NanoVNA/main.c
Christian Zietz 4d64ef6e48 Compensate IFFT window / zero-padding loss in TD
Depending on the chosen window and mode, the magnitude of the
impulse response in time-domain previously was to low. This can
be explained by looking at the signal processing. For example,
in bandpass mode with normal window, it applies a 101 point Kaiser
window (shape factor 6) and zero-pads to do a 256 point IFFT.
Therefore, the loss is 20*log10(256/sum(kaiser(101,6))) ≈ 14.2 dB.

This change compensates the signal processing losses in bandpass
and lowpass impulse mode depending on the window type, which makes
the time-domain results similar to other VNAs.
2020-10-25 13:34:19 +01:00

2477 lines
64 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "usbcfg.h"
#include "si5351.h"
#include "nanovna.h"
#include "fft.h"
#include <chprintf.h>
#include <string.h>
#include <math.h>
/*
* Shell settings
*/
// If need run shell as thread (use more amount of memory fore stack), after
// enable this need reduce spi_buffer size, by default shell run in main thread
// #define VNA_SHELL_THREAD
static BaseSequentialStream *shell_stream = (BaseSequentialStream *)&SDU1;
// Shell new line
#define VNA_SHELL_NEWLINE_STR "\r\n"
// Shell command promt
#define VNA_SHELL_PROMPT_STR "ch> "
// Shell max arguments
#define VNA_SHELL_MAX_ARGUMENTS 4
// Shell max command line size
#define VNA_SHELL_MAX_LENGTH 48
// Shell command functions prototypes
typedef void (*vna_shellcmd_t)(int argc, char *argv[]);
#define VNA_SHELL_FUNCTION(command_name) \
static void command_name(int argc, char *argv[])
// Shell command line buffer, args, nargs, and function ptr
static char shell_line[VNA_SHELL_MAX_LENGTH];
static char *shell_args[VNA_SHELL_MAX_ARGUMENTS + 1];
static uint16_t shell_nargs;
static volatile vna_shellcmd_t shell_function = 0;
//#define ENABLED_DUMP
// Allow get threads debug info
//#define ENABLE_THREADS_COMMAND
// RTC time not used
//#define ENABLE_TIME_COMMAND
// Enable vbat_offset command, allow change battery voltage correction in config
#define ENABLE_VBAT_OFFSET_COMMAND
// Info about NanoVNA, need fore soft
#define ENABLE_INFO_COMMAND
// Enable color command, allow change config color for traces, grid, menu
#define ENABLE_COLOR_COMMAND
static void apply_error_term_at(int i);
static void apply_edelay_at(int i);
static void cal_interpolate(int s);
static void update_frequencies(void);
static void set_frequencies(uint32_t start, uint32_t stop, uint16_t points);
static bool sweep(bool break_on_operation);
static void transform_domain(void);
#define DRIVE_STRENGTH_AUTO (-1)
#define FREQ_HARMONICS (config.harmonic_freq_threshold)
#define IS_HARMONIC_MODE(f) ((f) > FREQ_HARMONICS)
// Obsolete, always use interpolate
#define cal_auto_interpolate TRUE
static int8_t drive_strength = DRIVE_STRENGTH_AUTO;
int8_t sweep_mode = SWEEP_ENABLE;
volatile uint8_t redraw_request = 0; // contains REDRAW_XXX flags
// Version text, displayed in Config->Version menu, also send by info command
const char *info_about[]={
BOARD_NAME,
"2016-2020 Copyright @edy555",
"Licensed under GPL. See: https://github.com/ttrftech/NanoVNA",
"Version: " VERSION,
"Build Time: " __DATE__ " - " __TIME__,
"Kernel: " CH_KERNEL_VERSION,
"Compiler: " PORT_COMPILER_NAME,
"Architecture: " PORT_ARCHITECTURE_NAME " Core Variant: " PORT_CORE_VARIANT_NAME,
"Port Info: " PORT_INFO,
"Platform: " PLATFORM_NAME,
0 // sentinel
};
static THD_WORKING_AREA(waThread1, 640);
static THD_FUNCTION(Thread1, arg)
{
(void)arg;
chRegSetThreadName("sweep");
while (1) {
bool completed = false;
if (sweep_mode&(SWEEP_ENABLE|SWEEP_ONCE)) {
completed = sweep(true);
sweep_mode&=~SWEEP_ONCE;
} else {
__WFI();
}
// Run Shell command in sweep thread
if (shell_function) {
shell_function(shell_nargs - 1, &shell_args[1]);
shell_function = 0;
osalThreadSleepMilliseconds(10);
continue;
}
// Process UI inputs
ui_process();
// Process collected data, calculate trace coordinates and plot only if scan
// completed
if (sweep_mode & SWEEP_ENABLE && completed) {
if ((domain_mode & DOMAIN_MODE) == DOMAIN_TIME) transform_domain();
// Prepare draw graphics, cache all lines, mark screen cells for redraw
plot_into_index(measured);
redraw_request |= REDRAW_CELLS | REDRAW_BATTERY;
if (uistat.marker_tracking) {
int i = marker_search();
if (i != -1 && active_marker != -1) {
markers[active_marker].index = i;
redraw_request |= REDRAW_MARKER;
}
}
}
// plot trace and other indications as raster
draw_all(completed); // flush markmap only if scan completed to prevent
// remaining traces
}
}
static inline void
pause_sweep(void)
{
sweep_mode &= ~SWEEP_ENABLE;
}
static inline void
resume_sweep(void)
{
sweep_mode |= SWEEP_ENABLE;
}
void
toggle_sweep(void)
{
sweep_mode ^= SWEEP_ENABLE;
}
static float
bessel0(float x)
{
const float eps = 0.0001;
float ret = 0;
float term = 1;
float m = 0;
while (term > eps * ret) {
ret += term;
++m;
term *= (x*x) / (4*m*m);
}
return ret;
}
static float
kaiser_window(float k, float n, float beta)
{
if (beta == 0.0) return 1.0;
float r = (2 * k) / (n - 1) - 1;
return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta);
}
static void
transform_domain(void)
{
// use spi_buffer as temporary buffer
// and calculate ifft for time domain
float* tmp = (float*)spi_buffer;
// correct IFFT window and zero-padding loss
// assuming a 2*POINT_COUNT window
float wincorr = 1.0f;
float beta = 0.0;
switch (domain_mode & TD_WINDOW) {
case TD_WINDOW_MINIMUM:
beta = 0.0; // this is rectangular
// loss by zero-padding 202 to 256 points
wincorr = (float)FFT_SIZE / (float)(2*POINTS_COUNT);
break;
case TD_WINDOW_NORMAL:
beta = 6.0;
// additional window loss: 1/mean(kaiser(202,6)) = 2.01
wincorr = (float)FFT_SIZE / (float)(2*POINTS_COUNT) * 2.01f;
break;
case TD_WINDOW_MAXIMUM:
beta = 13;
// additional window loss: 1/mean(kaiser(202,13)) = 2.92
wincorr = (float)FFT_SIZE / (float)(2*POINTS_COUNT) * 2.92f;
break;
}
uint8_t window_size = POINTS_COUNT, offset = 0;
uint8_t is_lowpass = FALSE;
switch (domain_mode & TD_FUNC) {
case TD_FUNC_BANDPASS:
offset = 0;
window_size = POINTS_COUNT;
// window size is half the size as assumed above => twice the IFFT loss
wincorr *= 2.0f;
break;
case TD_FUNC_LOWPASS_STEP:
// no IFFT losses need to be considered to calculate the step response
wincorr = 1.0f;
// fall-through
case TD_FUNC_LOWPASS_IMPULSE:
is_lowpass = TRUE;
offset = POINTS_COUNT;
window_size = POINTS_COUNT * 2;
break;
}
for (int ch = 0; ch < 2; ch++) {
memcpy(tmp, measured[ch], sizeof(measured[0]));
for (int i = 0; i < POINTS_COUNT; i++) {
float w = kaiser_window(i + offset, window_size, beta);
tmp[i * 2 + 0] *= w * wincorr;
tmp[i * 2 + 1] *= w * wincorr;
}
for (int i = POINTS_COUNT; i < FFT_SIZE; i++) {
tmp[i * 2 + 0] = 0.0;
tmp[i * 2 + 1] = 0.0;
}
if (is_lowpass) {
for (int i = 1; i < POINTS_COUNT; i++) {
tmp[(FFT_SIZE - i) * 2 + 0] = tmp[i * 2 + 0];
tmp[(FFT_SIZE - i) * 2 + 1] = -tmp[i * 2 + 1];
}
}
fft256_inverse((float(*)[2])tmp);
memcpy(measured[ch], tmp, sizeof(measured[0]));
for (int i = 0; i < POINTS_COUNT; i++) {
measured[ch][i][0] /= (float)FFT_SIZE;
if (is_lowpass) {
measured[ch][i][1] = 0.0;
} else {
measured[ch][i][1] /= (float)FFT_SIZE;
}
}
if ((domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP) {
for (int i = 1; i < POINTS_COUNT; i++) {
measured[ch][i][0] += measured[ch][i - 1][0];
}
}
}
}
// Shell commands output
static int shell_printf(const char *fmt, ...)
