/* * Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com * All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ch.h" #include "hal.h" #include "usbcfg.h" #include "si5351.h" #include "nanovna.h" #include "fft.h" #include //#include #include //#include #include /* * Shell settings */ // If need run shell as thread (use more amount of memory fore stack), after enable this need reduce spi_buffer size, by default shell run in main thread //#define VNA_SHELL_THREAD static BaseSequentialStream *shell_stream = (BaseSequentialStream *)&SDU1; // Shell new line #define VNA_SHELL_NEWLINE_STR "\r\n" // Shell command promt #define VNA_SHELL_PROMPT_STR "ch> " // Shell max arguments #define VNA_SHELL_MAX_ARGUMENTS 4 // Shell max command line size #define VNA_SHELL_MAX_LENGTH 48 // Shell command functions prototypes typedef void (*vna_shellcmd_t)(int argc, char *argv[]); #define VNA_SHELL_FUNCTION(command_name) static void command_name(int argc, char *argv[]) // Shell command line buffer static char shell_line[VNA_SHELL_MAX_LENGTH]; //#define ENABLED_DUMP //#define ENABLE_THREADS_COMMAND static void apply_error_term_at(int i); static void apply_edelay_at(int i); static void cal_interpolate(int s); void update_frequencies(void); void set_frequencies(uint32_t start, uint32_t stop, uint16_t points); bool sweep(bool break_on_operation); static MUTEX_DECL(mutex); #define DRIVE_STRENGTH_AUTO (-1) #define FREQ_HARMONICS (config.harmonic_freq_threshold) #define IS_HARMONIC_MODE(f) ((f) > FREQ_HARMONICS) int32_t frequency_offset = 5000; uint32_t frequency = 10000000; int8_t drive_strength = DRIVE_STRENGTH_AUTO; int8_t sweep_enabled = TRUE; int8_t sweep_once = FALSE; int8_t cal_auto_interpolate = TRUE; uint16_t redraw_request = 0; // contains REDRAW_XXX flags int16_t vbat = 0; static THD_WORKING_AREA(waThread1, 512); static THD_FUNCTION(Thread1, arg) { (void)arg; chRegSetThreadName("sweep"); while (1) { bool completed = false; if (sweep_enabled || sweep_once) { chMtxLock(&mutex); // Sweep require 8367 system tick completed = sweep(true); sweep_once = FALSE; chMtxUnlock(&mutex); } else { __WFI(); } chMtxLock(&mutex); // Ui and render require 800 system tick ui_process(); if (sweep_enabled) { if (vbat != -1) { adc_stop(ADC1); vbat = adc_vbat_read(ADC1); touch_start_watchdog(); draw_battery_status(); } /* calculate trace coordinates and plot only if scan completed */ if (completed) { plot_into_index(measured); redraw_request |= REDRAW_CELLS; if (marker_tracking) { int i = marker_search(); if (i != -1 && active_marker != -1) { markers[active_marker].index = i; redraw_request |= REDRAW_MARKER; } } } } /* plot trace and other indications as raster */ draw_all(completed); // flush markmap only if scan completed to prevent remaining traces chMtxUnlock(&mutex); } } void pause_sweep(void) { sweep_enabled = FALSE; } void resume_sweep(void) { sweep_enabled = TRUE; } void toggle_sweep(void) { sweep_enabled = !sweep_enabled; } static float bessel0(float x) { const float eps = 0.0001; float ret = 0; float term = 1; float m = 0; while (term > eps * ret) { ret += term; ++m; term *= (x*x) / (4*m*m); } return ret; } static float kaiser_window(float k, float n, float beta) { if (beta == 0.0) return 1.0; float r = (2 * k) / (n - 1) - 1; return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta); } static void transform_domain(void) { // use spi_buffer as temporary buffer // and calculate