/* * Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com * All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "hal.h" #include "nanovna.h" #include "si5351.h" #define SI5351_I2C_ADDR (0x60<<1) static void si5351_write(uint8_t reg, uint8_t dat) { int addr = SI5351_I2C_ADDR>>1; uint8_t buf[] = { reg, dat }; i2cAcquireBus(&I2CD1); (void)i2cMasterTransmitTimeout(&I2CD1, addr, buf, 2, NULL, 0, 1000); i2cReleaseBus(&I2CD1); } static void si5351_bulk_write(const uint8_t *buf, int len) { int addr = SI5351_I2C_ADDR>>1; i2cAcquireBus(&I2CD1); (void)i2cMasterTransmitTimeout(&I2CD1, addr, buf, len, NULL, 0, 1000); i2cReleaseBus(&I2CD1); } // register addr, length, data, ... const uint8_t si5351_configs[] = { 2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff, 4, SI5351_REG_16_CLK0_CONTROL, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, 2, SI5351_REG_183_CRYSTAL_LOAD, SI5351_CRYSTAL_LOAD_8PF, // setup PLL (26MHz * 32 = 832MHz, 32/2-2=14) 9, SI5351_REG_26_PLL_A, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0, // RESET PLL 2, SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B, // setup multisynth (832MHz / 104 = 8MHz, 104/2-2=50) 9, SI5351_REG_58_MULTISYNTH2, /*P3*/0, 1, /*P1*/0, 50, 0, /*P2|P3*/0, 0, 0, 2, SI5351_REG_18_CLK2_CONTROL, SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_INPUT_MULTISYNTH_N | SI5351_CLK_INTEGER_MODE, 2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0, 0 // sentinel }; void si5351_init(void) { const uint8_t *p = si5351_configs; while (*p) { uint8_t len = *p++; si5351_bulk_write(p, len); p += len; } } static const uint8_t disable_output[] = { SI5351_REG_16_CLK0_CONTROL, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN }; void si5351_disable_output(void) { si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff); si5351_bulk_write(disable_output, sizeof(disable_output)); } void si5351_enable_output(void) { si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0x00); } static void si5351_reset_pll(void) { //si5351_write(SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B); si5351_write(SI5351_REG_177_PLL_RESET, 0xAC); } static void si5351_setupPLL(uint8_t pll, /* SI5351_PLL_A or SI5351_PLL_B */ uint8_t mult, uint32_t num, uint32_t denom) { /* Get the appropriate starting point for the PLL registers */ static const uint8_t pllreg_base[] = { SI5351_REG_26_PLL_A, SI5351_REG_34_PLL_B }; uint32_t P1; uint32_t P2; uint32_t P3; /* Feedback Multisynth Divider Equation * where: a = mult, b = num and c = denom * P1 register is an 18-bit value using following formula: * P1[17:0] = 128 * mult + floor(128*(num/denom)) - 512 * P2 register is a 20-bit value using the following formula: * P2[19:0] = 128 * num - denom * floor(128*(num/denom)) * P3 register is a 20-bit value using the following formula: * P3[19:0] = denom */ /* Set the main PLL config registers */ if (num == 0) { /* Integer mode */ P1 = 128 * mult - 512; P2 = 0; P3 = 1; } else { /* Fractional mode */ //P1 = (uint32_t)(128 * mult + floor(128 * ((float)num/(float)denom)) - 512); P1 = 128 * mult + ((128 * num) / denom) - 512; //P2 = (uint32_t)(128 * num - denom * floor(128 * ((float)num/(float)denom))); P2 = 128 * num - denom * ((128 * num) / denom); P3 = denom; } /* The datasheet is a nightmare of typos and inconsistencies here! */ uint8_t reg[9]; reg[0] = pllreg_base[pll]; reg[1] = (P3 & 0x0000FF00) >> 8; reg[2] = (P3 & 0x000000FF); reg[3] = (P1 & 0x00030000) >> 16; reg[4] = (P1 & 0x0000FF00) >> 8; reg[5] = (P1 & 0x000000FF); reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16); reg[7] = (P2 & 0x0000FF00) >> 8; reg[8] = (P2 & 0x000000FF); si5351_bulk_write(reg, 9); } static void si5351_setupMultisynth(uint8_t output, uint8_t pllSource, uint32_t div, // 4,6,8, 8+ ~ 900 uint32_t num, uint32_t denom, uint32_t rdiv, // SI5351_R_DIV_1~128 uint8_t drive_strength) { /* Get the appropriate starting point for the PLL registers */ static const uint8_t msreg_base[] = { SI5351_REG_42_MULTISYNTH0, SI5351_REG_50_MULTISYNTH1, SI5351_REG_58_MULTISYNTH2, }; static const uint8_t clkctrl[] = { SI5351_REG_16_CLK0_CONTROL, SI5351_REG_17_CLK1_CONTROL, SI5351_REG_18_CLK2_CONTROL }; uint8_t dat; uint32_t P1; uint32_t P2; uint32_t P3; uint32_t div4 = 0; /* Output Multisynth Divider Equations * where: a = div, b = num and c = denom * P1 register is an 18-bit value using following formula: * P1[17:0] = 128 * a + floor(128*(b/c)) - 512 * P2 register is a 20-bit value using the following formula: * P2[19:0] = 128 * b - c * floor(128*(b/c)) * P3 register is a 20-bit value using the following formula: * P3[19:0] = c */ /* Set the main PLL config registers */ if (div == 4) { div4 = SI5351_DIVBY4; P1 = P2 = 0; P3 = 1; } else if (num == 0) { /* Integer mode */ P1 = 128 * div - 512; P2 = 0; P3 = 1; } else { /* Fractional mode */ P1 = 128 * div + ((128 * num) / denom) - 512; P2 = 128 * num - denom * ((128 * num) / denom); P3 = denom; } /* Set the MSx config registers */ uint8_t reg[9]; reg[0] = msreg_base[output]; reg[1] = (P3 & 0x0000FF00) >> 8; reg[2] = (P3 & 0x000000FF); reg[3] = ((P1 & 0x00030000) >> 16) | div4 | rdiv; reg[4] = (P1 & 0x0000FF00) >> 8; reg[5] = (P1 & 0x000000FF); reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16); reg[7] = (P2 & 0x0000FF00) >> 8; reg[8] = (P2 & 0x000000FF); si5351_bulk_write(reg, 9); /* Configure the clk control and enable the output */ dat = drive_strength | SI5351_CLK_INPUT_MULTISYNTH_N; if (pllSource == SI5351_PLL_B) dat |= SI5351_CLK_PLL_SELECT_B; if (num == 0) dat |= SI5351_CLK_INTEGER_MODE; si5351_write(clkctrl[output], dat); } #define XTALFREQ 26000000L #define PLL_N 32 #define PLLFREQ (XTALFREQ * PLL_N) static void si5351_set_frequency_fixedpll(int channel, int pll, uint32_t pllfreq, uint32_t freq, int rdiv, uint8_t drive_strength, int mul) { int denom = freq; int div = (pllfreq * mul) / denom; // range: 8 ~ 1800 int num = (pllfreq * mul) - denom * div; // cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227 int max_denominator = (1 << 20) - 1; if (denom > max_denominator) { int p0 = 0, q0 = 1, p1 = 1, q1 = 0; while (denom != 0) { int a = num / denom; int q2 = q0 + a*q1; if (q2 > max_denominator) break; int p2 = p0 + a*p1; p0 = p1; q0 = q1; p1 = p2; q1 = q2; int new_denom = num - a * denom; num = denom; denom = new_denom; } num = p1; denom = q1; } si5351_setupMultisynth(channel, pll, div, num, denom, rdiv, drive_strength); } static void si5351_set_frequency_fixeddiv(int channel, int pll, uint32_t freq, int div, uint8_t drive_strength, int mul) { int denom = XTALFREQ * mul; int64_t pllfreq = (int64_t)freq * div; int multi = pllfreq / denom; int num = pllfreq - denom * multi; // cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227 int max_denominator = (1 << 20) - 1; if (denom > max_denominator) { int p0 = 0, q0 = 1, p1 = 1, q1 = 0; while (denom != 0) { int a = num / denom; int q2 = q0 + a*q1; if (q2 > max_denominator) break; int p2 = p0 + a*p1; p0 = p1; q0 = q1; p1 = p2; q1 = q2; int new_denom = num - a * denom; num = denom; denom = new_denom; } num = p1; denom = q1; } si5351_setupPLL(pll, multi, num, denom); si5351_setupMultisynth(channel, pll, div, 0, 