{
va_list ap;
int formatted_bytes;
va_start(ap, fmt);
formatted_bytes = chvprintf(shell_stream, fmt, ap);
va_end(ap);
return formatted_bytes;
}
VNA_SHELL_FUNCTION(cmd_pause)
{
(void)argc;
(void)argv;
pause_sweep();
}
VNA_SHELL_FUNCTION(cmd_resume)
{
(void)argc;
(void)argv;
// restore frequencies array and cal
update_frequencies();
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
cal_interpolate(lastsaveid);
resume_sweep();
}
VNA_SHELL_FUNCTION(cmd_reset)
{
(void)argc;
(void)argv;
if (argc == 1) {
if (strcmp(argv[0], "dfu") == 0) {
shell_printf("Performing reset to DFU mode\r\n");
enter_dfu();
return;
}
}
shell_printf("Performing reset\r\n");
rccEnableWWDG(FALSE);
WWDG->CFR = 0x60;
WWDG->CR = 0xff;
/* wait forever */
while (1)
;
}
const int8_t gain_table[] = {
0, // 0 ~ 300MHz
40, // 300 ~ 600MHz
50, // 600 ~ 900MHz
75, // 900 ~ 1200MHz
85, // 1200 ~ 1500MHz
95, // 1500MHz ~
95, // 1800MHz ~
95, // 2100MHz ~
95 // 2400MHz ~
};
#define DELAY_GAIN_CHANGE 2
static int
adjust_gain(uint32_t newfreq)
{
int new_order = newfreq / FREQ_HARMONICS;
int old_order = si5351_get_frequency() / FREQ_HARMONICS;
if (new_order != old_order) {
tlv320aic3204_set_gain(gain_table[new_order], gain_table[new_order]);
return DELAY_GAIN_CHANGE;
}
return 0;
}
int set_frequency(uint32_t freq)
{
int delay = adjust_gain(freq);
int8_t ds = drive_strength;
if (ds == DRIVE_STRENGTH_AUTO) {
ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA;
}
delay += si5351_set_frequency(freq, ds);
return delay;
}
// Use macro, std isdigit more big
#define _isdigit(c) (c >= '0' && c <= '9')
// Rewrite universal standart str to value functions to more compact
//
// Convert string to int32
static int32_t my_atoi(const char *p)
{
int32_t value = 0;
uint32_t c;
bool neg = false;
if (*p == '-') {neg = true; p++;}
if (*p == '+') p++;
while ((c = *p++ - '0') < 10)
value = value * 10 + c;
return neg ? -value : value;
}
// Convert string to uint32
// 0x - for hex radix
// 0o - for oct radix
// 0b - for bin radix
// default dec radix
uint32_t my_atoui(const char *p)
{
uint32_t value = 0, radix = 10, c;
if (*p == '+') p++;
if (*p == '0') {
switch (p[1]) {
case 'x': radix = 16; break;
case 'o': radix = 8; break;
case 'b': radix = 2; break;
default: goto calculate;
}
p+=2;
}
calculate:
while (1) {
c = *p++ - '0';
// c = to_upper(*p) - 'A' + 10
if (c >= 'A' - '0') c = (c&(~0x20)) - ('A' - '0') + 10;
if (c >= radix) return value;
value = value * radix + c;
}
}
double
my_atof(const char *p)
{
int neg = FALSE;
if (*p == '-')
neg = TRUE;
if (*p == '-' || *p == '+')
p++;
double x = my_atoi(p);
while (_isdigit((int)*p))
p++;
if (*p == '.') {
double d = 1.0f;
p++;
while (_isdigit((int)*p)) {
d /= 10;
x += d * (*p - '0');
p++;
}
}
if (*p == 'e' || *p == 'E') {
p++;
int exp = my_atoi(p);
while (exp > 0) {
x *= 10;
exp--;
}
while (exp < 0) {
x /= 10;
exp++;
}
}
if (neg)
x = -x;
return x;
}
//
// Function used for search substring v in list
// Example need search parameter "center" in "start|stop|center|span|cw" getStringIndex return 2
// If not found return -1
// Used for easy parse command arguments
static int get_str_index(char *v, const char *list)
{
int i = 0;
while (1) {
char *p = v;
while (1) {
char c = *list;
if (c == '|') c = 0;
if (c == *p++) {
// Found, return index
if (c == 0) return i;
list++; // Compare next symbol
continue;
}
break; // Not equal, break
}
// Set new substring ptr
while (1) {
// End of string, not found
if (*list == 0) return -1;
if (*list++ == '|') break;
}
i++;
}
return -1;
}
VNA_SHELL_FUNCTION(cmd_offset)
{
if (argc != 1) {
shell_printf("usage: offset {frequency offset(Hz)}\r\n");
return;
}
si5351_set_frequency_offset(my_atoi(argv[0]));
}
VNA_SHELL_FUNCTION(cmd_freq)
{
if (argc != 1) {
goto usage;
}
uint32_t freq = my_atoui(argv[0]);
pause_sweep();
set_frequency(freq);
return;
usage:
shell_printf("usage: freq {frequency(Hz)}\r\n");
}
VNA_SHELL_FUNCTION(cmd_power)
{
if (argc != 1) {
shell_printf("usage: power {0-3|-1}\r\n");
return;
}
drive_strength = my_atoi(argv[0]);
// set_frequency(frequency);
}
#ifdef ENABLE_TIME_COMMAND
#if HAL_USE_RTC == FALSE
#error "Error cmd_time require define HAL_USE_RTC = TRUE in halconf.h"
#endif
VNA_SHELL_FUNCTION(cmd_time)
{
RTCDateTime timespec;
(void)argc;
(void)argv;
rtcGetTime(&RTCD1, &timespec);
shell_printf("%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond);
}
#endif
VNA_SHELL_FUNCTION(cmd_dac)
{
int value;
if (argc != 1) {
shell_printf("usage: dac {value(0-4095)}\r\n"\
"current value: %d\r\n", config.dac_value);
return;
}
value = my_atoui(argv[0]);
config.dac_value = value;
dacPutChannelX(&DACD2, 0, value);
}
VNA_SHELL_FUNCTION(cmd_threshold)
{
uint32_t value;
if (argc != 1) {
shell_printf("usage: threshold {frequency in harmonic mode}\r\n"\
"current: %d\r\n", config.harmonic_freq_threshold);
return;
}
value = my_atoui(argv[0]);
config.harmonic_freq_threshold = value;
}
VNA_SHELL_FUNCTION(cmd_saveconfig)
{
(void)argc;
(void)argv;
config_save();
shell_printf("Config saved.\r\n");
}
VNA_SHELL_FUNCTION(cmd_clearconfig)
{
if (argc != 1) {
shell_printf("usage: clearconfig {protection key}\r\n");
return;
}
if (strcmp(argv[0], "1234") != 0) {
shell_printf("Key unmatched.\r\n");
return;
}
clear_all_config_prop_data();
shell_printf("Config and all cal data cleared.\r\n"\
"Do reset manually to take effect. Then do touch cal and save.\r\n");
}
static struct {
int16_t rms[2];
int16_t ave[2];
int callback_count;
#if 0
int32_t last_counter_value;
int32_t interval_cycles;
int32_t busy_cycles;
#endif
} stat;
int16_t rx_buffer[AUDIO_BUFFER_LEN * 2];
#ifdef ENABLED_DUMP
int16_t dump_buffer[AUDIO_BUFFER_LEN];
int16_t dump_selection = 0;
#endif
volatile uint8_t wait_count = 0;
volatile uint8_t accumerate_count = 0;
const int8_t bandwidth_accumerate_count[] = {
1, // 1kHz
3, // 300Hz
10, // 100Hz
33, // 30Hz
100 // 10Hz
};
float measured[2][POINTS_COUNT][2];
static inline void
dsp_start(int count)
{
wait_count = count;
accumerate_count = bandwidth_accumerate_count[bandwidth];
reset_dsp_accumerator();
}
static inline void
dsp_wait(void)
{
while (accumerate_count > 0)
__WFI();
}
#ifdef ENABLED_DUMP
static void
duplicate_buffer_to_dump(int16_t *p)
{
if (dump_selection == 1)
p = samp_buf;
else if (dump_selection == 2)
p = ref_buf;
memcpy(dump_buffer, p, sizeof dump_buffer);
}
#endif
void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n)
{
#if PORT_SUPPORTS_RT
int32_t cnt_s = port_rt_get_counter_value();
int32_t cnt_e;
#endif
int16_t *p = &rx_buffer[offset];
(void)i2sp;
(void)n;
if (wait_count > 1) {
--wait_count;
} else if (wait_count > 0) {
if (accumerate_count > 0) {
dsp_process(p, n);
accumerate_count--;
}
#ifdef ENABLED_DUMP
duplicate_buffer_to_dump(p);
#endif
}
#if PORT_SUPPORTS_RT
cnt_e = port_rt_get_counter_value();
stat.interval_cycles = cnt_s - stat.last_counter_value;
stat.busy_cycles = cnt_e - cnt_s;
stat.last_counter_value = cnt_s;
#endif
stat.callback_count++;
}
static const I2SConfig i2sconfig = {
NULL, // TX Buffer
rx_buffer, // RX Buffer
AUDIO_BUFFER_LEN * 2,
NULL, // tx callback
i2s_end_callback, // rx callback
0, // i2scfgr
2 // i2spr
};
VNA_SHELL_FUNCTION(cmd_data)
{
int i;
int sel = 0;
float (*array)[2];
if (argc == 1)
sel = my_atoi(argv[0]);
if (sel == 0 || sel == 1)
array = measured[sel];
else if (sel >= 2 && sel < 7)