ifft for time domain float* tmp = (float*)spi_buffer; uint8_t window_size = POINTS_COUNT, offset = 0; uint8_t is_lowpass = FALSE; switch (domain_mode & TD_FUNC) { case TD_FUNC_BANDPASS: offset = 0; window_size = POINTS_COUNT; break; case TD_FUNC_LOWPASS_IMPULSE: case TD_FUNC_LOWPASS_STEP: is_lowpass = TRUE; offset = POINTS_COUNT; window_size = POINTS_COUNT*2; break; } float beta = 0.0; switch (domain_mode & TD_WINDOW) { case TD_WINDOW_MINIMUM: beta = 0.0; // this is rectangular break; case TD_WINDOW_NORMAL: beta = 6.0; break; case TD_WINDOW_MAXIMUM: beta = 13; break; } for (int ch = 0; ch < 2; ch++) { memcpy(tmp, measured[ch], sizeof(measured[0])); for (int i = 0; i < POINTS_COUNT; i++) { float w = kaiser_window(i+offset, window_size, beta); tmp[i*2+0] *= w; tmp[i*2+1] *= w; } for (int i = POINTS_COUNT; i < FFT_SIZE; i++) { tmp[i*2+0] = 0.0; tmp[i*2+1] = 0.0; } if (is_lowpass) { for (int i = 1; i < POINTS_COUNT; i++) { tmp[(FFT_SIZE-i)*2+0] = tmp[i*2+0]; tmp[(FFT_SIZE-i)*2+1] = -tmp[i*2+1]; } } fft256_inverse((float(*)[2])tmp); memcpy(measured[ch], tmp, sizeof(measured[0])); for (int i = 0; i < POINTS_COUNT; i++) { measured[ch][i][0] /= (float)FFT_SIZE; if (is_lowpass) { measured[ch][i][1] = 0.0; } else { measured[ch][i][1] /= (float)FFT_SIZE; } } if ( (domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP ) { for (int i = 1; i < POINTS_COUNT; i++) { measured[ch][i][0] += measured[ch][i-1][0]; } } } } // Shell commands output static int shell_printf(const char *fmt, ...) { va_list ap; int formatted_bytes; va_start(ap, fmt); formatted_bytes = chvprintf(shell_stream, fmt, ap); va_end(ap); return formatted_bytes; } VNA_SHELL_FUNCTION(cmd_pause) { (void)argc; (void)argv; pause_sweep(); } VNA_SHELL_FUNCTION(cmd_resume) { (void)argc; (void)argv; // restore frequencies array and cal update_frequencies(); if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY)) cal_interpolate(lastsaveid); resume_sweep(); } VNA_SHELL_FUNCTION(cmd_reset) { (void)argc; (void)argv; if (argc == 1) { if (strcmp(argv[0], "dfu") == 0) { shell_printf("Performing reset to DFU mode\r\n"); enter_dfu(); return; } } shell_printf("Performing reset\r\n"); rccEnableWWDG(FALSE); WWDG->CFR = 0x60; WWDG->CR = 0xff; /* wait forever */ while (1) ; } const int8_t gain_table[] = { 0, // 0 ~ 300MHz 40, // 300 ~ 600MHz 50, // 600 ~ 900MHz 75, // 900 ~ 1200MHz 85, // 1200 ~ 1500MHz 95, // 1500MHz ~ 95, // 1800MHz ~ 95, // 2100MHz ~ 95 // 2400MHz ~ }; #define DELAY_GAIN_CHANGE 10 static int adjust_gain(int newfreq) { int delay = 0; int new_order = newfreq / FREQ_HARMONICS; int old_order = frequency / FREQ_HARMONICS; if (new_order != old_order) { tlv320aic3204_set_gain(gain_table[new_order], gain_table[new_order]); delay += DELAY_GAIN_CHANGE; } return delay; } int set_frequency(uint32_t freq) { int delay = adjust_gain(freq); int8_t ds = drive_strength; if (ds == DRIVE_STRENGTH_AUTO) { ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA; } delay += si5351_set_frequency_with_offset(freq, frequency_offset, ds); frequency = freq; return delay; } // Use macro, std isdigit more big #define _isdigit(c) (c >= '0' && c <= '9') // Rewrite universal standart str to value functions to more compact // // Convert string to int32 static int32_t my_atoi(const char *p){ int32_t value = 0; uint32_t c; bool neg = false; if (*p == '-') {neg = true; p++;} if (*p == '+') p++; while ((c = *p++ - '0') < 10) value = value * 10 + c; return neg ? -value : value; } // Convert string to uint32 uint32_t my_atoui(const char *p){ uint32_t value = 0; uint32_t c; if (*p == '+') p++; while ((c = *p++ - '0') < 10) value = value * 10 + c; return value; } double my_atof(const char *p) { int neg = FALSE; if (*p == '-') neg = TRUE; if (*p == '-' || *p == '+') p++; double x = my_atoi(p); while (_isdigit((int)*p)) p++; if (*p == '.') { double d = 1.0f; p++; while (_isdigit((int)*p)) { d /= 10; x += d * (*p - '0'); p++; } } if (*p == 'e' || *p == 'E') { p++; int exp = my_atoi(p); while (exp > 0) { x *= 10; exp--; } while (exp < 0) { x /= 10; exp++; } } if (neg) x = -x; return x; } // // Function used for search substring v in list // Example need search parameter "center" in "start|stop|center|span|cw" getStringIndex return 2 // If not found return -1 // Used for easy parse command arguments static int getStringIndex(char *v, const char *list){ int i = 0; while(1){ char *p = v; while (1){ char c = *list; if (c == '|') c = 0; if (c == *p++){ // Found, return index if (c == 0) return i; list++; // Compare next symbol continue; } break; // Not equal, break } // Set new substring ptr while (1){ // End of string, not found if (*list == 0 ) return -1; if (*list++ == '|') break; } i++; } return -1; } VNA_SHELL_FUNCTION(cmd_offset) { if (argc != 1) { shell_printf("usage: offset {frequency offset(Hz)}\r\n"); return; } frequency_offset = my_atoui(argv[0]); set_frequency(frequency); } VNA_SHELL_FUNCTION(cmd_freq) { if (argc != 1) { goto usage; } uint32_t freq = my_atoui(argv[0]); pause_sweep(); set_frequency(freq); return; usage: shell_printf("usage: freq {frequency(Hz)}\r\n"); } VNA_SHELL_FUNCTION(cmd_power) { if (argc != 1) { shell_printf("usage: power {0-3|-1}\r\n"); return; } drive_strength = my_atoi(argv[0]); set_frequency(frequency); } VNA_SHELL_FUNCTION(cmd_time) { RTCDateTime timespec; (void)argc; (void)argv; rtcGetTime(&RTCD1, ×pec); shell_printf("%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond); } VNA_SHELL_FUNCTION(cmd_dac) { int value; if (argc != 1) { shell_printf("usage: dac {value(0-4095)}\r\n"\ "current value: %d\r\n", config.dac_value); return; } value = my_atoi(argv[0]); config.dac_value = value; dacPutChannelX(&DACD2, 0, value); } VNA_SHELL_FUNCTION(cmd_threshold) { uint32_t value; if (argc != 1) { shell_printf("usage: threshold {frequency in harmonic mode}\r\n"\ "current: %d\r\n", config.harmonic_freq_threshold); return; } value = my_atoui(argv[0]); config.harmonic_freq_threshold = value; } VNA_SHELL_FUNCTION(cmd_saveconfig) { (void)argc; (void)argv; config_save(); shell_printf("Config saved.\r\n"); } VNA_SHELL_FUNCTION(cmd_clearconfig) { if (argc != 1) { shell_printf("usage: clearconfig {protection key}\r\n"); return; } if (strcmp(argv[0], "1234") != 0) { shell_printf("Key unmatched.\r\n"); return; } clear_all_config_prop_data(); shell_printf("Config and all cal data cleared.\r\n"\ "Do reset manually to take effect. Then do touch cal and save.