NanoVNA/plot.c

1806 lines
41 KiB
C

#include <math.h>
#include <string.h>
#include "ch.h"
#include "hal.h"
#include "chprintf.h"
#include "nanovna.h"
#define SWAP(x,y) do { int z=x; x = y; y = z; } while(0)
static void cell_draw_marker_info(int m, int n, int w, int h);
void markmap_all_markers(void);
/* indicate dirty cells */
uint16_t markmap[2][8];
uint16_t current_mappage = 0;
int16_t grid_offset;
int16_t grid_width;
int16_t area_width = AREA_WIDTH_NORMAL;
int16_t area_height = HEIGHT+1;
#define GRID_RECTANGULAR (1<<0)
#define GRID_SMITH (1<<1)
#define GRID_ADMIT (1<<2)
#define GRID_POLAR (1<<3)
#define CELLWIDTH 32
#define CELLHEIGHT 32
/*
* CELL_X0[27:31] cell position
* CELL_Y0[22:26]
* CELL_N[10:21] original order
* CELL_X[5:9] position in the cell
* CELL_Y[0:4]
*/
uint32_t trace_index[TRACES_MAX][POINTS_COUNT];
#define INDEX(x, y, n) \
((((x)&0x03e0UL)<<22) | (((y)&0x03e0UL)<<17) | (((n)&0x0fffUL)<<10) \
| (((x)&0x1fUL)<<5) | ((y)&0x1fUL))
#define CELL_X(i) (int)((((i)>>5)&0x1f) | (((i)>>22)&0x03e0))
#define CELL_Y(i) (int)(((i)&0x1f) | (((i)>>17)&0x03e0))
#define CELL_N(i) (int)(((i)>>10)&0xfff)
#define CELL_X0(i) (int)(((i)>>22)&0x03e0)
#define CELL_Y0(i) (int)(((i)>>17)&0x03e0)
#define CELL_P(i, x, y) (((((x)&0x03e0UL)<<22) | (((y)&0x03e0UL)<<17)) == ((i)&0xffc00000UL))
//#define floatToInt(v) ((int)(v))
int floatToInt(float v){
if (v < 0) return v-0.5;
if (v > 0) return v+0.5;
return 0;
}
void update_grid(void)
{
uint32_t gdigit = 100000000;
uint32_t fstart, fspan;
uint32_t grid;
if (frequency0 <= frequency1) {
fstart = frequency0;
fspan = frequency1 - frequency0;
} else {
fstart = frequency1;
fspan = frequency0 - frequency1;
}
while (gdigit > 100) {
grid = 5 * gdigit;
if (fspan / grid >= 4)
break;
grid = 2 * gdigit;
if (fspan / grid >= 4)
break;
grid = gdigit;
if (fspan / grid >= 4)
break;
gdigit /= 10;
}
grid_offset = (WIDTH-1) * ((fstart % grid) / 100) / (fspan / 100);
grid_width = (WIDTH-1) * (grid / 100) / (fspan / 1000);
force_set_markmap();
redraw_request |= REDRAW_FREQUENCY;
}
static inline int
circle_inout(int x, int y, int r)
{
int d = x*x + y*y - r*r;
if (d <= -r)
return 1;
if (d > r)
return -1;
return 0;
}
static int
polar_grid(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0) return 0;
if (d == 0) return 1;
// vertical and horizontal axis
if (x == 0 || y == 0)
return 1;
d = circle_inout(x, y, P_RADIUS / 5);
if (d == 0) return 1;
if (d > 0) return 0;
d = circle_inout(x, y, P_RADIUS * 2 / 5);
if (d == 0) return 1;
if (d > 0) return 0;
// cross sloping lines
if (x == y || x == -y)
return 1;
d = circle_inout(x, y, P_RADIUS * 3 / 5);
if (d == 0) return 1;
if (d > 0) return 0;
d = circle_inout(x, y, P_RADIUS * 4 / 5);
if (d == 0) return 1;
return 0;
}
/*
* Constant Resistance circle: (u - r/(r+1))^2 + v^2 = 1/(r+1)^2
* Constant Reactance circle: (u - 1)^2 + (v-1/x)^2 = 1/x^2
*/
int
smith_grid(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// horizontal axis
if (y == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS;
// Constant Reactance Circle: 2j : R/2 = P_RADIUS/2
if (circle_inout(x, y+P_RADIUS/2, P_RADIUS/2) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS/2, P_RADIUS/2) == 0)
return 1;
// Constant Resistance Circle: 3 : R/4 = P_RADIUS/4
d = circle_inout(x+P_RADIUS/4, y, P_RADIUS/4);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1j : R = P_RADIUS
if (circle_inout(x, y+P_RADIUS, P_RADIUS) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS, P_RADIUS) == 0)
return 1;
// Constant Resistance Circle: 1 : R/2
d = circle_inout(x+P_RADIUS/2, y, P_RADIUS/2);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1/2j : R*2
if (circle_inout(x, y+P_RADIUS*2, P_RADIUS*2) == 0)
return 1;
if (circle_inout(x, y-P_RADIUS*2, P_RADIUS*2) == 0)
return 1;
// Constant Resistance Circle: 1/3 : R*3/4
if (circle_inout(x+P_RADIUS*3/4, y, P_RADIUS*3/4) == 0)
return 1;
return 0;
}
#if 0
int
smith_grid2(int x, int y, float scale)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS * scale;
// Constant Reactance Circle: 2j : R/2 = 58
if (circle_inout(x, y+58*scale, 58*scale) == 0)
return 1;
if (circle_inout(x, y-58*scale, 58*scale) == 0)
return 1;
#if 0
// Constant Resistance Circle: 3 : R/4 = 29
d = circle_inout(x+29*scale, y, 29*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-29*scale, y, 29*scale);
if (d > 0) return 0;
if (d == 0) return 1;
#endif
// Constant Reactance Circle: 1j : R = 116
if (circle_inout(x, y+116*scale, 116*scale) == 0)
return 1;
if (circle_inout(x, y-116*scale, 116*scale) == 0)
return 1;
// Constant Resistance Circle: 1 : R/2 = 58