array = cal_data[sel-2];
else
goto usage;
for (i = 0; i < sweep_points; i++)
shell_printf("%f %f\r\n", array[i][0], array[i][1]);
return;
usage:
shell_printf("usage: data [array]\r\n");
}
#ifdef ENABLED_DUMP
VNA_SHELL_FUNCTION(cmd_dump)
{
int i, j;
int len;
if (argc == 1)
dump_selection = my_atoi(argv[0]);
dsp_start(3);
dsp_wait();
len = AUDIO_BUFFER_LEN;
if (dump_selection == 1 || dump_selection == 2)
len /= 2;
for (i = 0; i < len; ) {
for (j = 0; j < 16; j++, i++) {
shell_printf("%04x ", 0xffff & (int)dump_buffer[i]);
}
shell_printf("\r\n");
}
}
#endif
VNA_SHELL_FUNCTION(cmd_capture)
{
// read pixel count at one time (PART*2 bytes required for read buffer)
(void)argc;
(void)argv;
int i, y;
#if SPI_BUFFER_SIZE < (3*320 + 1)
#error "Low size of spi_buffer for cmd_capture"
#endif
// read 2 row pixel time (read buffer limit by 2/3 + 1 from spi_buffer size)
for (y = 0; y < 240; y += 2) {
// use uint16_t spi_buffer[2048] (defined in ili9341) for read buffer
uint8_t *buf = (uint8_t *)spi_buffer;
ili9341_read_memory(0, y, 320, 2, 2 * 320, spi_buffer);
for (i = 0; i < 4 * 320; i++) {
streamPut(shell_stream, *buf++);
}
}
}
#if 0
VNA_SHELL_FUNCTION(cmd_gamma)
{
float gamma[2];
(void)argc;
(void)argv;
pause_sweep();
chMtxLock(&mutex);
wait_dsp(4);
calculate_gamma(gamma);
chMtxUnlock(&mutex);
shell_printf("%d %d\r\n", gamma[0], gamma[1]);
}
#endif
static void (*sample_func)(float *gamma) = calculate_gamma;
VNA_SHELL_FUNCTION(cmd_sample)
{
if (argc != 1) goto usage;
// 0 1 2
static const char cmd_sample_list[] = "gamma|ampl|ref";
switch (get_str_index(argv[0], cmd_sample_list)) {
case 0:
sample_func = calculate_gamma;
return;
case 1:
sample_func = fetch_amplitude;
return;
case 2:
sample_func = fetch_amplitude_ref;
return;
default:
break;
}
usage:
shell_printf("usage: sample {%s}\r\n", cmd_sample_list);
}
config_t config = {
.magic = CONFIG_MAGIC,
.dac_value = 1922,
.grid_color = DEFAULT_GRID_COLOR,
.menu_normal_color = DEFAULT_MENU_COLOR,
.menu_active_color = DEFAULT_MENU_ACTIVE_COLOR,
.trace_color = { DEFAULT_TRACE_1_COLOR, DEFAULT_TRACE_2_COLOR, DEFAULT_TRACE_3_COLOR, DEFAULT_TRACE_4_COLOR },
// .touch_cal = { 693, 605, 124, 171 }, // 2.4 inch LCD panel
.touch_cal = { 338, 522, 153, 192 }, // 2.8 inch LCD panel
.harmonic_freq_threshold = 300000000,
.vbat_offset = 500
};
properties_t current_props;
properties_t *active_props = &current_props;
// NanoVNA Default settings
static const trace_t def_trace[TRACES_MAX] = {//enable, type, channel, reserved, scale, refpos
{ 1, TRC_LOGMAG, 0, 0, 10.0, NGRIDY-1 },
{ 1, TRC_LOGMAG, 1, 0, 10.0, NGRIDY-1 },
{ 1, TRC_SMITH, 0, 0, 1.0, 0 },
{ 1, TRC_PHASE, 1, 0, 90.0, NGRIDY/2 }
};
static const marker_t def_markers[MARKERS_MAX] = {
{ 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 }
};
// Load propeties default settings
void load_default_properties(void)
{
//Magic add on caldata_save
//current_props.magic = CONFIG_MAGIC;
current_props._frequency0 = 50000; // start = 50kHz
current_props._frequency1 = 900000000; // end = 900MHz
current_props._sweep_points = POINTS_COUNT;
current_props._cal_status = 0;
//This data not loaded by default
//current_props._frequencies[POINTS_COUNT];
//current_props._cal_data[5][POINTS_COUNT][2];
//=============================================
current_props._electrical_delay = 0.0;
memcpy(current_props._trace, def_trace, sizeof(def_trace));
memcpy(current_props._markers, def_markers, sizeof(def_markers));
current_props._velocity_factor = 0.7;
current_props._active_marker = 0;
current_props._domain_mode = 0;
current_props._marker_smith_format = MS_RLC;
current_props._freq_mode = FREQ_MODE_START_STOP;
//Checksum add on caldata_save
//current_props.checksum = 0;
}
void
ensure_edit_config(void)
{
if (active_props == &current_props)
return;
//memcpy(&current_props, active_props, sizeof(config_t));
active_props = &current_props;
// move to uncal state
cal_status = 0;
}
#define DELAY_CHANNEL_CHANGE 2
// main loop for measurement
bool sweep(bool break_on_operation)
{
int i, delay;
// blink LED while scanning
palClearPad(GPIOC, GPIOC_LED);
// Power stabilization after LED off, also align timings on i == 0
for (i = 0; i < sweep_points; i++) { // 5300
if (frequencies[i] == 0) break;
delay = set_frequency(frequencies[i]); // 700
tlv320aic3204_select(0); // 60 CH0:REFLECT, reset and begin measure
dsp_start(delay + ((i == 0) ? 1 : 0)); // 1900
//================================================
// Place some code thats need execute while delay
//================================================
dsp_wait();
// calculate reflection coefficient
(*sample_func)(measured[0][i]); // 60
tlv320aic3204_select(1); // 60 CH1:TRANSMISSION, reset and begin measure
dsp_start(DELAY_CHANNEL_CHANGE); // 1700
//================================================
// Place some code thats need execute while delay
//================================================
dsp_wait();
// calculate transmission coefficient
(*sample_func)(measured[1][i]); // 60
// ======== 170 ===========
if (cal_status & CALSTAT_APPLY)
apply_error_term_at(i);
if (electrical_delay != 0)
apply_edelay_at(i);
// back to toplevel to handle ui operation
if (operation_requested && break_on_operation)
return false;
}
// blink LED while scanning
palSetPad(GPIOC, GPIOC_LED);
return true;
}
VNA_SHELL_FUNCTION(cmd_scan)
{
uint32_t start, stop;
int16_t points = sweep_points;
int i;
if (argc < 2 || argc > 4) {
shell_printf("usage: scan {start(Hz)} {stop(Hz)} [points] [outmask]\r\n");
return;
}
start = my_atoui(argv[0]);
stop = my_atoui(argv[1]);
if (start == 0 || stop == 0 || start > stop) {
shell_printf("frequency range is invalid\r\n");
return;
}
if (argc >= 3) {
points = my_atoi(argv[2]);
if (points <= 0 || points > POINTS_COUNT) {
shell_printf("sweep points exceeds range "define_to_STR(POINTS_COUNT)"\r\n");
return;
}
}
set_frequencies(start, stop, points);
if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY))
cal_interpolate(lastsaveid);
pause_sweep();
sweep(false);
// Output data after if set (faster data recive)
if (argc == 4) {
uint16_t mask = my_atoui(argv[3]);
if (mask) {
for (i = 0; i < points; i++) {
if (mask & 1) shell_printf("%u ", frequencies[i]);
if (mask & 2) shell_printf("%f %f ", measured[0][i][0], measured[0][i][1]);
if (mask & 4) shell_printf("%f %f ", measured[1][i][0], measured[1][i][1]);
shell_printf("\r\n");
}
}
}
}
static void
update_marker_index(void)
{
int m;
int i;
for (m = 0; m < MARKERS_MAX; m++) {
if (!markers[m].enabled)
continue;
uint32_t f = markers[m].frequency;
uint32_t fstart = get_sweep_frequency(ST_START);
uint32_t fstop = get_sweep_frequency(ST_STOP);
if (f < fstart) {
markers[m].index = 0;
markers[m].frequency = fstart;
} else if (f >= fstop) {
markers[m].index = sweep_points-1;
markers[m].frequency = fstop;
} else {
for (i = 0; i < sweep_points-1; i++) {
if (frequencies[i] <= f && f < frequencies[i+1]) {
markers[m].index = f < (frequencies[i] / 2 + frequencies[i + 1] / 2) ? i : i + 1;
break;
}
}
}
}
}
static void
set_frequencies(uint32_t start, uint32_t stop, uint16_t points)
{
uint32_t i;
uint32_t step = (points - 1);
uint32_t span = stop - start;
uint32_t delta = span / step;
uint32_t error = span % step;
uint32_t f = start, df = step>>1;
for (i = 0; i <= step; i++, f+=delta) {
frequencies[i] = f;