\r\n"); } static struct { int16_t rms[2]; int16_t ave[2]; int callback_count; #if 0 int32_t last_counter_value; int32_t interval_cycles; int32_t busy_cycles; #endif } stat; int16_t rx_buffer[AUDIO_BUFFER_LEN * 2]; #ifdef ENABLED_DUMP int16_t dump_buffer[AUDIO_BUFFER_LEN]; int16_t dump_selection = 0; #endif volatile int16_t wait_count = 0; float measured[2][POINTS_COUNT][2]; static void wait_dsp(int count) { wait_count = count; //reset_dsp_accumerator(); while (wait_count) __WFI(); } #ifdef ENABLED_DUMP static void duplicate_buffer_to_dump(int16_t *p) { if (dump_selection == 1) p = samp_buf; else if (dump_selection == 2) p = ref_buf; memcpy(dump_buffer, p, sizeof dump_buffer); } #endif void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n) { #if PORT_SUPPORTS_RT int32_t cnt_s = port_rt_get_counter_value(); int32_t cnt_e; #endif int16_t *p = &rx_buffer[offset]; (void)i2sp; (void)n; if (wait_count > 0) { if (wait_count == 1) dsp_process(p, n); #ifdef ENABLED_DUMP duplicate_buffer_to_dump(p); #endif --wait_count; } #if PORT_SUPPORTS_RT cnt_e = port_rt_get_counter_value(); stat.interval_cycles = cnt_s - stat.last_counter_value; stat.busy_cycles = cnt_e - cnt_s; stat.last_counter_value = cnt_s; #endif stat.callback_count++; } static const I2SConfig i2sconfig = { NULL, // TX Buffer rx_buffer, // RX Buffer AUDIO_BUFFER_LEN * 2, NULL, // tx callback i2s_end_callback, // rx callback 0, // i2scfgr 2 // i2spr }; VNA_SHELL_FUNCTION(cmd_data) { int i; int sel = 0; float (*array)[2]; if (argc == 1) sel = my_atoi(argv[0]); if (sel == 0 || sel == 1) array = measured[sel]; else if (sel >= 2 && sel < 7) array = cal_data[sel-2]; else goto usage; for (i = 0; i < sweep_points; i++) shell_printf("%f %f\r\n", array[i][0], array[i][1]); return; usage: shell_printf("usage: data [array]\r\n"); } #ifdef ENABLED_DUMP VNA_SHELL_FUNCTION(cmd_dump) { int i, j; int len; if (argc == 1) dump_selection = my_atoi(argv[0]); wait_dsp(3); len = AUDIO_BUFFER_LEN; if (dump_selection == 1 || dump_selection == 2) len /= 2; for (i = 0; i < len; ) { for (j = 0; j < 16; j++, i++) { shell_printf("%04x ", 0xffff & (int)dump_buffer[i]); } shell_printf("\r\n"); } } #endif VNA_SHELL_FUNCTION(cmd_capture) { // read pixel count at one time (PART*2 bytes required for read buffer) (void)argc; (void)argv; int i, y; #if SPI_BUFFER_SIZE < (3*320 + 1) #error "Low size of spi_buffer for cmd_capture" #endif // read 2 row pixel time (read buffer limit by 2/3 + 1 from spi_buffer size) for (y=0; y < 240; y+=2){ // use uint16_t spi_buffer[2048] (defined in ili9341) for read buffer uint8_t *buf = (uint8_t *)spi_buffer; ili9341_read_memory(0, y, 320, 2, 2*320, spi_buffer); for (i = 0; i < 4*320; i++) { streamPut(shell_stream, *buf++); } } } #if 0 VNA_SHELL_FUNCTION(cmd_gamma) { float gamma[2]; (void)argc; (void)argv; pause_sweep(); chMtxLock(&mutex); wait_dsp(4); calculate_gamma(gamma); chMtxUnlock(&mutex); shell_printf("%d %d\r\n", gamma[0], gamma[1]); } #endif static void (*sample_func)(float *gamma) = calculate_gamma; VNA_SHELL_FUNCTION(cmd_sample) { if (argc!=1) goto usage; // 0 1 2 static const char cmd_sample_list[] = "gamma|ampl|ref"; switch (getStringIndex(argv[1], cmd_sample_list)){ case 0:sample_func = calculate_gamma; return; case 1:sample_func = fetch_amplitude; return; case 2:sample_func = fetch_amplitude_ref; return; default:break; } usage: shell_printf("usage: sample {%s}\r\n", cmd_sample_list); } config_t config = { .magic = CONFIG_MAGIC, .dac_value = 1922, .grid_color = DEFAULT_GRID_COLOR, .menu_normal_color = DEFAULT_MENU_COLOR, .menu_active_color = DEFAULT_MENU_ACTIVE_COLOR, .trace_color = { DEFAULT_TRACE_1_COLOR, DEFAULT_TRACE_2_COLOR, DEFAULT_TRACE_3_COLOR, DEFAULT_TRACE_4_COLOR }, // .touch_cal = { 693, 605, 124, 171 }, // 2.4 inch LCD panel .touch_cal = { 338, 522, 153, 192 }, // 2.8 inch LCD panel .default_loadcal = 0, .harmonic_freq_threshold = 300000000 }; properties_t current_props = { .magic = CONFIG_MAGIC, ._frequency0 = 50000, // start = 50kHz ._frequency1 = 900000000, // end = 900MHz ._sweep_points = POINTS_COUNT, ._trace = {/*enable, type, channel, reserved, scale, refpos*/ { 1, TRC_LOGMAG, 0, 0, 10.0, NGRIDY-1 }, { 1, TRC_LOGMAG, 1, 0, 10.0, NGRIDY-1 }, { 1, TRC_SMITH, 0, 0, 1.0, 0 }, { 1, TRC_PHASE, 1, 0, 90.0, NGRIDY/2 } }, ._markers = { { 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 } }, ._velocity_factor = 0.7, ._marker_smith_format = MS_RLC }; properties_t *active_props = ¤t_props; void ensure_edit_config(void) { if (active_props == ¤t_props) return; //memcpy(¤t_props, active_props, sizeof(config_t)); active_props = ¤t_props; // move to uncal state cal_status = 0; } #define DELAY_CHANNEL_CHANGE 3 // main loop for measurement bool sweep(bool break_on_operation) { int i; // blink LED while scanning palClearPad(GPIOC, GPIOC_LED); for (i = 0; i < sweep_points; i++) { int delay = set_frequency(frequencies[i]); tlv320aic3204_select(0); // CH0:REFLECT wait_dsp(delay); /* calculate reflection coefficient */ (*sample_func)(measured[0][i]); tlv320aic3204_select(1); // CH1:TRANSMISSION wait_dsp(DELAY_CHANNEL_CHANGE); /* calculate transmission coefficient */ (*sample_func)(measured[1][i]); if (cal_status & CALSTAT_APPLY) apply_error_term_at(i); if (electrical_delay != 0) apply_edelay_at(i); // back to toplevel to handle ui operation if (operation_requested && break_on_operation) return false; } // blink LED while scanning palSetPad(GPIOC, GPIOC_LED); if ((domain_mode & DOMAIN_MODE) == DOMAIN_TIME) transform_domain(); return true; } VNA_SHELL_FUNCTION(cmd_scan) { uint32_t start, stop; int16_t points = sweep_points; if (argc != 2 && argc != 3) { shell_printf("usage: scan {start(Hz)} {stop(Hz)} [points]\r\n"); return; } start = my_atoui(argv[0]); stop = my_atoui(argv[1]); if (start == 0 || stop == 0 || start > stop) { shell_printf("frequency range is invalid\r\n"); return; } if (argc == 3) { points = my_atoi(argv[2]); if (points <= 0 || points > sweep_points) { shell_printf("sweep points exceeds range\r\n"); return; } } pause_sweep(); chMtxLock(&mutex); set_frequencies(start, stop, points); if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY)) cal_interpolate(lastsaveid); sweep_once = TRUE; chMtxUnlock(&mutex); // wait finishing sweep while (sweep_once) chThdSleepMilliseconds(10); } static void update_marker_index(void) { int m; int i; for (m = 0; m < MARKERS_MAX; m++) { if (!markers[m].enabled) continue; uint32_t f = markers[m].frequency; uint32_t fstart = get_sweep_frequency(ST_START); uint32_t fstop = get_sweep_frequency(ST_STOP); if (f < fstart) { markers[m].index = 0; markers[m].frequency = fstart; } else if (f >= fstop) { markers[m].index = sweep_points-1; markers[m].frequency = fstop; } else { for (i = 0; i < sweep_points-1; i++) { if (frequencies[i] <= f && f < frequencies[i+1]) { markers[m].index = f < (frequencies[i]/2 + frequencies[i+1]/2) ? i : i+1; break; } } } } } void set_frequencies(uint32_t start, uint32_t stop, uint16_t points) { uint32_t i; uint32_t step = (points - 1); uint32_t span = stop - start; uint32_t delta = span / step; uint32_t error = span % step; uint32_t f = start, df = step>>1; for (i = 0; i <= step; i++, f+=delta) { frequencies[i] = f; df+=error; if (df >=step) { f++; df-=step; } } // disable at out