d = circle_inout(x+58*scale, y, 58*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-58*scale, y, 58*scale);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Reactance Circle: 1/2j : R*2 = 232
if (circle_inout(x, y+232*scale, 232*scale) == 0)
return 1;
if (circle_inout(x, y-232*scale, 232*scale) == 0)
return 1;
#if 0
// Constant Resistance Circle: 1/3 : R*3/4 = 87
d = circle_inout(x+87*scale, y, 87*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x+87*scale, y, 87*scale);
if (d > 0) return 0;
if (d == 0) return 1;
#endif
// Constant Resistance Circle: 0 : R
d = circle_inout(x+P_RADIUS*scale, y, P_RADIUS*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-P_RADIUS*scale, y, P_RADIUS*scale);
if (d > 0) return 0;
if (d == 0) return 1;
// Constant Resistance Circle: -1/3 : R*3/2 = 174
d = circle_inout(x+174*scale, y, 174*scale);
if (d > 0) return 0;
if (d == 0) return 1;
d = circle_inout(x-174*scale, y, 174*scale);
//if (d > 0) return 0;
if (d == 0) return 1;
return 0;
}
#endif
const int cirs[][4] = {
{ 0, 58/2, 58/2, 0 }, // Constant Reactance Circle: 2j : R/2 = 58
{ 29/2, 0, 29/2, 1 }, // Constant Resistance Circle: 3 : R/4 = 29
{ 0, 115/2, 115/2, 0 }, // Constant Reactance Circle: 1j : R = 115
{ 58/2, 0, 58/2, 1 }, // Constant Resistance Circle: 1 : R/2 = 58
{ 0, 230/2, 230/2, 0 }, // Constant Reactance Circle: 1/2j : R*2 = 230
{ 86/2, 0, 86/2, 1 }, // Constant Resistance Circle: 1/3 : R*3/4 = 86
{ 0, 460/2, 460/2, 0 }, // Constant Reactance Circle: 1/4j : R*4 = 460
{ 115/2, 0, 115/2, 1 }, // Constant Resistance Circle: 0 : R
{ 173/2, 0, 173/2, 1 }, // Constant Resistance Circle: -1/3 : R*3/2 = 173
{ 0, 0, 0, 0 } // sentinel
};
int
smith_grid3(int x, int y)
{
int d;
// offset to center
x -= P_CENTER_X;
y -= P_CENTER_Y;
// outer circle
d = circle_inout(x, y, P_RADIUS);
if (d < 0)
return 0;
if (d == 0)
return 1;
// shift circle center to right origin
x -= P_RADIUS /2;
int i;
for (i = 0; cirs[i][2]; i++) {
d = circle_inout(x+cirs[i][0], y+cirs[i][1], cirs[i][2]);
if (d == 0)
return 1;
if (d > 0 && cirs[i][3])
return 0;
d = circle_inout(x-cirs[i][0], y-cirs[i][1], cirs[i][2]);
if (d == 0)
return 1;
if (d > 0 && cirs[i][3])
return 0;
}
return 0;
}
#if 0
int
rectangular_grid(int x, int y)
{
//#define FREQ(x) (((x) * (fspan / 1000) / (WIDTH-1)) * 1000 + fstart)
//int32_t n = FREQ(x-1) / fgrid;
//int32_t m = FREQ(x) / fgrid;
//if ((m - n) > 0)
//if (((x * 6) % (WIDTH-1)) < 6)
//if (((x - grid_offset) % grid_width) == 0)
if (x == 0 || x == WIDTH-1)
return 1;
if ((y % GRIDY) == 0)
return 1;
if ((((x + grid_offset) * 10) % grid_width) < 10)
return 1;
return 0;
}
#endif
static int
rectangular_grid_x(int x)
{
if (x < 0)
return 0;
if (x == 0 || x == WIDTH-1)
return 1;
if ((((x + grid_offset) * 10) % grid_width) < 10)
return 1;
return 0;
}
static int
rectangular_grid_y(int y)
{
if (y < 0)
return 0;
if ((y % GRIDY) == 0)
return 1;
return 0;
}
#if 0
int
set_strut_grid(int x)
{
uint16_t *buf = spi_buffer;
int y;
for (y = 0; y < HEIGHT; y++) {
int c = rectangular_grid(x, y);
c |= smith_grid(x, y);
*buf++ = c;
}
return y;
}
void
draw_on_strut(int v0, int d, int color)
{
int v;
int v1 = v0 + d;
if (v0 < 0) v0 = 0;
if (v1 < 0) v1 = 0;
if (v0 >= HEIGHT) v0 = HEIGHT-1;
if (v1 >= HEIGHT) v1 = HEIGHT-1;
if (v0 == v1) {
v = v0; d = 2;
} else if (v0 < v1) {
v = v0; d = v1 - v0 + 1;
} else {
v = v1; d = v0 - v1 + 1;
}
while (d-- > 0)
spi_buffer[v++] |= color;
}
#endif
/*
* calculate log10(abs(gamma))
*/
float logmag(const float *v)
{
return log10f(v[0]*v[0] + v[1]*v[1]) * 10;
}
/*
* calculate phase[-2:2] of coefficient
*/
float phase(const float *v)
{
return 2 * atan2f(v[1], v[0]) / M_PI * 90;
}
/*
* calculate groupdelay
*/
float groupdelay(const float *v, const float *w, float deltaf)
{
#if 1
// atan(w)-atan(v) = atan((w-v)/(1+wv))
float r = w[0]*v[1] - w[1]*v[0];
float i = w[0]*v[0] + w[1]*v[1];
return atan2f(r, i) / (2 * M_PI * deltaf);
#else
return (atan2f(w[0], w[1]) - atan2f(v[0], v[1])) / (2 * M_PI * deltaf);
#endif
}
/*
* calculate abs(gamma)
*/
float linear(const float *v)
{
return - sqrtf(v[0]*v[0] + v[1]*v[1]);
}
/*
* calculate vswr; (1+gamma)/(1-gamma)
*/
float swr(const float *v)
{
float x = sqrtf(v[0]*v[0] + v[1]*v[1]);
if (x >= 1)
return INFINITY;
return (1 + x)/(1 - x);
}
float resitance(const float *v) {
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
float zr = ((1+v[0])*(1-v[0]) - v[1]*v[1]) * d;
return zr;
}
float reactance(const float *v) {
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
float zi = 2*v[1] * d;
return zi;
}
void
cartesian_scale(float re, float im, int *xp, int *yp, float scale)