df+=error;
if (df >=step) {
f++;
df -= step;
}
}
// disable at out of sweep range
for (; i < POINTS_COUNT; i++)
frequencies[i] = 0;
}
static void
update_frequencies(void)
{
uint32_t start, stop;
start = get_sweep_frequency(ST_START);
stop = get_sweep_frequency(ST_STOP);
set_frequencies(start, stop, sweep_points);
// operation_requested|= OP_FREQCHANGE;
update_marker_index();
// set grid layout
update_grid();
}
void
set_sweep_frequency(int type, uint32_t freq)
{
int cal_applied = cal_status & CALSTAT_APPLY;
// Check frequency for out of bounds (minimum SPAN can be any value)
if (type != ST_SPAN && freq < START_MIN)
freq = START_MIN;
if (freq > STOP_MAX)
freq = STOP_MAX;
ensure_edit_config();
switch (type) {
case ST_START:
freq_mode &= ~FREQ_MODE_CENTER_SPAN;
if (frequency0 != freq) {
frequency0 = freq;
// if start > stop then make start = stop
if (frequency1 < freq) frequency1 = freq;
}
break;
case ST_STOP:
freq_mode &= ~FREQ_MODE_CENTER_SPAN;
if (frequency1 != freq) {
frequency1 = freq;
// if start > stop then make start = stop
if (frequency0 > freq) frequency0 = freq;
}
break;
case ST_CENTER:
freq_mode |= FREQ_MODE_CENTER_SPAN;
uint32_t center = frequency0 / 2 + frequency1 / 2;
if (center != freq) {
uint32_t span = frequency1 - frequency0;
if (freq < START_MIN + span / 2) {
span = (freq - START_MIN) * 2;
}
if (freq > STOP_MAX - span / 2) {
span = (STOP_MAX - freq) * 2;
}
frequency0 = freq - span / 2;
frequency1 = freq + span / 2;
}
break;
case ST_SPAN:
freq_mode |= FREQ_MODE_CENTER_SPAN;
if (frequency1 - frequency0 != freq) {
uint32_t center = frequency0 / 2 + frequency1 / 2;
if (center < START_MIN + freq / 2) {
center = START_MIN + freq / 2;
}
if (center > STOP_MAX - freq / 2) {
center = STOP_MAX - freq / 2;
}
frequency0 = center - freq / 2;
frequency1 = center + freq / 2;
}
break;
case ST_CW:
freq_mode |= FREQ_MODE_CENTER_SPAN;
if (frequency0 != freq || frequency1 != freq) {
frequency0 = freq;
frequency1 = freq;
}
break;
}
update_frequencies();
if (cal_auto_interpolate && cal_applied)
cal_interpolate(lastsaveid);
}
uint32_t
get_sweep_frequency(int type)
{
// Obsolete, ensure correct start/stop, start always must be < stop
if (frequency0 > frequency1) {
uint32_t t = frequency0;
frequency0 = frequency1;
frequency1 = t;
}
switch (type) {
case ST_START: return frequency0;
case ST_STOP: return frequency1;
case ST_CENTER: return frequency0/2 + frequency1/2;
case ST_SPAN: return frequency1 - frequency0;
case ST_CW: return frequency0;
}
return 0;
}
VNA_SHELL_FUNCTION(cmd_sweep)
{
if (argc == 0) {
shell_printf("%d %d %d\r\n", get_sweep_frequency(ST_START), get_sweep_frequency(ST_STOP), sweep_points);
return;
} else if (argc > 3) {
goto usage;
}
uint32_t value0 = 0;
uint32_t value1 = 0;
if (argc >= 1) value0 = my_atoui(argv[0]);
if (argc >= 2) value1 = my_atoui(argv[1]);
#if MAX_FREQ_TYPE != 5
#error "Sweep mode possibly changed, check cmd_sweep function"
#endif
// Parse sweep {start|stop|center|span|cw} {freq(Hz)}
// get enum ST_START, ST_STOP, ST_CENTER, ST_SPAN, ST_CW
static const char sweep_cmd[] = "start|stop|center|span|cw";
if (argc == 2 && value0 == 0) {
int type = get_str_index(argv[0], sweep_cmd);
if (type == -1)
goto usage;
set_sweep_frequency(type, value1);
return;
}
// Parse sweep {start(Hz)} [stop(Hz)]
if (value0)
set_sweep_frequency(ST_START, value0);
if (value1)
set_sweep_frequency(ST_STOP, value1);
return;
usage:
shell_printf("usage: sweep {start(Hz)} [stop(Hz)]\r\n"\
"\tsweep {%s} {freq(Hz)}\r\n", sweep_cmd);
}
static void
eterm_set(int term, float re, float im)
{
int i;
for (i = 0; i < sweep_points; i++) {
cal_data[term][i][0] = re;
cal_data[term][i][1] = im;
}
}
static void
eterm_copy(int dst, int src)
{
memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]);
}
#if 0
const struct open_model {
float c0;
float c1;
float c2;
float c3;
} open_model = { 50, 0, -300, 27 };
#endif
#if 0
static void
adjust_ed(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
// prepare 1/s11ao to avoid dividing complex
float c = 1000e-15;
float z0 = 50;
//float z = 2 * VNA_PI * frequencies[i] * c * z0;
float z = 0.02;
cal_data[ETERM_ED][i][0] += z;
}
}
#endif
static void
eterm_calc_es(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0
// s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0)
// prepare 1/s11ao for effeiciency
float c = 50e-15;
//float c = 1.707e-12;
float z0 = 50;
float z = 2 * VNA_PI * frequencies[i] * c * z0;
float sq = 1 + z*z;
float s11aor = (1 - z*z) / sq;
float s11aoi = 2*z / sq;
// S11mo= S11mo - Ed
// S11ms= S11ms - Ed
float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0];
float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1];
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
// Es = (S11mo'/s11ao + S11ms)/(S11mo' - S11ms)
float numr = s11sr + s11or * s11aor - s11oi * s11aoi;
float numi = s11si + s11oi * s11aor + s11or * s11aoi;
float denomr = s11or - s11sr;
float denomi = s11oi - s11si;
sq = denomr*denomr+denomi*denomi;
cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq;
cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq;
}
cal_status &= ~CALSTAT_OPEN;
cal_status |= CALSTAT_ES;
}
static void
eterm_calc_er(int sign)
{
int i;
for (i = 0; i < sweep_points; i++) {
// Er = sign*(1-sign*Es)S11ms'
float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0];
float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1];
float esr = cal_data[ETERM_ES][i][0];
float esi = cal_data[ETERM_ES][i][1];
if (sign > 0) {
esr = -esr;
esi = -esi;
}
esr = 1 + esr;
float err = esr * s11sr - esi * s11si;
float eri = esr * s11si + esi * s11sr;
if (sign < 0) {
err = -err;
eri = -eri;
}
cal_data[ETERM_ER][i][0] = err;
cal_data[ETERM_ER][i][1] = eri;
}
cal_status &= ~CALSTAT_SHORT;
cal_status |= CALSTAT_ER;
}
// CAUTION: Et is inversed for efficiency
static void
eterm_calc_et(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// Et = 1/(S21mt - Ex)
float etr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0];
float eti = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1];
float sq = etr*etr + eti*eti;
float invr = etr / sq;
float invi = -eti / sq;
cal_data[ETERM_ET][i][0] = invr;
cal_data[ETERM_ET][i][1] = invi;
}
cal_status &= ~CALSTAT_THRU;
cal_status |= CALSTAT_ET;
}
#if 0
void apply_error_term(void)
{
int i;
for (i = 0; i < sweep_points; i++) {
// S11m' = S11m - Ed
// S11a = S11m' / (Er + Es S11m')
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
float sq = err*err + eri*eri;
float s11ar = (s11mr * err + s11mi * eri) / sq;
float s11ai = (s11mi * err - s11mr * eri) / sq;
measured[0][i][0] = s11ar;
measured[0][i][1] = s11ai;
// CAUTION: Et is inversed for efficiency
// S21m' = S21m - Ex
// S21a = S21m' (1-EsS11a)Et
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
float s21ar = s21mr * etr - s21mi * eti;
float s21ai = s21mi * etr + s21mr * eti;
measured[1][i][0] = s21ar;
measured[1][i][1] = s21ai;
}
}
#endif
static void apply_error_term_at(int i)
{
// S11m' = S11m - Ed
// S11a = S11m' / (Er + Es S11m')
float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0];
float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1];
float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1];
float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0];
float sq = err*err + eri*eri;
