KP_GET_Y(keypads[i].y);
if (x < touch_x && touch_x < x+KP_WIDTH && y < touch_y && touch_y < y+KP_HEIGHT) {
// draw focus
selection = i;
draw_keypad();
touch_wait_release();
// erase focus
selection = -1;
draw_keypad();
return i;
}
i++;
}
return -1;
}
static void
numeric_apply_touch(int touch_x, int touch_y)
{
if (touch_x < 64) {
ui_mode_normal();
return;
}
if (touch_x > 64+9*20+8+8) {
ui_mode_keypad(keypad_mode);
ui_process_keypad();
return;
}
if (touch_y > LCD_HEIGHT-40) {
int n = 9 - (touch_x - 64) / 20;
uistat.digit = n;
uistat.digit_mode = TRUE;
} else {
int step, n;
if (touch_y < 100) {
step = 1;
} else {
step = -1;
}
for (n = uistat.digit; n > 0; n--)
step *= 10;
uistat.value += step;
}
draw_numeric_area();
touch_wait_release();
uistat.digit_mode = FALSE;
draw_numeric_area();
return;
}
static void
ui_process_numeric(void)
{
int status = btn_check();
if (status != 0) {
if (status == EVT_BUTTON_SINGLE_CLICK) {
status = btn_wait_release();
if (uistat.digit_mode) {
if (status & (EVT_BUTTON_SINGLE_CLICK | EVT_BUTTON_DOWN_LONG)) {
uistat.digit_mode = FALSE;
draw_numeric_area();
}
} else {
if (status & EVT_BUTTON_DOWN_LONG) {
uistat.digit_mode = TRUE;
draw_numeric_area();
} else if (status & EVT_BUTTON_SINGLE_CLICK) {
set_numeric_value();
ui_mode_normal();
}
}
} else {
do {
if (uistat.digit_mode) {
if (status & EVT_DOWN) {
if (uistat.digit < 8)
uistat.digit++;
else
goto exit;
}
if (status & EVT_UP) {
if (uistat.digit > 0)
uistat.digit--;
else
goto exit;
}
} else {
int32_t step = 1;
int n;
for (n = uistat.digit; n > 0; n--)
step *= 10;
if (status & EVT_DOWN)
uistat.value += step;
if (status & EVT_UP)
uistat.value -= step;
}
draw_numeric_area();
status = btn_wait_release();
} while (status != 0);
}
}
return;
exit:
// cancel operation
ui_mode_normal();
}
static void
ui_process_keypad(void)
{
int status;
adc_stop();
kp_index = 0; // Hide input index in keyboard mode
while (TRUE) {
status = btn_check();
if (status & (EVT_UP|EVT_DOWN)) {
do {
if (status & EVT_UP)
if (--selection < 0)
selection = keypads_last_index;
if (status & EVT_DOWN)
if (++selection > keypads_last_index)
selection = 0;
draw_keypad();
status = btn_wait_release();
} while (status != 0);
}
else if (status == EVT_BUTTON_SINGLE_CLICK) {
if (keypad_click(selection))
/* exit loop on done or cancel */
break;
}
else if (touch_check() == EVT_TOUCH_PRESSED) {
int key = keypad_apply_touch();
if (key >= 0 && keypad_click(key))
/* exit loop on done or cancel */
break;
}
}
redraw_frame();
request_to_redraw_grid();
ui_mode_normal();
//redraw_all();
touch_start_watchdog();
}
static void
ui_process_lever(void)
{
switch (ui_mode) {
case UI_NORMAL:
ui_process_normal();
break;
case UI_MENU:
ui_process_menu();
break;
case UI_NUMERIC:
ui_process_numeric();
break;
case UI_KEYPAD:
ui_process_keypad();
break;
}
}
static void