{
//float scale = 4e-3;
int x = floatToInt(re * P_RADIUS * scale);
int y = floatToInt(im * P_RADIUS * scale);
if (x < -P_RADIUS) x = -P_RADIUS;
if (y < -P_RADIUS) y = -P_RADIUS;
if (x > P_RADIUS) x = P_RADIUS;
if (y > P_RADIUS) y = P_RADIUS;
*xp = P_CENTER_X + x;
*yp = P_CENTER_Y - y;
}
float
groupdelay_from_array(int i, float array[POINTS_COUNT][2])
{
int bottom = (i == 0) ? 0 : i - 1;
int top = (i == POINTS_COUNT-1) ? POINTS_COUNT-1 : i + 1;
float deltaf = frequencies[top] - frequencies[bottom];
return groupdelay(array[bottom], array[top], deltaf);
}
static float
gamma2resistance(const float v[2])
{
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
return ((1+v[0])*(1-v[0]) - v[1]*v[1]) * d;
}
static float
gamma2reactance(const float v[2])
{
float z0 = 50;
float d = z0 / ((1-v[0])*(1-v[0])+v[1]*v[1]);
return 2*v[1] * d;
}
uint32_t
trace_into_index(int x, int t, int i, float array[POINTS_COUNT][2])
{
int y = 0;
float v = 0;
float *coeff = array[i];
float refpos = 10 - get_trace_refpos(t);
float scale = 1 / get_trace_scale(t);
switch (trace[t].type) {
case TRC_LOGMAG:
v = refpos - logmag(coeff) * scale;
break;
case TRC_PHASE:
v = refpos - phase(coeff) * scale;
break;
case TRC_DELAY:
v = refpos - groupdelay_from_array(i, array) * scale;
break;
case TRC_LINEAR:
v = refpos + linear(coeff) * scale;
break;
case TRC_SWR:
v = refpos+ (1 - swr(coeff)) * scale;
break;
case TRC_REAL:
v = refpos - coeff[0] * scale;
break;
case TRC_IMAG:
v = refpos - coeff[1] * scale;
break;
case TRC_R:
v = refpos - resitance(coeff) * scale;
break;
case TRC_X:
v = refpos - reactance(coeff) * scale;
break;
case TRC_SMITH:
//case TRC_ADMIT:
case TRC_POLAR:
cartesian_scale(coeff[0], coeff[1], &x, &y, scale);
return INDEX(x +CELLOFFSETX, y, i);
break;
}
if (v < 0) v = 0;
if (v > 10) v = 10;
y = floatToInt(v * GRIDY);
return INDEX(x +CELLOFFSETX, y, i);
}
#define PI2 6.283184
static void
format_smith_value(char *buf, int len, const float coeff[2], uint32_t frequency)
{
// z = (gamma+1)/(gamma-1) * z0
float z0 = 50;
float d = z0 / ((1-coeff[0])*(1-coeff[0])+coeff[1]*coeff[1]);
float zr = ((1+coeff[0])*(1-coeff[0]) - coeff[1]*coeff[1]) * d;
float zi = 2*coeff[1] * d;
char prefix;
float value;
switch (marker_smith_format) {
case MS_LIN:
chsnprintf(buf, len, "%.2f %.1f" S_DEGREE, linear(coeff), phase(coeff));
break;
case MS_LOG: {
float v = logmag(coeff);
if (v == -INFINITY)
chsnprintf(buf, len, "-"S_INFINITY" dB");
else
chsnprintf(buf, len, "%.1fdB %.1f" S_DEGREE, v, phase(coeff));
}
break;
case MS_REIM:
chsnprintf(buf, len, "%F%+Fj", coeff[0], coeff[1]);
break;
case MS_RX:
chsnprintf(buf, len, "%F"S_OHM"%+Fj", zr, zi);
break;
case MS_RLC:
if (zi < 0){// Capacity
prefix = 'F';
value = -1 / (PI2 * frequency * zi);
}
else {
prefix = 'H';
value = zi / (PI2 * frequency);
}
chsnprintf(buf, len, "%F"S_OHM" %F%c", zr, value, prefix);
break;
}
}
static void
trace_get_value_string(int t, char *buf, int len, float array[POINTS_COUNT][2], int i)
{
float *coeff = array[i];
float v;
char *format;
switch (trace[t].type) {
case TRC_LOGMAG:
format = "%.2fdB";
v = logmag(coeff);
break;
case TRC_PHASE:
format = "%.1f"S_DEGREE;
v = phase(coeff);
break;
case TRC_DELAY:
format = "%.2Fs";
v = groupdelay_from_array(i, array);
break;
case TRC_LINEAR:
format = "%.4f";
v = linear(coeff);
break;
case TRC_SWR:
format = "%.4f";
v = swr(coeff);
break;
case TRC_REAL:
format = "%.4f";
v = coeff[0];
break;
case TRC_IMAG:
format = "%.4fj";
v = coeff[1];
break;
case TRC_R:
format = "%.2F"S_OHM;
v = gamma2resistance(coeff);
break;
case TRC_X:
format = "%.2F"S_OHM;
v = gamma2reactance(coeff);
break;
case TRC_SMITH:
format_smith_value(buf, len, coeff, frequencies[i]);
return;
//case TRC_ADMIT:
case TRC_POLAR:
chsnprintf(buf, len, "%.2f%+.2fj", coeff[0], coeff[1]);
default:
return;
}
chsnprintf(buf, len, format, v);
}
static void
trace_get_value_string_delta(int t, char *buf, int len, float array[POINTS_COUNT][2], int index, int index_ref)
{
float *coeff = array[index];
float *coeff_ref = array[index_ref];
float v;
char *format;
switch (trace[t].type) {
case TRC_LOGMAG:
format = S_DELTA"%.2fdB";
v = logmag(coeff) - logmag(coeff_ref);
break;
case TRC_PHASE:
format = S_DELTA"%.2f"S_DEGREE;
v = phase(coeff) - phase(coeff_ref);
break;
case TRC_DELAY:
format = "%.2Fs";
v = groupdelay_from_array(index, array) - groupdelay_from_array(index_ref, array);
break;
case TRC_LINEAR:
format = S_DELTA"%.3f";
v = linear(coeff) - linear(coeff_ref);
break;
case TRC_SWR:
format = S_DELTA"%.3f";
v = swr(coeff);
if (v!=INFINITY)
v-=swr(coeff_ref);
break;