float s11ar = (s11mr * err + s11mi * eri) / sq;
float s11ai = (s11mi * err - s11mr * eri) / sq;
measured[0][i][0] = s11ar;
measured[0][i][1] = s11ai;
// CAUTION: Et is inversed for efficiency
// S21m' = S21m - Ex
// S21a = S21m' (1-EsS11a)Et
float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0];
float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1];
float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai);
float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai);
float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1];
float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0];
float s21ar = s21mr * etr - s21mi * eti;
float s21ai = s21mi * etr + s21mr * eti;
measured[1][i][0] = s21ar;
measured[1][i][1] = s21ai;
}
static void apply_edelay_at(int i)
{
float w = 2 * VNA_PI * electrical_delay * frequencies[i] * 1E-12;
float s = sin(w);
float c = cos(w);
float real = measured[0][i][0];
float imag = measured[0][i][1];
measured[0][i][0] = real * c - imag * s;
measured[0][i][1] = imag * c + real * s;
real = measured[1][i][0];
imag = measured[1][i][1];
measured[1][i][0] = real * c - imag * s;
measured[1][i][1] = imag * c + real * s;
}
void
cal_collect(int type)
{
ensure_edit_config();
int dst, src;
switch (type) {
case CAL_LOAD: cal_status|= CALSTAT_LOAD; dst = CAL_LOAD; src = 0; break;
case CAL_OPEN: cal_status|= CALSTAT_OPEN; dst = CAL_OPEN; src = 0; cal_status&= ~(CALSTAT_ES|CALSTAT_APPLY); break;
case CAL_SHORT: cal_status|= CALSTAT_SHORT; dst = CAL_SHORT; src = 0; cal_status&= ~(CALSTAT_ER|CALSTAT_APPLY); break;
case CAL_THRU: cal_status|= CALSTAT_THRU; dst = CAL_THRU; src = 1; break;
case CAL_ISOLN: cal_status|= CALSTAT_ISOLN; dst = CAL_ISOLN; src = 1; break;
default:
return;
}
// Run sweep for collect data
sweep(false);
// Copy calibration data
memcpy(cal_data[dst], measured[src], sizeof measured[0]);
redraw_request |= REDRAW_CAL_STATUS;
}
void
cal_done(void)
{
ensure_edit_config();
if (!(cal_status & CALSTAT_LOAD))
eterm_set(ETERM_ED, 0.0, 0.0);
//adjust_ed();
if ((cal_status & CALSTAT_SHORT) && (cal_status & CALSTAT_OPEN)) {
eterm_calc_es();
eterm_calc_er(-1);
} else if (cal_status & CALSTAT_OPEN) {
eterm_copy(CAL_SHORT, CAL_OPEN);
eterm_set(ETERM_ES, 0.0, 0.0);
eterm_calc_er(1);
} else if (cal_status & CALSTAT_SHORT) {
eterm_set(ETERM_ES, 0.0, 0.0);
cal_status &= ~CALSTAT_SHORT;
eterm_calc_er(-1);
} else {
eterm_set(ETERM_ER, 1.0, 0.0);
eterm_set(ETERM_ES, 0.0, 0.0);
}
if (!(cal_status & CALSTAT_ISOLN))
eterm_set(ETERM_EX, 0.0, 0.0);
if (cal_status & CALSTAT_THRU) {
eterm_calc_et();
} else {
eterm_set(ETERM_ET, 1.0, 0.0);
}
cal_status |= CALSTAT_APPLY;
redraw_request |= REDRAW_CAL_STATUS;
}
static void
cal_interpolate(int s)
{
const properties_t *src = caldata_ref(s);
int i, j;
int eterm;
if (src == NULL)
return;
ensure_edit_config();
// lower than start freq of src range
for (i = 0; i < sweep_points; i++) {
if (frequencies[i] >= src->_frequencies[0])
break;
// fill cal_data at head of src range
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][0][0];
cal_data[eterm][i][1] = src->_cal_data[eterm][0][1];
}
}
j = 0;
for (; i < sweep_points; i++) {
uint32_t f = frequencies[i];
if (f == 0) goto interpolate_finish;
for (; j < src->_sweep_points-1; j++) {
if (src->_frequencies[j] <= f && f < src->_frequencies[j+1]) {
// found f between freqs at j and j+1
float k1 = (float)(f - src->_frequencies[j])
/ (src->_frequencies[j+1] - src->_frequencies[j]);
// avoid glitch between freqs in different harmonics mode
if (IS_HARMONIC_MODE(src->_frequencies[j]) != IS_HARMONIC_MODE(src->_frequencies[j+1])) {
// assume f[j] < f[j+1]
k1 = IS_HARMONIC_MODE(f) ? 1.0 : 0.0;
}
float k0 = 1.0 - k1;
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][j][0] * k0 + src->_cal_data[eterm][j+1][0] * k1;
cal_data[eterm][i][1] = src->_cal_data[eterm][j][1] * k0 + src->_cal_data[eterm][j+1][1] * k1;
}
break;
}
}
if (j == src->_sweep_points-1)
break;
}
// upper than end freq of src range
for (; i < sweep_points; i++) {
// fill cal_data at tail of src
for (eterm = 0; eterm < 5; eterm++) {
cal_data[eterm][i][0] = src->_cal_data[eterm][src->_sweep_points-1][0];
cal_data[eterm][i][1] = src->_cal_data[eterm][src->_sweep_points-1][1];
}
}
interpolate_finish:
cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED;
redraw_request |= REDRAW_CAL_STATUS;
}
VNA_SHELL_FUNCTION(cmd_cal)
{
static const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" };
if (argc == 0) {
int i;
for (i = 0; i < 9; i++) {
if (cal_status & (1<<i))
shell_printf("%s ", items[i]);
}
shell_printf("\r\n");
return;
}
redraw_request|=REDRAW_CAL_STATUS;
// 0 1 2 3 4 5 6 7 8 9 10
static const char cmd_cal_list[] = "load|open|short|thru|isoln|done|on|off|reset|data|in";
switch (get_str_index(argv[0], cmd_cal_list)) {
case 0:
cal_collect(CAL_LOAD);
return;
case 1:
cal_collect(CAL_OPEN);
return;
case 2:
cal_collect(CAL_SHORT);
return;
case 3:
cal_collect(CAL_THRU);
return;
case 4:
cal_collect(CAL_ISOLN);
return;
case 5:
cal_done();
return;
case 6:
cal_status |= CALSTAT_APPLY;
return;
case 7:
cal_status &= ~CALSTAT_APPLY;
return;
case 8:
cal_status = 0;
return;
case 9:
shell_printf("%f %f\r\n", cal_data[CAL_LOAD][0][0], cal_data[CAL_LOAD][0][1]);
shell_printf("%f %f\r\n", cal_data[CAL_OPEN][0][0], cal_data[CAL_OPEN][0][1]);
shell_printf("%f %f\r\n", cal_data[CAL_SHORT][0][0], cal_data[CAL_SHORT][0][1]);
shell_printf("%f %f\r\n", cal_data[CAL_THRU][0][0], cal_data[CAL_THRU][0][1]);
shell_printf("%f %f\r\n", cal_data[CAL_ISOLN][0][0], cal_data[CAL_ISOLN][0][1]);
return;
case 10:
cal_interpolate((argc > 1) ? my_atoi(argv[1]) : 0);
return;
default:
break;
}
shell_printf("usage: cal [%s]\r\n", cmd_cal_list);
}
VNA_SHELL_FUNCTION(cmd_save)
{
if (argc != 1)
goto usage;
int id = my_atoi(argv[0]);
if (id < 0 || id >= SAVEAREA_MAX)
goto usage;
caldata_save(id);
redraw_request |= REDRAW_CAL_STATUS;
return;
usage:
shell_printf("save {id}\r\n");
}
VNA_SHELL_FUNCTION(cmd_recall)
{
if (argc != 1)
goto usage;
int id = my_atoi(argv[0]);
if (id < 0 || id >= SAVEAREA_MAX)
goto usage;
// Check for success
if (caldata_recall(id) == -1)
shell_printf("Err, default load\r\n");
update_frequencies();
redraw_request |= REDRAW_CAL_STATUS;
return;
usage:
shell_printf("recall {id}\r\n");
}
static const struct {
const char *name;
uint16_t refpos;
float scale_unit;
} trace_info[] = {
{ "LOGMAG", NGRIDY-1, 10.0 },
{ "PHASE", NGRIDY/2, 90.0 },
{ "DELAY", NGRIDY/2, 1e-9 },
{ "SMITH", 0, 1.00 },
{ "POLAR", 0, 1.00 },
{ "LINEAR", 0, 0.125},
{ "SWR", 0, 0.25 },
{ "REAL", NGRIDY/2, 0.25 },
{ "IMAG", NGRIDY/2, 0.25 },
{ "R", NGRIDY/2, 100.0 },
{ "X", NGRIDY/2, 100.0 },
{ "Q", 0, 10.0 }
};
static const char * const trc_channel_name[] = {
"CH0", "CH1"
};
const char *get_trace_typename(int t)
{
return trace_info[trace[t].type].name;
}
void set_trace_type(int t, int type)
{
int enabled = type != TRC_OFF;
int force = FALSE;
if (trace[t].enabled != enabled) {
trace[t].enabled = enabled;
force = TRUE;
}
if (trace[t].type != type) {
trace[t].type = type;
// Set default trace refpos
trace[t].refpos = trace_info[type].refpos;
// Set default trace scale
trace[t].scale = trace_info[type].scale_unit;
force = TRUE;
}
if (force) {
plot_into_index(measured);
force_set_markmap();
}
}
void set_trace_channel(int t, int channel)