drag_marker(int t, int m)
{
/* wait touch release */
do {
int touch_x, touch_y;
int index;
touch_position(&touch_x, &touch_y);
touch_x -= OFFSETX;
touch_y -= OFFSETY;
index = search_nearest_index(touch_x, touch_y, t);
if (index >= 0) {
markers[m].index = index;
markers[m].frequency = frequencies[index];
redraw_marker(m);
}
} while (touch_check()!= EVT_TOUCH_RELEASED);
}
static int
touch_pickup_marker(int touch_x, int touch_y)
{
int m, t;
touch_x -= OFFSETX;
touch_y -= OFFSETY;
for (m = 0; m < MARKERS_MAX; m++) {
if (!markers[m].enabled)
continue;
for (t = 0; t < TRACES_MAX; t++) {
int x, y;
if (!trace[t].enabled)
continue;
marker_position(m, t, &x, &y);
x -= touch_x;
y -= touch_y;
if ((x * x + y * y) < 20 * 20) {
if (active_marker != m) {
previous_marker = active_marker;
active_marker = m;
redraw_marker(active_marker);
}
// select trace
uistat.current_trace = t;
select_lever_mode(LM_MARKER);
// drag marker until release
drag_marker(t, m);
return TRUE;
}
}
}
return FALSE;
}
#ifdef __USE_SD_CARD__
//*****************************************************************************
// Bitmap file header for 320x240 image 16bpp (v4 format allow set RGB mask)
//*****************************************************************************
static const uint8_t bmp_header_v4[14+56] = {
// BITMAPFILEHEADER (14 byte size)
0x42, 0x4D, // BM signature
0x46, 0x58, 0x02, 0x00, // File size = 320*240*2 + 14 + 56 = 0x00025846
0x00, 0x00, // reserved
0x00, 0x00, // reserved
0x46, 0x00, 0x00, 0x00, // Size of all headers = 14+56
// BITMAPINFOv4 (56 byte size)
0x38, 0x00, 0x00, 0x00, // Data offset after this point (56 = 0x38)
0x40, 0x01, 0x00, 0x00, // Width = 320 = 0x00000140
0xF0, 0x00, 0x00, 0x00, // Height = 240 = 0x000000F0
0x01, 0x00, // Planes
0x10, 0x00, // 16bpp
0x03, 0x00, 0x00, 0x00, // Compression (BI_BITFIELDS)
0x00, 0x58, 0x02, 0x00, // Bitmap size = 320*240*2 = 0x00025800
0xC4, 0x0E, 0x00, 0x00, // x Resolution (96 DPI = 96 * 39.3701 inches per metre = 0x0EC4)
0xC4, 0x0E, 0x00, 0x00, // y Resolution (96 DPI = 96 * 39.3701 inches per metre = 0x0EC4)
0x00, 0x00, 0x00, 0x00, // Palette size
0x00, 0x00, 0x00, 0x00, // Palette used
// Extend v4 header data (color mask for RGB565)
0x00, 0xF8, 0x00, 0x00, // R mask = 0b11111000 00000000
0xE0, 0x07, 0x00, 0x00, // G mask = 0b00000111 11100000
0x1F, 0x00, 0x00, 0x00, // B mask = 0b00000000 00011111
0x00, 0x00, 0x00, 0x00 // A mask = 0b00000000 00000000
};
static int
made_screenshot(int touch_x, int touch_y)
{
int y, i;
UINT size;
if (touch_y < HEIGHT || touch_x < FREQUENCIES_XPOS3 || touch_x > FREQUENCIES_XPOS2)
return FALSE;
touch_wait_release();
// uint32_t time = chVTGetSystemTimeX();
// shell_printf("Screenshot\r\n");
FRESULT res = f_mount(fs_volume, "", 1);
// fs_volume, fs_file and fs_filename stored at end of spi_buffer!!!!!