case TRC_SMITH:
format_smith_value(buf, len, coeff, frequencies[index]);
return;
case TRC_REAL:
format = S_DELTA"%.3f";
v = coeff[0] - coeff_ref[0];
break;
case TRC_IMAG:
format = S_DELTA"%.3fj";
v = coeff[1] - coeff_ref[1];
break;
case TRC_R:
format = "%.2F"S_OHM;
v = gamma2resistance(coeff);
break;
case TRC_X:
format = "%.2F"S_OHM;
v = gamma2reactance(coeff);
break;
//case TRC_ADMIT:
case TRC_POLAR:
chsnprintf(buf, len, "%.2f%+.2fj", coeff[0], coeff[1]);
return;
default:
return;
}
chsnprintf(buf, len, format, v);
}
static int
trace_get_info(int t, char *buf, int len)
{
const char *name = get_trace_typename(t);
float scale = get_trace_scale(t);
switch (trace[t].type) {
case TRC_LOGMAG:
return chsnprintf(buf, len, "%s %ddB/", name, (int)scale);
case TRC_PHASE:
return chsnprintf(buf, len, "%s %d" S_DEGREE "/", name, (int)scale);
case TRC_SMITH:
//case TRC_ADMIT:
case TRC_POLAR:
if (scale != 1.0)
return chsnprintf(buf, len, "%s %.1fFS", name, scale);
else
return chsnprintf(buf, len, "%s ", name);
default:
return chsnprintf(buf, len, "%s %F/", name, scale);
}
return 0;
}
static float time_of_index(int idx) {
return 1.0 / (float)(frequencies[1] - frequencies[0]) / (float)FFT_SIZE * idx;
}
static float distance_of_index(int idx) {
#define SPEED_OF_LIGHT 299792458
float distance = ((float)idx * (float)SPEED_OF_LIGHT) / ( (float)(frequencies[1] - frequencies[0]) * (float)FFT_SIZE * 2.0);
return distance * velocity_factor;
}
static inline void
mark_map(int x, int y)
{
if (y >= 0 && y < 8 && x >= 0 && x < 16)
markmap[current_mappage][y] |= 1<<x;
}
static inline int
is_mapmarked(int x, int y)
{
uint16_t bit = 1<<x;
return (markmap[0][y] & bit) || (markmap[1][y] & bit);
}
static inline void
markmap_upperarea(void)
{
markmap[current_mappage][0] |= 0xffff;
}
static inline void
swap_markmap(void)
{
current_mappage = 1 - current_mappage;
}
static inline void
clear_markmap(void)
{
memset(markmap[current_mappage], 0, sizeof markmap[current_mappage]);
}
inline void
force_set_markmap(void)
{
memset(markmap[current_mappage], 0xff, sizeof markmap[current_mappage]);
}
void
mark_cells_from_index(void)
{
int t;
/* mark cells between each neighber points */
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
int x0 = CELL_X(trace_index[t][0]);
int y0 = CELL_Y(trace_index[t][0]);
int m0 = x0 >> 5;
int n0 = y0 >> 5;
int i;
mark_map(m0, n0);
for (i = 1; i < sweep_points; i++) {
int x1 = CELL_X(trace_index[t][i]);
int y1 = CELL_Y(trace_index[t][i]);
int m1 = x1 >> 5;
int n1 = y1 >> 5;
while (m0 != m1 || n0 != n1) {
if (m0 == m1) {
if (n0 < n1) n0++; else n0--;
} else if (n0 == n1) {
if (m0 < m1) m0++; else m0--;
} else {
int x = (m0 < m1) ? (m0 + 1)<<5 : m0<<5;
int y = (n0 < n1) ? (n0 + 1)<<5 : n0<<5;
int sgn = (n0 < n1) ? 1 : -1;
if (sgn*(y-y0)*(x1-x0) < sgn*(x-x0)*(y1-y0)) {
if (m0 < m1) m0++;
else m0--;
} else {
if (n0 < n1) n0++;
else n0--;
}
}
mark_map(m0, n0);
}
x0 = x1;
y0 = y1;
m0 = m1;
n0 = n1;
}
}
}
void plot_into_index(float measured[2][POINTS_COUNT][2])
{
int i, t;
for (i = 0; i < sweep_points; i++) {
int x = (i * (WIDTH-1) + sweep_points/2) / (sweep_points-1);
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
int n = trace[t].channel;
trace_index[t][i] = trace_into_index(x, t, i, measured[n]);
}
}
#if 0
for (t = 0; t < TRACES_MAX; t++)
if (trace[t].enabled && trace[t].polar)
quicksort(trace_index[t], 0, sweep_points);
#endif
mark_cells_from_index();
markmap_all_markers();
}
const uint8_t INSIDE = 0b0000;
const uint8_t LEFT = 0b0001;
const uint8_t RIGHT = 0b0010;
const uint8_t BOTTOM = 0b0100;
const uint8_t TOP = 0b1000;
inline static uint8_t
_compute_outcode(int w, int h, int x, int y)
{
uint8_t code = 0;
if (x < 0) {
code |= LEFT;
} else
if (x > w) {
code |= RIGHT;
}
if (y < 0) {
code |= BOTTOM;
} else
if (y > h) {
code |= TOP;
}
return code;
}
static void
cell_drawline(int w, int h, int x0, int y0, int x1, int y1, int c)
{
uint8_t outcode0 = _compute_outcode(w, h, x0, y0);
uint8_t outcode1 = _compute_outcode(w, h, x1, y1);
if (outcode0 & outcode1) {
// this line is out of requested area. early return
return;
}
if (x0 > x1) {
SWAP(x0, x1);
SWAP(y0, y1);
}
int dx = x1 - x0;
int dy = y1 - y0;
int sy = dy > 0 ? 1 : -1;
int e = 0;
dy *= sy;
if (dx >= dy) {
e = dy * 2 - dx;
while (x0 != x1) {
if (y0 >= 0 && y0 < h && x0 >= 0 && x0 < w) spi_buffer[y0*w+x0] |= c;
x0++;
e += dy * 2;
if (e >= 0) {
e -= dx * 2;
y0 += sy;
}
}
if (y0 >= 0 && y0 < h && x0 >= 0 && x0 < w) spi_buffer[y0*w+x0] |= c;
} else {
e = dx * 2 - dy;
while (y0 != y1) {
if (y0 >= 0 && y0 < h && x0 >= 0 && x0 < w) spi_buffer[y0*w+x0] |= c;