1, SI5351_R_DIV_1, drive_strength); } /* * 1~100MHz fixed PLL 900MHz, fractional divider * 100~150MHz fractional PLL 600-900MHz, fixed divider 6 * 150~200MHz fractional PLL 600-900MHz, fixed divider 4 */ #if 0 void si5351_set_frequency(int channel, int freq, uint8_t drive_strength) { if (freq <= 100000000) { si5351_setupPLL(SI5351_PLL_B, 32, 0, 1); si5351_set_frequency_fixedpll(channel, SI5351_PLL_B, PLLFREQ, freq, SI5351_R_DIV_1, drive_strength, 1); } else if (freq < 150000000) { si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 6, drive_strength, 1); } else { si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 4, drive_strength, 1); } } #endif int current_band = -1; #define DELAY_NORMAL 3 #define DELAY_BANDCHANGE 1 #define DELAY_LOWBAND 1 /* * configure output as follows: * CLK0: frequency + offset * CLK1: frequency * CLK2: fixed 8MHz */ #define CLK2_FREQUENCY 8000000L int si5351_set_frequency_with_offset(uint32_t freq, int offset, uint8_t drive_strength) { int band; int delay = DELAY_NORMAL; uint32_t ofreq = freq + offset; uint32_t mul = 1, omul = 1; uint32_t rdiv = SI5351_R_DIV_1; if (freq >= config.harmonic_freq_threshold * 7U) { mul = 9; omul = 11; } else if (freq >= config.harmonic_freq_threshold * 5U) { mul = 7; omul = 9; } else if (freq >= config.harmonic_freq_threshold * 3U) { mul = 5; omul = 7; } else if (freq >= config.harmonic_freq_threshold) { mul = 3; omul = 5; } if ((freq / mul) < 100000000U) { band = 0; } else if ((freq / mul) < 150000000U) { band = 1; } else { band = 2; } if (freq <= 500000U) { rdiv = SI5351_R_DIV_64; } else if (freq <= 4000000U) { rdiv = SI5351_R_DIV_8; } #if 1 if (current_band != band) si5351_disable_output(); #endif switch (band) { case 0: // fractional divider mode. only PLL A is used. if (current_band == 1 || current_band == 2) si5351_setupPLL(SI5351_PLL_A, 32, 0, 1); // Set PLL twice on changing from band 2 if (current_band == 2) si5351_setupPLL(SI5351_PLL_A, 32, 0, 1); if (rdiv == SI5351_R_DIV_8) { freq *= 8; ofreq *= 8; } else if (rdiv == SI5351_R_DIV_64) { freq *= 64; ofreq *= 64; } si5351_set_frequency_fixedpll(0, SI5351_PLL_A, PLLFREQ, ofreq, rdiv, drive_strength, omul); si5351_set_frequency_fixedpll(1, SI5351_PLL_A, PLLFREQ, freq, rdiv, drive_strength, mul); //if (current_band != 0) si5351_set_frequency_fixedpll(2, SI5351_PLL_A, PLLFREQ, CLK2_FREQUENCY, SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1); break; case 1: // Set PLL twice on changing from band 2 if (current_band == 2) { si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 6, drive_strength, omul); si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength, mul); } // div by 6 mode. both PLL A and B are dedicated for CLK0, CLK1 si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 6, drive_strength, omul); si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength, mul); si5351_set_frequency_fixedpll(2, SI5351_PLL_B, freq / mul * 6, CLK2_FREQUENCY, SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1); break; case 2: // div by 4 mode. both PLL A and B are dedicated for CLK0, CLK1 si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 4, drive_strength, omul); si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 4, drive_strength, mul); si5351_set_frequency_fixedpll(2, SI5351_PLL_B, freq / mul * 4, CLK2_FREQUENCY, SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1); break; } if (current_band != band) { si5351_reset_pll(); #if 1 si5351_enable_output(); #endif delay += DELAY_BANDCHANGE; } if (band == 0) delay += DELAY_LOWBAND; current_band = band; return delay; }