of sweep range for (; i < sweep_points; i++) frequencies[i] = 0; } void update_frequencies(void) { uint32_t start, stop; if (frequency0 < frequency1) { start = frequency0; stop = frequency1; } else { start = frequency1; stop = frequency0; } set_frequencies(start, stop, sweep_points); operation_requested = OP_FREQCHANGE; update_marker_index(); // set grid layout update_grid(); } static void freq_mode_startstop(void) { if (frequency0 > frequency1) { ensure_edit_config(); uint32_t f = frequency1; frequency1 = frequency0; frequency0 = f; } } static void freq_mode_centerspan(void) { if (frequency0 <= frequency1) { ensure_edit_config(); uint32_t f = frequency1; frequency1 = frequency0; frequency0 = f; } } #define START_MIN 50000 #define STOP_MAX 2700000000U void set_sweep_frequency(int type, uint32_t freq) { int cal_applied = cal_status & CALSTAT_APPLY; // Check frequency for out of bounds (minimum SPAN can be any value) if (type!=ST_SPAN && freq < START_MIN) freq = START_MIN; if (freq > STOP_MAX) freq = STOP_MAX; switch (type) { case ST_START: freq_mode_startstop(); if (frequency0 != freq) { ensure_edit_config(); frequency0 = freq; // if start > stop then make start = stop if (frequency1 < freq) frequency1 = freq; } break; case ST_STOP: freq_mode_startstop(); if (frequency1 != freq) { ensure_edit_config(); frequency1 = freq; // if start > stop then make start = stop if (frequency0 > freq) frequency0 = freq; } break; case ST_CENTER: freq_mode_centerspan(); uint32_t center = FREQ_CENTER(); if (center != freq) { uint32_t span = FREQ_SPAN(); ensure_edit_config(); if (freq < START_MIN + span/2) { span = (freq - START_MIN) * 2; } if (freq > STOP_MAX - span/2) { span = (STOP_MAX - freq) * 2; } frequency0 = freq + span/2; frequency1 = freq - span/2; } break; case ST_SPAN: freq_mode_centerspan(); if (frequency0 - frequency1 != freq) { ensure_edit_config(); uint32_t center = frequency0/2 + frequency1/2; if (center < START_MIN + freq/2) { center = START_MIN + freq/2; } if (center > STOP_MAX - freq/2) { center = STOP_MAX - freq/2; } frequency1 = center - freq/2; frequency0 = center + freq/2; } break; case ST_CW: freq_mode_centerspan(); if (frequency0 != freq || frequency1 != freq) { ensure_edit_config(); frequency0 = freq; frequency1 = freq; } break; } update_frequencies(); if (cal_auto_interpolate && cal_applied) cal_interpolate(lastsaveid); } uint32_t get_sweep_frequency(int type) { if (frequency0 <= frequency1) { switch (type) { case ST_START: return frequency0; case ST_STOP: return frequency1; case ST_CENTER: return frequency0/2 + frequency1/2; case ST_SPAN: return frequency1 - frequency0; case ST_CW: return frequency0/2 + frequency1/2; } } else { switch (type) { case ST_START: return frequency1; case ST_STOP: return frequency0; case ST_CENTER: return frequency0/2 + frequency1/2; case ST_SPAN: return frequency0 - frequency1; case ST_CW: return frequency0/2 + frequency1/2; } } return 0; } VNA_SHELL_FUNCTION(cmd_sweep) { if (argc == 0) { shell_printf("%d %d %d\r\n", frequency0, frequency1, sweep_points); return; } else if (argc > 3) { goto usage; } uint32_t value0 = 0; uint32_t value1 = 0; if (argc >=1) value0 = my_atoui(argv[0]); if (argc >=2) value1 = my_atoui(argv[1]); #if MAX_FREQ_TYPE!