y0 += sy;
e += dx * 2;
if (e >= 0) {
e -= dy * 2;
x0++;
}
}
if (y0 >= 0 && y0 < h && x0 >= 0 && x0 < w) spi_buffer[y0*w+x0] |= c;
}
}
int
search_index_range(int x, int y, uint32_t index[POINTS_COUNT], int *i0, int *i1)
{
int i, j;
int head = 0;
int tail = sweep_points;
i = 0;
x &= 0x03e0;
y &= 0x03e0;
while (head < tail) {
i = (head + tail) / 2;
if (x < CELL_X0(index[i]))
tail = i+1;
else if (x > CELL_X0(index[i]))
head = i;
else if (y < CELL_Y0(index[i]))
tail = i+1;
else if (y > CELL_Y0(index[i]))
head = i;
else
break;
}
if (x != CELL_X0(index[i]) || y != CELL_Y0(index[i]))
return FALSE;
j = i;
while (j > 0 && x == CELL_X0(index[j-1]) && y == CELL_Y0(index[j-1]))
j--;
*i0 = j;
j = i;
while (j < POINTS_COUNT-1 && x == CELL_X0(index[j+1]) && y == CELL_Y0(index[j+1]))
j++;
*i1 = j;
return TRUE;
}
static int
search_index_range_x(int x, uint32_t index[POINTS_COUNT], int *i0, int *i1)
{
int i, j;
int head = 0;
int tail = sweep_points;
x &= 0x03e0;
i = 0;
while (head < tail) {
i = (head + tail) / 2;
if (x == CELL_X0(index[i]))
break;
else if (x < CELL_X0(index[i])) {
if (tail == i+1)
break;
tail = i+1;
} else {
if (head == i)
break;
head = i;
}
}
if (x != CELL_X0(index[i]))
return FALSE;
j = i;
while (j > 0 && x == CELL_X0(index[j-1]))
j--;
*i0 = j;
j = i;
while (j < POINTS_COUNT-1 && x == CELL_X0(index[j+1]))
j++;
*i1 = j;
return TRUE;
}
void
draw_refpos(int w, int h, int x, int y, int c)
{
// draw triangle
int i, j;
if (y < -3 || y > 32 + 3)
return;
for (j = 0; j < 3; j++) {
int j0 = 6 - j*2;
for (i = 0; i < j0; i++) {
int x0 = x + i-5;
int y0 = y - j;
int y1 = y + j;
if (y0 >= 0 && y0 < h && x0 >= 0 && x0 < w)
spi_buffer[y0*w+x0] = c;
if (j != 0 && y1 >= 0 && y1 < h && x0 >= 0 && x0 < w)
spi_buffer[y1*w+x0] = c;
}
}
}
void
cell_draw_refpos(int m, int n, int w, int h)
{
int x0 = m * CELLWIDTH;
int y0 = n * CELLHEIGHT;
int t;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
if (trace[t].type == TRC_SMITH || trace[t].type == TRC_POLAR)
continue;
int x = 0 - x0 +CELLOFFSETX;
int y = 10*GRIDY - floatToInt((get_trace_refpos(t) * GRIDY)) - y0;
if (x > -5 && x < w && y >= -3 && y < h+3)
draw_refpos(w, h, x, y, config.trace_color[t]);
}
}
#define MARKER_WIDTH 7
#define MARKER_HEIGHT 10
#define X_MARKER_OFFSET 3
#define Y_MARKER_OFFSET 10
static const uint8_t marker_bitmap[]={
// Marker 1
0b11111110,
0b11101110,
0b11001110,
0b11101110,
0b11101110,
0b11101110,
0b11000110,
0b01111100,
0b00111000,
0b00010000,
// Marker 2
0b11111110,
0b11000110,
0b10111010,
0b11111010,
0b11000110,
0b10111110,
0b10000010,
0b01111100,
0b00111000,
0b00010000,
// Marker 3
0b11111110,
0b11000110,
0b10111010,
0b11100110,
0b11111010,
0b10111010,
0b11000110,
0b01111100,
0b00111000,
0b00010000,
// Marker 4
0b11111110,
0b11110110,
0b11100110,
0b11010110,
0b10110110,
0b10110110,
0b10000010,
0b01110100,
0b00111000,
0b00010000,
};
static void draw_marker(int w, int h, int x, int y, int c, int ch)
{
int y0=y;
for (int j=0;j<MARKER_HEIGHT;j++,y0++)
{
int x0=x;
uint8_t bits = marker_bitmap[ch*10+j];
bool force_color = false;
while (bits){
if (bits&0x80)
force_color = true;
if (x0 >= 0 && x0 < w && y0 >= 0 && y0 < h)
{
if (bits&0x80)
spi_buffer[y0*w+x0] = c;
else if (force_color)
spi_buffer[y0*w+x0] = DEFAULT_BG_COLOR;
}
x0++;
bits<<=1;
}
}
}
void
marker_position(int m, int t, int *x, int *y)
{
uint32_t index = trace_index[t][markers[m].index];
*x = CELL_X(index);
*y = CELL_Y(index);
}
static int greater(int x, int y) { return x > y; }
static int lesser(int x, int y) { return x < y; }
static int (*compare)(int x, int y) = lesser;
int8_t marker_tracking = false;
int
marker_search(void)
{
int i;
int found = 0;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][0]);
for (i = 0; i < POINTS_COUNT; i++) {
uint32_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index))) {
value = CELL_Y(index);
found = i;
}
}
return found;
}
void
set_marker_search(int mode)
{
if (mode == 0)
compare = greater;
else
compare = lesser;
}
int
marker_search_left(int from)
{
int i;
int found = -1;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][from]);
for (i = from - 1; i >= 0; i--) {
uint32_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index)))
break;
value = CELL_Y(index);
}
for (; i >= 0; i--) {
uint32_t index = trace_index[uistat.current_trace][i];
if ((*compare)(CELL_Y(index), value)) {
break;
}
found = i;
value = CELL_Y(index);
}
return found;
}
int
marker_search_right(int from)
{
int i;
int found = -1;
if (uistat.current_trace == -1)
return -1;
int value = CELL_Y(trace_index[uistat.current_trace][from]);
for (i = from + 1; i < POINTS_COUNT; i++) {