{
if (trace[t].channel != channel) {
trace[t].channel = channel;
force_set_markmap();
}
}
void set_trace_scale(int t, float scale)
{
if (trace[t].scale != scale) {
trace[t].scale = scale;
force_set_markmap();
}
}
float get_trace_scale(int t)
{
return trace[t].scale;
}
void set_trace_refpos(int t, float refpos)
{
if (trace[t].refpos != refpos) {
trace[t].refpos = refpos;
force_set_markmap();
}
}
float get_trace_refpos(int t)
{
return trace[t].refpos;
}
VNA_SHELL_FUNCTION(cmd_trace)
{
int t;
if (argc == 0) {
for (t = 0; t < TRACES_MAX; t++) {
if (trace[t].enabled) {
const char *type = get_trace_typename(t);
const char *channel = trc_channel_name[trace[t].channel];
float scale = get_trace_scale(t);
float refpos = get_trace_refpos(t);
shell_printf("%d %s %s %f %f\r\n", t, type, channel, scale, refpos);
}
}
return;
}
if (strcmp(argv[0], "all") == 0 &&
argc > 1 && strcmp(argv[1], "off") == 0) {
for (t = 0; t < TRACES_MAX; t++)
set_trace_type(t, TRC_OFF);
goto exit;
}
t = my_atoi(argv[0]);
if (t < 0 || t >= TRACES_MAX)
goto usage;
if (argc == 1) {
const char *type = get_trace_typename(t);
const char *channel = trc_channel_name[trace[t].channel];
shell_printf("%d %s %s\r\n", t, type, channel);
return;
}
#if MAX_TRACE_TYPE != 12
#error "Trace type enum possibly changed, check cmd_trace function"
#endif
// enum TRC_LOGMAG, TRC_PHASE, TRC_DELAY, TRC_SMITH, TRC_POLAR, TRC_LINEAR, TRC_SWR, TRC_REAL, TRC_IMAG, TRC_R, TRC_X, TRC_Q, TRC_OFF
static const char cmd_type_list[] = "logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|q|off";
int type = get_str_index(argv[1], cmd_type_list);
if (type >= 0) {
set_trace_type(t, type);
goto check_ch_num;
}
// 0 1
static const char cmd_scale_ref_list[] = "scale|refpos";
if (argc >= 3) {
switch (get_str_index(argv[1], cmd_scale_ref_list)) {
case 0:
//trace[t].scale = my_atof(argv[2]);
set_trace_scale(t, my_atof(argv[2]));
goto exit;
case 1:
//trace[t].refpos = my_atof(argv[2]);
set_trace_refpos(t, my_atof(argv[2]));
goto exit;
default:
goto usage;
}
}
check_ch_num:
if (argc > 2) {
int src = my_atoi(argv[2]);
if (src != 0 && src != 1)
goto usage;
trace[t].channel = src;
}
exit:
return;
usage:
shell_printf("trace {0|1|2|3|all} [%s] [src]\r\n"\
"trace {0|1|2|3} {%s} {value}\r\n", cmd_type_list, cmd_scale_ref_list);
}
void set_electrical_delay(float picoseconds)
{
if (electrical_delay != picoseconds) {
electrical_delay = picoseconds;
force_set_markmap();
}
redraw_request |= REDRAW_MARKER;
}
float get_electrical_delay(void)
{
return electrical_delay;
}
VNA_SHELL_FUNCTION(cmd_edelay)
{
if (argc == 0) {
shell_printf("%f\r\n", electrical_delay);
return;
}
if (argc > 0) {
set_electrical_delay(my_atof(argv[0]));
}
}
VNA_SHELL_FUNCTION(cmd_marker)
{
int t;
if (argc == 0) {
for (t = 0; t < MARKERS_MAX; t++) {
if (markers[t].enabled) {
shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency);
}
}
return;
}
redraw_request |= REDRAW_MARKER;
if (strcmp(argv[0], "off") == 0) {
active_marker = -1;
for (t = 0; t < MARKERS_MAX; t++)
markers[t].enabled = FALSE;
return;
}
t = my_atoi(argv[0])-1;
if (t < 0 || t >= MARKERS_MAX)
goto usage;
if (argc == 1) {
shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency);
active_marker = t;
// select active marker
markers[t].enabled = TRUE;
return;
}
static const char cmd_marker_list[] = "on|off";
switch (get_str_index(argv[1], cmd_marker_list)) {
case 0: markers[t].enabled = TRUE; active_marker = t; return;
case 1: markers[t].enabled =FALSE; if (active_marker == t) active_marker = -1; return;
default:
// select active marker and move to index
markers[t].enabled = TRUE;
int index = my_atoi(argv[1]);
markers[t].index = index;
markers[t].frequency = frequencies[index];
active_marker = t;
return;
}
usage:
shell_printf("marker [n] [%s|{index}]\r\n", cmd_marker_list);
}
VNA_SHELL_FUNCTION(cmd_touchcal)
{
(void)argc;
(void)argv;
//extern int16_t touch_cal[4];
int i;
shell_printf("first touch upper left, then lower right...");
touch_cal_exec();
shell_printf("done\r\n");
shell_printf("touch cal params: ");
for (i = 0; i < 4; i++) {
shell_printf("%d ", config.touch_cal[i]);
}
shell_printf("\r\n");
}
VNA_SHELL_FUNCTION(cmd_touchtest)
{
(void)argc;
(void)argv;
do {
touch_draw_test();
} while (argc);
}
VNA_SHELL_FUNCTION(cmd_frequencies)
{
int i;
(void)argc;
(void)argv;
for (i = 0; i < sweep_points; i++) {
if (frequencies[i] != 0)
shell_printf("%u\r\n", frequencies[i]);
}
}
static void
set_domain_mode(int mode) // accept DOMAIN_FREQ or DOMAIN_TIME
{
if (mode != (domain_mode & DOMAIN_MODE)) {
domain_mode = (domain_mode & ~DOMAIN_MODE) | (mode & DOMAIN_MODE);
redraw_request |= REDRAW_FREQUENCY;
uistat.lever_mode = LM_MARKER;
}
}
static void
set_timedomain_func(int func) // accept TD_FUNC_LOWPASS_IMPULSE, TD_FUNC_LOWPASS_STEP or TD_FUNC_BANDPASS
{
domain_mode = (domain_mode & ~TD_FUNC) | (func & TD_FUNC);
}
static void
set_timedomain_window(int func) // accept TD_WINDOW_MINIMUM/TD_WINDOW_NORMAL/TD_WINDOW_MAXIMUM
{
domain_mode = (domain_mode & ~TD_WINDOW) | (func & TD_WINDOW);
}
VNA_SHELL_FUNCTION(cmd_transform)
{
int i;
if (argc == 0) {
goto usage;
}
// 0 1 2 3 4 5 6 7
static const char cmd_transform_list[] = "on|off|impulse|step|bandpass|minimum|normal|maximum";
for (i = 0; i < argc; i++) {
switch (get_str_index(argv[i], cmd_transform_list)) {
case 0:
set_domain_mode(DOMAIN_TIME);
return;
case 1:
set_domain_mode(DOMAIN_FREQ);
return;
case 2:
set_timedomain_func(TD_FUNC_LOWPASS_IMPULSE);
return;
case 3:
set_timedomain_func(TD_FUNC_LOWPASS_STEP);
return;
case 4:
set_timedomain_func(TD_FUNC_BANDPASS);
return;
case 5:
set_timedomain_window(TD_WINDOW_MINIMUM);
return;
case 6:
set_timedomain_window(TD_WINDOW_NORMAL);
return;
case 7:
set_timedomain_window(TD_WINDOW_MAXIMUM);
return;
default:
goto usage;
}
}
return;
usage:
shell_printf("usage: transform {%s} [...]\r\n", cmd_transform_list);
}
VNA_SHELL_FUNCTION(cmd_test)
{
(void)argc;
(void)argv;
#if 0
int i;
for (i = 0; i < 100; i++) {
palClearPad(GPIOC, GPIOC_LED);
set_frequency(10000000);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
palClearPad(GPIOC, GPIOC_LED);
set_frequency(90000000);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
}
#endif
#if 0
int i;
int mode = 0;
if (argc >= 1)
mode = my_atoi(argv[0]);
for (i = 0; i < 20; i++) {
palClearPad(GPIOC, GPIOC_LED);
ili9341_test(mode);
palSetPad(GPIOC, GPIOC_LED);
chThdSleepMilliseconds(50);
}
#endif
#if 0
//extern adcsample_t adc_samples[2];
//shell_printf("adc: %d %d\r\n", adc_samples[0], adc_samples[1]);
int i;
int x, y;
for (i = 0; i < 50; i++) {
test_touch(&x, &y);
shell_printf("adc: %d %d\r\n", x, y);
chThdSleepMilliseconds(200);
}
//extern int touch_x, touch_y;
//shell_printf("adc: %d %d\r\n", touch_x, touch_y);
#endif
while (argc > 1) {
int x, y;
touch_position(&x, &y);
shell_printf("touch: %d %d\r\n", x, y);
chThdSleepMilliseconds(200);
}
}
VNA_SHELL_FUNCTION(cmd_gain)
{
int rvalue;
int lvalue = 0;
if (argc != 1 && argc != 2) {
shell_printf("usage: gain {lgain(0-95)} [rgain(0-95)]\r\n");
return;
}
rvalue = my_atoi(argv[0]);
if (argc == 2)
lvalue = my_atoi(argv[1]);
tlv320aic3204_set_gain(lvalue, rvalue);
}
VNA_SHELL_FUNCTION(cmd_port)
{
int port;
if (argc != 1) {
shell_printf("usage: port {0:TX 1:RX}\r\n");
return;
}
port = my_atoi(argv[0]);