uint16_t *buf = spi_buffer;
// shell_printf("Mount = %d\r\n", res);
if (res != FR_OK)
return TRUE;
#if FF_USE_LFN >= 1
uint32_t tr = rtc_get_tr_bcd(); // TR read first
uint32_t dr = rtc_get_dr_bcd(); // DR read second
plot_printf(fs_filename, FF_LFN_BUF, "VNA_%06X_%06X.bmp", dr, tr);
#else
plot_printf(fs_filename, FF_LFN_BUF, "%08X.bmp", rtc_get_FAT());
#endif
res = f_open(fs_file, fs_filename, FA_CREATE_ALWAYS | FA_READ | FA_WRITE);
// shell_printf("Open %s, result = %d\r\n", fs_filename, res);
if (res == FR_OK){
res = f_write(fs_file, bmp_header_v4, sizeof(bmp_header_v4), &size);
for (y = LCD_HEIGHT-1; y >= 0 && res == FR_OK; y--) {
ili9341_read_memory(0, y, LCD_WIDTH, 1, LCD_WIDTH, buf);
for (i = 0; i < LCD_WIDTH; i++)
buf[i] = __REVSH(buf[i]); // swap byte order (example 0x10FF to 0xFF10)
res = f_write(fs_file, buf, LCD_WIDTH*sizeof(uint16_t), &size);
}
res = f_close(fs_file);
// shell_printf("Close %d\r\n", res);
// testLog();
}
// time = chVTGetSystemTimeX() - time;
// shell_printf("Total time: %dms (write %d byte/sec)\r\n", time/10, (LCD_WIDTH*LCD_HEIGHT*sizeof(uint16_t)+sizeof(bmp_header_v4))*10000/time);
ili9341_fill(LCD_WIDTH/2-96, LCD_HEIGHT/2-30, 96*2, 60, config.menu_normal_color);
ili9341_set_foreground(DEFAULT_MENU_TEXT_COLOR);
ili9341_set_background(config.menu_normal_color);
ili9341_drawstring("SCREENSHOT", LCD_WIDTH/2-5*FONT_WIDTH, LCD_HEIGHT/2-20);
ili9341_drawstring(res == FR_OK ? fs_filename : " Fail write ", LCD_WIDTH/2-76, LCD_HEIGHT/2);
request_to_redraw_grid();
chThdSleepMilliseconds(2000);
return TRUE;
}
#endif
static int
touch_lever_mode_select(int touch_x, int touch_y)
{
if (touch_y > HEIGHT) {
select_lever_mode(touch_x < FREQUENCIES_XPOS2 ? LM_CENTER : LM_SPAN);
return TRUE;
}
if (touch_y < 25) {
if (touch_x < FREQUENCIES_XPOS2 && get_electrical_delay() != 0.0) {
select_lever_mode(LM_EDELAY);
} else {
select_lever_mode(LM_MARKER);
}
return TRUE;
}
return FALSE;
}
static
void ui_process_touch(void)
{
// awd_count++;
adc_stop();
int touch_x, touch_y;
int status = touch_check();
if (status == EVT_TOUCH_PRESSED || status == EVT_TOUCH_DOWN) {
touch_position(&touch_x, &touch_y);
switch (ui_mode) {
case UI_NORMAL:
// Try drag marker
if (touch_pickup_marker(touch_x, touch_y))
break;
#ifdef __USE_SD_CARD__
if (made_screenshot(touch_x, touch_y))
break;
#endif
// Try select lever mode (top and bottom screen)
if (touch_lever_mode_select(touch_x, touch_y)) {
touch_wait_release();
break;
}
// switch menu mode after release
touch_wait_release();
selection = -1; // hide keyboard mode selection
ui_mode_menu();
break;
case UI_MENU:
menu_apply_touch(touch_x, touch_y);
break;
case UI_NUMERIC:
numeric_apply_touch(touch_x, touch_y);
break;
}
}
touch_start_watchdog();
}
void
ui_process(void)
{
if (operation_requested&OP_LEVER)
ui_process_lever();
if (operation_requested&OP_TOUCH)
ui_process_touch();
operation_requested = OP_NONE;
}
/* Triggered when the button is pressed or released. The LED4 is set to ON.*/
static void extcb1(EXTDriver *extp, expchannel_t channel)
{
(void)extp;
(void)channel;
operation_requested|=OP_LEVER;
//cur_button = READ_PORT() & BUTTON_MASK;
}
static const EXTConfig extcfg = {
{
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL}
}
};
// Touch panel timer check (check press frequency 20Hz)
static const GPTConfig gpt3cfg = {
20, /* 20Hz timer clock.*/
NULL, /* Timer callback.*/
0x0020, /* CR2:MMS=02 to output TRGO */
0
};
#if 0
static void
test_touch(int *x, int *y)
{
adc_stop(ADC1);
*x = touch_measure_x();
*y = touch_measure_y();
touch_start_watchdog();
}
#endif
void
handle_touch_interrupt(void)
{
operation_requested|= OP_TOUCH;
}
void
ui_init()
{
adc_init();
/*
* Activates the EXT driver 1.
*/
extStart(&EXTD1, &extcfg);
#if 1
gptStart(&GPTD3, &gpt3cfg);
gptPolledDelay(&GPTD3, 10); /* Small delay.*/
gptStartContinuous(&GPTD3, 10);
#endif
touch_start_watchdog();
}