uint32_t index = trace_index[uistat.current_trace][i];
if ((*compare)(value, CELL_Y(index)))
break;
value = CELL_Y(index);
}
for (; i < POINTS_COUNT; i++) {
uint32_t index = trace_index[uistat.current_trace][i];
if ((*compare)(CELL_Y(index), value)) {
break;
}
found = i;
value = CELL_Y(index);
}
return found;
}
int
search_nearest_index(int x, int y, int t)
{
uint32_t *index = trace_index[t];
int min_i = -1;
int min_d = 1000;
int i;
for (i = 0; i < sweep_points; i++) {
int16_t dx = x - CELL_X(index[i]) - OFFSETX;
int16_t dy = y - CELL_Y(index[i]) - OFFSETY;
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
if (dx > 20 || dy > 20)
continue;
int d = dx*dx + dy*dy;
if (d < min_d) {
min_i = i;
}
}
return min_i;
}
void
cell_draw_markers(int m, int n, int w, int h)
{
int t, i;
for (i = 0; i < MARKERS_MAX; i++) {
if (!markers[i].enabled)
continue;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
uint32_t index = trace_index[t][markers[i].index];
int x = CELL_X(index) - m * CELLWIDTH - X_MARKER_OFFSET;
int y = CELL_Y(index) - n * CELLHEIGHT - Y_MARKER_OFFSET;
if (x >=-MARKER_WIDTH && x < w + MARKER_WIDTH && y >= -MARKER_HEIGHT && y < h + MARKER_HEIGHT)
draw_marker(w, h, x, y, config.trace_color[t], i);
}
}
}
void
markmap_marker(int marker)
{
int t;
if (!markers[marker].enabled)
return;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
uint32_t index = trace_index[t][markers[marker].index];
int x = CELL_X(index);
int y = CELL_Y(index);
int m = x>>5;
int n = y>>5;
mark_map(m, n);
if ((x&31) < 6)
mark_map(m-1, n);
if ((x&31) > 32-6)
mark_map(m+1, n);
if ((y&31) < 12) {
mark_map(m, n-1);
if ((x&31) < 6)
mark_map(m-1, n-1);
if ((x&31) > 32-6)
mark_map(m+1, n-1);
}
}
}
void
markmap_all_markers(void)
{
int i;
for (i = 0; i < MARKERS_MAX; i++) {
if (!markers[i].enabled)
continue;
markmap_marker(i);
}
markmap_upperarea();
}
static void
draw_cell(int m, int n)
{
int x0 = m * CELLWIDTH;
int y0 = n * CELLHEIGHT;
int x0off = x0 - CELLOFFSETX;
int w = CELLWIDTH;
int h = CELLHEIGHT;
int x, y;
int i0, i1;
int i;
int t;
if (x0off + w > area_width)
w = area_width - x0off;
if (y0 + h > area_height)
h = area_height - y0;
if (w <= 0 || h <= 0)
return;
uint16_t grid_mode = 0;
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
if (trace[t].type == TRC_SMITH)
grid_mode |= GRID_SMITH;
//else if (trace[t].type == TRC_ADMIT)
// grid_mode |= GRID_ADMIT;
else if (trace[t].type == TRC_POLAR)
grid_mode |= GRID_POLAR;
else
grid_mode |= GRID_RECTANGULAR;
}
PULSE;
memset(spi_buffer, DEFAULT_BG_COLOR, sizeof spi_buffer);
uint16_t c = config.grid_color;
/* draw grid */
if (grid_mode & GRID_RECTANGULAR) {
for (x = 0; x < w; x++) {
if (rectangular_grid_x(x+x0off)){
for (y = 0; y < h; y++)
spi_buffer[y * w + x] = c;
}
}
for (y = 0; y < h; y++) {
if (rectangular_grid_y(y+y0)){
for (x = 0; x < w; x++)
if (x+x0off >= 0 && x+x0off < WIDTH)
spi_buffer[y * w + x] = c;
}
}
}
if (grid_mode & (GRID_SMITH|GRID_ADMIT|GRID_POLAR)) {
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int n = 0;
if (grid_mode & GRID_SMITH)
n = smith_grid(x+x0off, y+y0);
else if (grid_mode & GRID_ADMIT)
n = smith_grid3(x+x0off, y+y0);
//n = smith_grid2(x+x0, y+y0, 0.5);
else if (grid_mode & GRID_POLAR)
n = polar_grid(x+x0off, y+y0);
if (n)
spi_buffer[y * w + x] = c;
}
}
}
PULSE;
#if 1
/* draw rectanglar plot */
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
if (trace[t].type == TRC_SMITH || trace[t].type == TRC_POLAR)
continue;
if (search_index_range_x(x0, trace_index[t], &i0, &i1)) {
if (i0 > 0)
i0--;
if (i1 < POINTS_COUNT-1)
i1++;
for (i = i0; i < i1; i++) {
int x1 = CELL_X(trace_index[t][i]);
int x2 = CELL_X(trace_index[t][i+1]);
int y1 = CELL_Y(trace_index[t][i]);
int y2 = CELL_Y(trace_index[t][i+1]);
int c = config.trace_color[t];
cell_drawline(w, h, x1 - x0, y1 - y0, x2 - x0, y2 - y0, c);
}
}
}
#endif
#if 1
/* draw polar plot */
for (t = 0; t < TRACES_MAX; t++) {
int c = config.trace_color[t];
if (!trace[t].enabled)
continue;
if (trace[t].type != TRC_SMITH && trace[t].type != TRC_POLAR)
continue;
for (i = 1; i < sweep_points; i++) {
//uint32_t index = trace_index[t][i];
//uint32_t pindex = trace_index[t][i-1];
//if (!CELL_P(index, x0, y0) && !CELL_P(pindex, x0, y0))
// continue;
int x1 = CELL_X(trace_index[t][i-1]);
int x2 = CELL_X(trace_index[t][i]);
int y1 = CELL_Y(trace_index[t][i-1]);
int y2 = CELL_Y(trace_index[t][i]);
cell_drawline(w, h, x1 - x0, y1 - y0, x2 - x0, y2 - y0, c);
}
}
#endif
PULSE;
//draw marker symbols on each trace
cell_draw_markers(m, n, w, h);
// draw trace and marker info on the top
cell_draw_marker_info(m, n, w, h);