tlv320aic3204_select(port);
}
VNA_SHELL_FUNCTION(cmd_bandwidth)
{
if (argc != 1)
goto usage;
static const char bw_choice[] = "1000|300|100|30|10";
int i = get_str_index(argv[0], bw_choice);
if (i < 0)
goto usage;
bandwidth = i;
return;
usage:
shell_printf("usage: bandwidth {%s}\r\n", bw_choice);
}
VNA_SHELL_FUNCTION(cmd_stat)
{
int16_t *p = &rx_buffer[0];
int32_t acc0, acc1;
int32_t ave0, ave1;
int32_t count = AUDIO_BUFFER_LEN;
int i;
(void)argc;
(void)argv;
acc0 = acc1 = 0;
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
acc0 += p[i];
acc1 += p[i+1];
}
ave0 = acc0 / count;
ave1 = acc1 / count;
acc0 = acc1 = 0;
for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) {
acc0 += (p[i] - ave0)*(p[i] - ave0);
acc1 += (p[i+1] - ave1)*(p[i+1] - ave1);
}
stat.rms[0] = sqrtf(acc0 / count);
stat.rms[1] = sqrtf(acc1 / count);
stat.ave[0] = ave0;
stat.ave[1] = ave1;
shell_printf("average: %d %d\r\n", stat.ave[0], stat.ave[1]);
shell_printf("rms: %d %d\r\n", stat.rms[0], stat.rms[1]);
shell_printf("callback count: %d\r\n", stat.callback_count);
//shell_printf("interval cycle: %d\r\n", stat.interval_cycles);
//shell_printf("busy cycle: %d\r\n", stat.busy_cycles);
//shell_printf("load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles);
// extern int awd_count;
// shell_printf("awd: %d\r\n", awd_count);
}
#ifndef VERSION
#define VERSION "unknown"
#endif
const char NANOVNA_VERSION[] = VERSION;
VNA_SHELL_FUNCTION(cmd_version)
{
(void)argc;
(void)argv;
shell_printf("%s\r\n", NANOVNA_VERSION);
}
VNA_SHELL_FUNCTION(cmd_vbat)
{
(void)argc;
(void)argv;
shell_printf("%d mV\r\n", adc_vbat_read());
}
#ifdef ENABLE_VBAT_OFFSET_COMMAND
VNA_SHELL_FUNCTION(cmd_vbat_offset)
{
if (argc != 1) {
shell_printf("%d\r\n", config.vbat_offset);
return;
}
config.vbat_offset = (int16_t)my_atoi(argv[0]);
}
#endif
#ifdef ENABLE_INFO_COMMAND
VNA_SHELL_FUNCTION(cmd_info)
{
(void)argc;
(void)argv;
int i = 0;
while (info_about[i])
shell_printf("%s\r\n", info_about[i++]);
}
#endif
#ifdef ENABLE_COLOR_COMMAND
VNA_SHELL_FUNCTION(cmd_color)
{
uint32_t color;
int i;
if (argc != 2) {
shell_printf("usage: color {id} {rgb24}\r\n");
for (i=-3; i < TRACES_MAX; i++) {
#if 0
switch(i) {
case -3: color = config.grid_color; break;
case -2: color = config.menu_normal_color; break;
case -1: color = config.menu_active_color; break;
default: color = config.trace_color[i];break;
}
#else
// WARNING!!! Dirty hack for size, depend from config struct
color = config.trace_color[i];
#endif
color = ((color >> 3) & 0x001c00) |
((color >> 5) & 0x0000f8) |
((color << 16) & 0xf80000) |
((color << 13) & 0x00e000);
// color = (color>>8)|(color<<8);
// color = ((color<<8)&0xF80000)|((color<<5)&0x00FC00)|((color<<3)&0x0000F8);
shell_printf(" %d: 0x%06x\r\n", i, color);
}
return;
}
i = my_atoi(argv[0]);
if (i < -3 && i >= TRACES_MAX)
return;
color = RGBHEX(my_atoui(argv[1]));
#if 0
switch(i) {
case -3: config.grid_color = color; break;
case -2: config.menu_normal_color = color; break;
case -1: config.menu_active_color = color; break;
default: config.trace_color[i] = color;break;
}
#else
// WARNING!!! Dirty hack for size, depend from config struct
config.trace_color[i] = color;
#endif
// Redraw all
redraw_request|= REDRAW_AREA;
}
#endif
#ifdef ENABLE_THREADS_COMMAND
#if CH_CFG_USE_REGISTRY == FALSE
#error "Threads Requite enabled CH_CFG_USE_REGISTRY in chconf.h"
#endif
VNA_SHELL_FUNCTION(cmd_threads)
{
static const char *states[] = {CH_STATE_NAMES};
thread_t *tp;
(void)argc;
(void)argv;
shell_printf("stklimit| stack|stk free| addr|refs|prio| state| name"VNA_SHELL_NEWLINE_STR);
tp = chRegFirstThread();
do {
uint32_t max_stack_use = 0U;
#if (CH_DBG_ENABLE_STACK_CHECK == TRUE) || (CH_CFG_USE_DYNAMIC == TRUE)
uint32_t stklimit = (uint32_t)tp->wabase;
#if CH_DBG_FILL_THREADS == TRUE
uint8_t *p = (uint8_t *)tp->wabase; while(p[max_stack_use]==CH_DBG_STACK_FILL_VALUE) max_stack_use++;
#endif
#else
uint32_t stklimit = 0U;
#endif
shell_printf("%08x|%08x|%08x|%08x|%4u|%4u|%9s|%12s"VNA_SHELL_NEWLINE_STR,
stklimit, (uint32_t)tp->ctx.sp, max_stack_use, (uint32_t)tp,
(uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state],
tp->name == NULL ? "" : tp->name);
tp = chRegNextThread(tp);
} while (tp != NULL);
}
#endif
//=============================================================================
VNA_SHELL_FUNCTION(cmd_help);
#pragma pack(push, 2)
typedef struct {
const char *sc_name;
vna_shellcmd_t sc_function;
uint16_t flags;
} VNAShellCommand;
#pragma pack(pop)
// Some commands can executed only in sweep thread, not in main cycle
#define CMD_WAIT_MUTEX 1
static const VNAShellCommand commands[] =
{
{"version" , cmd_version , 0},
{"reset" , cmd_reset , 0},
{"freq" , cmd_freq , CMD_WAIT_MUTEX},
{"offset" , cmd_offset , 0},
#ifdef ENABLE_TIME_COMMAND
{"time" , cmd_time , 0},
#endif
{"dac" , cmd_dac , 0},
{"saveconfig" , cmd_saveconfig , 0},
{"clearconfig" , cmd_clearconfig , 0},
{"data" , cmd_data , CMD_WAIT_MUTEX},
#ifdef ENABLED_DUMP
{"dump" , cmd_dump , 0},
#endif
{"frequencies" , cmd_frequencies , 0},
{"bandwidth" , cmd_bandwidth , 0},
{"port" , cmd_port , 0},
{"stat" , cmd_stat , 0},
{"gain" , cmd_gain , 0},
{"power" , cmd_power , 0},
{"sample" , cmd_sample , 0},
// {"gamma" , cmd_gamma , 0},
{"scan" , cmd_scan , CMD_WAIT_MUTEX},
{"sweep" , cmd_sweep , 0},
{"test" , cmd_test , 0},
{"touchcal" , cmd_touchcal , CMD_WAIT_MUTEX},
{"touchtest" , cmd_touchtest , CMD_WAIT_MUTEX},
{"pause" , cmd_pause , 0},
{"resume" , cmd_resume , 0},
{"cal" , cmd_cal , CMD_WAIT_MUTEX},
{"save" , cmd_save , 0},
{"recall" , cmd_recall , CMD_WAIT_MUTEX},
{"trace" , cmd_trace , 0},
{"marker" , cmd_marker , 0},
{"edelay" , cmd_edelay , 0},
{"capture" , cmd_capture , CMD_WAIT_MUTEX},
{"vbat" , cmd_vbat , 0},
#ifdef ENABLE_VBAT_OFFSET_COMMAND
{"vbat_offset" , cmd_vbat_offset , 0},
#endif
{"transform" , cmd_transform , 0},
{"threshold" , cmd_threshold , 0},
{"help" , cmd_help , 0},
#ifdef ENABLE_INFO_COMMAND
{"info" , cmd_info , 0},
#endif
#ifdef ENABLE_COLOR_COMMAND
{"color" , cmd_color , 0},
#endif
#ifdef ENABLE_THREADS_COMMAND
{"threads" , cmd_threads , 0},
#endif
{NULL , NULL , 0}
};
VNA_SHELL_FUNCTION(cmd_help)
{
(void)argc;
(void)argv;
const VNAShellCommand *scp = commands;
shell_printf("Commands:");
while (scp->sc_name != NULL) {
shell_printf(" %s", scp->sc_name);
scp++;
}
shell_printf(VNA_SHELL_NEWLINE_STR);
return;
}
/*
* VNA shell functions
*/
//
// Read command line from shell_stream
//
static int VNAShell_readLine(char *line, int max_size)
{
// Read line from input stream
uint8_t c;
char *ptr = line;
while (1) {
// Return 0 only if stream not active
if (streamRead(shell_stream, &c, 1) == 0)
return 0;
// Backspace or Delete
if (c == 8 || c == 0x7f) {
if (ptr != line) {
static const char backspace[] = {0x08, 0x20, 0x08, 0x00};
shell_printf(backspace);
ptr--;
}
continue;
}
// New line (Enter)
if (c == '\r') {
shell_printf(VNA_SHELL_NEWLINE_STR);
*ptr = 0;
return 1;
}
// Others (skip)
if (c < 0x20)
continue;
// Store
if (ptr < line + max_size - 1) {
streamPut(shell_stream, c); // Echo
*ptr++ = (char)c;
}
}
return 0;
}
//
// Parse and run command line
//
static void VNAShell_executeLine(char *line)
{
// Parse and execute line
char *lp = line, *ep;
shell_nargs = 0;
while (*lp != 0) {
// Skipping white space and tabs at string begin.
while (*lp == ' ' || *lp == '\t') lp++;
// If an argument starts with a double quote then its delimiter is another quote, else
// delimiter is white space.
ep = (*lp == '"') ? strpbrk(++lp, "\"") : strpbrk(lp, " \t");
// Store in args string
shell_args[shell_nargs++] = lp;
// Stop, end of input string
if ((lp = ep) == NULL) break;
// Argument limits check
if (shell_nargs > VNA_SHELL_MAX_ARGUMENTS) {
shell_printf("too many arguments, max " define_to_STR(
VNA_SHELL_MAX_ARGUMENTS) "" VNA_SHELL_NEWLINE_STR);
return;
}
// Set zero at the end of string and continue check
*lp++ = 0;
}
if (shell_nargs == 0) return;
// Execute line
const VNAShellCommand *scp;
for (scp = commands; scp->sc_name != NULL; scp++) {
if (strcmp(scp->sc_name, shell_args[0]) == 0) {
if (scp->flags & CMD_WAIT_MUTEX) {
shell_function = scp->sc_function;
// Wait execute command in sweep thread
do {
osalThreadSleepMilliseconds(100);
} while (shell_function);
} else {
scp->sc_function(shell_nargs - 1, &shell_args[1]);
}
return;
}
}
shell_printf("%s?" VNA_SHELL_NEWLINE_STR, shell_args[0]);
}
#ifdef VNA_SHELL_THREAD
static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442);
THD_FUNCTION(myshellThread, p)
{
(void)p;
chRegSetThreadName("shell");
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
while (true) {
shell_printf(VNA_SHELL_PROMPT_STR);
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
VNAShell_executeLine(shell_line);
else // Putting a delay in order to avoid an endless loop trying to read an unavailable stream.
osalThreadSleepMilliseconds(100);
}
}
#endif
// I2C clock bus setting: depend from STM32_I2C1SW in mcuconf.h
static const I2CConfig i2ccfg = {
.timingr = // TIMINGR register initialization. (use I2C timing configuration tool for STM32F3xx and STM32F0xx microcontrollers (AN4235))
#if STM32_I2C1SW == STM32_I2C1SW_HSI
// STM32_I2C1SW == STM32_I2C1SW_HSI (HSI=8MHz)
// 400kHz @ HSI 8MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual)
STM32_TIMINGR_PRESC(0U) |
STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(1U) |
STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U),
// Old values voodoo magic 400kHz @ HSI 8MHz
//0x00300506,
#elif STM32_I2C1SW == STM32_I2C1SW_SYSCLK
// STM32_I2C1SW == STM32_I2C1SW_SYSCLK (SYSCLK = 48MHz)
// 400kHz @ SYSCLK 48MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual)
STM32_TIMINGR_PRESC(5U) |
STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(3U) |
STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U),
// 600kHz @ SYSCLK 48MHz, manually get values, x1.5 I2C speed, but need calc timings
// STM32_TIMINGR_PRESC(3U) |
// STM32_TIMINGR_SCLDEL(2U) | STM32_TIMINGR_SDADEL(2U) |
// STM32_TIMINGR_SCLH(4U) | STM32_TIMINGR_SCLL(4U),
#else
#error "Need Define STM32_I2C1SW and set correct TIMINGR settings"
#endif
.cr1 = 0, // CR1 register initialization.
.cr2 = 0 // CR2 register initialization.
};
static DACConfig dac1cfg1 = {
//init: 2047U,
init: 1922U,
datamode: DAC_DHRM_12BIT_RIGHT
};
// Main thread stack size defined in makefile USE_PROCESS_STACKSIZE = 0x200
// Profile stack usage (enable threads command by def ENABLE_THREADS_COMMAND) show:
// Stack maximum usage = 472 bytes (need test more and run all commands), free stack = 40 bytes
//
int main(void)
{
halInit();
chSysInit();
//palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
//palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN);
i2cStart(&I2CD1, &i2ccfg);
si5351_init();
// MCO on PA8
//palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0));
/*
* Initializes a serial-over-USB CDC driver.
*/
sduObjectInit(&SDU1);
sduStart(&SDU1, &serusbcfg);
/*
* Activates the USB driver and then the USB bus pull-up on D+.
* Note, a delay is inserted in order to not have to disconnect the cable
* after a reset.
*/
usbDisconnectBus(serusbcfg.usbp);
chThdSleepMilliseconds(100);
usbStart(serusbcfg.usbp, &usbcfg);
usbConnectBus(serusbcfg.usbp);
/*
* SPI LCD Initialize
*/
ili9341_init();
/* restore config */
config_recall();
/* restore frequencies and calibration 0 slot properties from flash memory */
caldata_recall(0);
dac1cfg1.init = config.dac_value;
/*
* Starting DAC1 driver, setting up the output pin as analog as suggested
* by the Reference Manual.
*/
dacStart(&DACD2, &dac1cfg1);
/* initial frequencies */
update_frequencies();
/*
* I2S Initialize
*/
tlv320aic3204_init();
i2sInit();
i2sObjectInit(&I2SD2);
i2sStart(&I2SD2, &i2sconfig);
i2sStartExchange(&I2SD2);
ui_init();
//Initialize graph plotting
plot_init();
redraw_frame();
chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO-1, Thread1, NULL);
while (1) {
if (SDU1.config->usbp->state == USB_ACTIVE) {
#ifdef VNA_SHELL_THREAD
#if CH_CFG_USE_WAITEXIT == FALSE
#error "VNA_SHELL_THREAD use chThdWait, need enable CH_CFG_USE_WAITEXIT in chconf.h"
#endif
thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2),
NORMALPRIO + 1,
myshellThread, NULL);
chThdWait(shelltp);
#else
shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR);
do {
shell_printf(VNA_SHELL_PROMPT_STR);
if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH))
VNAShell_executeLine(shell_line);
else
chThdSleepMilliseconds(200);
} while (SDU1.config->usbp->state == USB_ACTIVE);
#endif
}
chThdSleepMilliseconds(1000);
}
}
/* The prototype shows it is a naked function - in effect this is just an
assembly function. */
void HardFault_Handler(void);
void hard_fault_handler_c(uint32_t *sp) __attribute__((naked));
void HardFault_Handler(void)
{
uint32_t *sp;
//__asm volatile ("mrs %0, msp \n\t": "=r" (sp) );
__asm volatile("mrs %0, psp \n\t" : "=r"(sp));
hard_fault_handler_c(sp);
}
void hard_fault_handler_c(uint32_t *sp)
{
(void)sp;
while (true) {
}
}