PULSE;
if (m == 0)
cell_draw_refpos(m, n, w, h);
ili9341_bulk(OFFSETX + x0off, OFFSETY + y0, w, h);
}
void
draw_all_cells(bool flush_markmap)
{
int m, n;
for (m = 0; m < (area_width+CELLWIDTH-1) / CELLWIDTH; m++)
for (n = 0; n < (area_height+CELLHEIGHT-1) / CELLHEIGHT; n++) {
if (is_mapmarked(m, n))
draw_cell(m, n);
}
if (flush_markmap) {
// keep current map for update
swap_markmap();
// clear map for next plotting
clear_markmap();
}
}
void
draw_all(bool flush)
{
if (redraw_request & REDRAW_MARKER)
markmap_upperarea();
if (redraw_request & (REDRAW_CELLS | REDRAW_MARKER))
draw_all_cells(flush);
if (redraw_request & REDRAW_FREQUENCY)
draw_frequencies();
if (redraw_request & REDRAW_CAL_STATUS)
draw_cal_status();
redraw_request = 0;
}
void
redraw_marker(int marker, int update_info)
{
if (marker < 0)
return;
// mark map on new position of marker
markmap_marker(marker);
// mark cells on marker info
if (update_info)
markmap[current_mappage][0] = 0xffff;
draw_all_cells(TRUE);
}
void
request_to_draw_cells_behind_menu(void)
{
int n, m;
for (m = 7; m <= 9; m++)
for (n = 0; n < 8; n++)
mark_map(m, n);
redraw_request |= REDRAW_CELLS;
}
void
request_to_draw_cells_behind_numeric_input(void)
{
int n, m;
for (m = 0; m <= 9; m++)
for (n = 6; n < 8; n++)
mark_map(m, n);
redraw_request |= REDRAW_CELLS;
}
int
cell_drawchar(int w, int h, uint8_t ch, int x, int y)
{
uint8_t bits;
int c, r, ch_size;
const uint8_t *char_buf = FONT_GET_DATA(ch);
ch_size=FONT_GET_WIDTH(ch);
if (y <= -FONT_GET_HEIGHT || y >= h || x <= -ch_size || x >= w)
return ch_size;
for(c = 0; c < FONT_GET_HEIGHT; c++) {
bits = *char_buf++;
if ((y + c) < 0 || (y + c) >= h)
continue;
for (r = 0; r < ch_size; r++) {
if ((x+r) >= 0 && (x+r) < w && (0x80 & bits))
spi_buffer[(y+c)*w + (x+r)] = foreground_color;
bits <<= 1;
}
}
return ch_size;
}
void
cell_drawstring(int w, int h, char *str, int x, int y)
{
while (*str) {
x += cell_drawchar(w, h, *str, x, y);
str++;
}
}
static void
cell_draw_marker_info(int m, int n, int w, int h)
{
char buf[32];
int t;
if (n != 0)
return;
if (active_marker < 0)
return;
int idx = markers[active_marker].index;
int j = 0;
if (active_marker != -1 && previous_marker != -1 && uistat.current_trace != -1) {
int t = uistat.current_trace;
int mk;
for (mk = 0; mk < MARKERS_MAX; mk++) {
if (!markers[mk].enabled)
continue;
int xpos = 1 + (j%2)*146;
int ypos = 1 + (j/2)*8;
xpos -= m * CELLWIDTH -CELLOFFSETX;
ypos -= n * CELLHEIGHT;
setForegroundColor(config.trace_color[t]);
if (mk == active_marker)
cell_drawstring(w, h, S_SARROW, xpos, ypos);
xpos += 5;
chsnprintf(buf, sizeof buf, "M%d", mk+1);
cell_drawstring(w, h, buf, xpos, ypos);
xpos += 13;
//trace_get_info(t, buf, sizeof buf);
uint32_t freq = frequencies[markers[mk].index];
if (uistat.marker_delta && mk != active_marker) {
uint32_t freq1 = frequencies[markers[active_marker].index];
uint32_t delta = freq > freq1 ? freq - freq1 : freq1 - freq;
chsnprintf(buf, sizeof buf, S_DELTA"%.9qHz", delta);
} else {
chsnprintf(buf, sizeof buf, "%.10qHz", freq);
}
cell_drawstring(w, h, buf, xpos, ypos);
xpos += 67;
if (uistat.marker_delta && mk != active_marker)
trace_get_value_string_delta(t, buf, sizeof buf, measured[trace[t].channel], markers[mk].index, markers[active_marker].index);
else
trace_get_value_string(t, buf, sizeof buf, measured[trace[t].channel], markers[mk].index);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(w, h, buf, xpos, ypos);
j++;
}
// draw marker delta
if (!uistat.marker_delta && previous_marker >= 0 && active_marker != previous_marker && markers[previous_marker].enabled) {
int idx0 = markers[previous_marker].index;
int xpos = 180;
int ypos = 1 + (j/2)*8;
xpos -= m * CELLWIDTH -CELLOFFSETX;
ypos -= n * CELLHEIGHT;
chsnprintf(buf, sizeof buf, S_DELTA"%d-%d", active_marker+1, previous_marker+1);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(w, h, buf, xpos, ypos);
xpos += 24;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
uint32_t freq = frequencies[idx];
uint32_t freq1 = frequencies[idx0];
uint32_t delta = freq > freq1 ? freq - freq1 : freq1 - freq;
chsnprintf(buf, sizeof buf, "%c%.13qHz", freq >= freq1 ? '+' : '-', delta);
} else {
chsnprintf(buf, sizeof buf, "%Fs (%Fm)", time_of_index(idx) - time_of_index(idx0), distance_of_index(idx) - distance_of_index(idx0));
}
cell_drawstring(w, h, buf, xpos, ypos);
}
} else {
for (t = 0; t < TRACES_MAX; t++) {
if (!trace[t].enabled)
continue;
int xpos = 1 + (j%2)*146;
int ypos = 1 + (j/2)*8;
xpos -= m * CELLWIDTH -CELLOFFSETX;
ypos -= n * CELLHEIGHT;
setForegroundColor(config.trace_color[t]);
if (t == uistat.current_trace)
cell_drawstring(w, h, S_SARROW, xpos, ypos);
xpos += 5;
chsnprintf(buf, sizeof buf, "CH%d", trace[t].channel);
cell_drawstring(w, h, buf, xpos, ypos);
xpos += 19;
int n = trace_get_info(t, buf, sizeof buf);
cell_drawstring(w, h, buf, xpos, ypos);
xpos += n * 5 + 2;
//xpos += 60;
trace_get_value_string(t, buf, sizeof buf, measured[trace[t].channel], idx);
setForegroundColor(DEFAULT_FG_COLOR);
cell_drawstring(w, h, buf, xpos, ypos);
j++;
}
// draw marker frequency
int xpos = 185;
int ypos = 1 + (j/2)*8;
xpos -= m * CELLWIDTH -CELLOFFSETX;
ypos -= n * CELLHEIGHT;
setForegroundColor(DEFAULT_FG_COLOR);
if (uistat.lever_mode == LM_MARKER)
cell_drawstring(w, h, S_SARROW, xpos, ypos);
xpos += 5;
chsnprintf(buf, sizeof buf, "M%d:", active_marker+1);
cell_drawstring(w, h, buf, xpos, ypos);
xpos += 19;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
//frequency_string(buf, sizeof buf, frequencies[idx], "");
chsnprintf(buf, sizeof buf, "%qHz", frequencies[idx]);
} else {
chsnprintf(buf, sizeof buf, "%Fs (%Fm)", time_of_index(idx), distance_of_index(idx));
}
cell_drawstring(w, h, buf, xpos, ypos);
}
setForegroundColor(DEFAULT_FG_COLOR);
if (electrical_delay != 0) {
// draw electrical delay
int xpos = 21;
int ypos = 1 + ((j+1)/2)*8;
xpos -= m * CELLWIDTH -CELLOFFSETX;
ypos -= n * CELLHEIGHT;
float light_speed_ps = 299792458e-12; //(m/ps)
chsnprintf(buf, sizeof buf, "Edelay %Fs %Fm", electrical_delay * 1e-12,
electrical_delay * light_speed_ps * velocity_factor);
cell_drawstring(w, h, buf, xpos, ypos);
}
}
void
draw_frequencies(void)
{
char buf1[32];
char buf2[32];buf2[0]=0;
if ((domain_mode & DOMAIN_MODE) == DOMAIN_FREQ) {
if (FREQ_IS_STARTSTOP()) {
chsnprintf(buf1, sizeof(buf1), " START %qHz", frequency0);
chsnprintf(buf2, sizeof(buf2), " STOP %qHz", frequency1);
} else if (FREQ_IS_CENTERSPAN()) {
chsnprintf(buf1, sizeof(buf1), " CENTER %qHz", FREQ_CENTER());
chsnprintf(buf2, sizeof(buf2), " SPAN %qHz", FREQ_SPAN());
} else {
chsnprintf(buf1, sizeof(buf1), " CW %qHz", frequency0);
}
} else {
chsnprintf(buf1, sizeof(buf1), " START 0s");
chsnprintf(buf2, sizeof(buf2), "STOP %Fs (%Fm)", time_of_index(POINTS_COUNT-1), distance_of_index(POINTS_COUNT-1));
}
setForegroundColor(DEFAULT_FG_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
ili9341_fill(0, 232, 320, 8, DEFAULT_BG_COLOR);
if (uistat.lever_mode == LM_CENTER)
buf1[0] = S_SARROW[0];
if (uistat.lever_mode == LM_SPAN)
buf2[0] = S_SARROW[0];
ili9341_drawstring(buf1, OFFSETX, 232);
ili9341_drawstring(buf2, 200, 232);
}
void
draw_cal_status(void)
{
int x = 0;
int y = 100;
#define YSTEP 8
setForegroundColor(DEFAULT_FG_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
ili9341_fill(0, y, 10, 6*YSTEP, DEFAULT_BG_COLOR);
if (cal_status & CALSTAT_APPLY) {
char c[3] = "C0";
c[1] += lastsaveid;
if (cal_status & CALSTAT_INTERPOLATED)
c[0] = 'c';
else if (active_props == &current_props)
c[1] = '*';
ili9341_drawstring(c, x, y);
y += YSTEP;
}
if (cal_status & CALSTAT_ED) {
ili9341_drawstring("D", x, y);
y += YSTEP;
}
if (cal_status & CALSTAT_ER) {
ili9341_drawstring("R", x, y);
y += YSTEP;
}
if (cal_status & CALSTAT_ES) {
ili9341_drawstring("S", x, y);
y += YSTEP;
}
if (cal_status & CALSTAT_ET) {
ili9341_drawstring("T", x, y);
y += YSTEP;
}
if (cal_status & CALSTAT_EX) {
ili9341_drawstring("X", x, y);
y += YSTEP;
}
}
// Draw battery level
#define BATTERY_TOP_LEVEL 4100
#define BATTERY_BOTTOM_LEVEL 3100
#define BATTERY_WARNING_LEVEL 3300
void
draw_battery_status(void)
{
if (vbat<=0)
return;
uint8_t string_buf[25];
// Set battery color
setForegroundColor(vbat < BATTERY_WARNING_LEVEL ? DEFAULT_LOW_BAT_COLOR : DEFAULT_NORMAL_BAT_COLOR);
setBackgroundColor(DEFAULT_BG_COLOR);
// chsnprintf(string_buf, sizeof string_buf, "V:%d", vbat);
// ili9341_drawstringV(string_buf, 1, 60);
// Prepare battery bitmap image
// Battery top
int x=0;
string_buf[x++] = 0b00111100;
string_buf[x++] = 0b00100100;
string_buf[x++] = 0b11111111;
// string_buf[x++] = 0b10000001;
// Fill battery status
for (int power=BATTERY_TOP_LEVEL; power > BATTERY_BOTTOM_LEVEL; power-=100)
string_buf[x++] = (power > vbat) ? 0b10000001 : // Empty line
0b11111111; // Full line
// Battery bottom
// string_buf[x++] = 0b10000001;
string_buf[x++] = 0b11111111;
// Draw battery
blit8BitWidthBitmap(0, 1, 8, x, string_buf);
}
void
request_to_redraw_grid(void)
{
force_set_markmap();
redraw_request |= REDRAW_CELLS;
}
void
redraw_frame(void)
{
ili9341_fill(0, 0, 320, 240, DEFAULT_BG_COLOR);
draw_frequencies();
draw_cal_status();
}
void
plot_init(void)
{
force_set_markmap();
}