=5 #error "Sweep mode possibly changed, check cmd_sweep function" #endif // Parse sweep {start|stop|center|span|cw} {freq(Hz)} // get enum ST_START, ST_STOP, ST_CENTER, ST_SPAN, ST_CW static const char sweep_cmd[] = "start|stop|center|span|cw"; if (argc == 2 && value0 == 0) { int type = getStringIndex(argv[0], sweep_cmd); if (type == -1) goto usage; set_sweep_frequency(type, value1); return; } // Parse sweep {start(Hz)} [stop(Hz)] if (value0) set_sweep_frequency(ST_START, value0); if (value1) set_sweep_frequency(ST_STOP, value1); return; usage: shell_printf("usage: sweep {start(Hz)} [stop(Hz)]\r\n"\ "\tsweep {%s} {freq(Hz)}\r\n", sweep_cmd); } static void eterm_set(int term, float re, float im) { int i; for (i = 0; i < sweep_points; i++) { cal_data[term][i][0] = re; cal_data[term][i][1] = im; } } static void eterm_copy(int dst, int src) { memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]); } #if 0 const struct open_model { float c0; float c1; float c2; float c3; } open_model = { 50, 0, -300, 27 }; #endif #if 0 static void adjust_ed(void) { int i; for (i = 0; i < sweep_points; i++) { // z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0 // s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0) // prepare 1/s11ao to avoid dividing complex float c = 1000e-15; float z0 = 50; //float z = 2 * M_PI * frequencies[i] * c * z0; float z = 0.02; cal_data[ETERM_ED][i][0] += z; } } #endif static void eterm_calc_es(void) { int i; for (i = 0; i < sweep_points; i++) { // z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0 // s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0) // prepare 1/s11ao for effeiciency float c = 50e-15; //float c = 1.707e-12; float z0 = 50; float z = 2 * M_PI * frequencies[i] * c * z0; float sq = 1 + z*z; float s11aor = (1 - z*z) / sq; float s11aoi = 2*z / sq; // S11mo’= S11mo - Ed // S11ms’= S11ms - Ed float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0]; float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1]; float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0]; float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1]; // Es = (S11mo'/s11ao + S11ms’)/(S11mo' - S11ms’) float numr = s11sr + s11or * s11aor - s11oi * s11aoi; float numi = s11si + s11oi * s11aor + s11or * s11aoi; float denomr = s11or - s11sr; float denomi = s11oi - s11si; sq = denomr*denomr+denomi*denomi; cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq; cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq; } cal_status &= ~CALSTAT_OPEN; cal_status |= CALSTAT_ES; } static void eterm_calc_er(int sign) { int i; for (i = 0; i < sweep_points; i++) { // Er = sign*(1-sign*Es)S11ms' float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0]; float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1]; float esr = cal_data[ETERM_ES][i][0]; float esi = cal_data[ETERM_ES][i][1]; if (sign > 0) { esr = -esr; esi = -esi; } esr = 1 + esr; float err = esr * s11sr - esi * s11si; float eri = esr * s11si + esi * s11sr; if (sign < 0) { err = -err; eri = -eri; } cal_data[ETERM_ER][i][0] = err; cal_data[ETERM_ER][i][1] = eri; } cal_status &= ~CALSTAT_SHORT; cal_status |= CALSTAT_ER; } // CAUTION: Et is inversed for efficiency static void eterm_calc_et(void) { int i; for (i = 0; i < sweep_points; i++) { // Et = 1/(S21mt - Ex) float etr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0]; float eti = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1]; float sq = etr*etr + eti*eti; float invr = etr / sq; float invi = -eti / sq; cal_data[ETERM_ET][i][0] = invr; cal_data[ETERM_ET][i][1] = invi; } cal_status &= ~CALSTAT_THRU; cal_status |= CALSTAT_ET; } #if 0 void apply_error_term(void) { int i; for (i = 0; i < sweep_points; i++) { // S11m' = S11m - Ed // S11a = S11m' / (Er + Es S11m') float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0]; float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1]; float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1]; float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0]; float sq = err*err + eri*eri; float s11ar = (s11mr * err + s11mi * eri) / sq; float s11ai = (s11mi * err - s11mr * eri) / sq; measured[0][i][0] = s11ar; measured[0][i][1] = s11ai; // CAUTION: Et is inversed for efficiency // S21m' = S21m - Ex // S21a = S21m' (1-EsS11a)Et float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0]; float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1]; float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai); float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai); float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1]; float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0]; float s21ar = s21mr * etr - s21mi * eti; float s21ai = s21mi * etr + s21mr * eti; measured[1][i][0] = s21ar; measured[1][i][1] = s21ai; } } #endif static void apply_error_term_at(int i) { // S11m' = S11m - Ed // S11a = S11m' / (Er + Es S11m') float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0]; float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1]; float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1]; float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0]; float sq = err*err + eri*eri; float s11ar = (s11mr * err + s11mi * eri) / sq; float s11ai = (s11mi * err - s11mr * eri) / sq; measured[0][i][0] = s11ar; measured[0][i][1] = s11ai; // CAUTION: Et is inversed for efficiency // S21m' = S21m - Ex // S21a = S21m' (1-EsS11a)Et float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0]; float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1]; float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai); float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai); float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1]; float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0]; float s21ar = s21mr * etr - s21mi * eti; float s21ai = s21mi * etr + s21mr * eti; measured[1][i][0] = s21ar; measured[1][i][1] = s21ai; } static void apply_edelay_at(int i) { float w = 2 * M_PI * electrical_delay * frequencies[i] * 1E-12; float s = sin(w); float c = cos(w); float real = measured[0][i][0]; float imag = measured[0][i][1]; measured[0][i][0] = real * c - imag * s; measured[0][i][1] = imag * c + real * s; real = measured[1][i][0]; imag = measured[1][i][1]; measured[1][i][0] = real * c - imag * s; measured[1][i][1] = imag * c + real * s; } void cal_collect(int type) { ensure_edit_config(); switch (type) { case CAL_LOAD: cal_status |= CALSTAT_LOAD; memcpy(cal_data[CAL_LOAD], measured[0], sizeof measured[0]); break; case CAL_OPEN: cal_status |= CALSTAT_OPEN; cal_status &= ~(CALSTAT_ES|CALSTAT_APPLY); memcpy(cal_data[CAL_OPEN], measured[0], sizeof measured[0]); break; case CAL_SHORT: cal_status |= CALSTAT_SHORT; cal_status &= ~(CALSTAT_ER|CALSTAT_APPLY); memcpy(cal_data[CAL_SHORT], measured[0], sizeof measured[0]); break; case CAL_THRU: cal_status |= CALSTAT_THRU; memcpy(cal_data[CAL_THRU], measured[1], sizeof measured[0]); break; case CAL_ISOLN: cal_status |= CALSTAT_ISOLN; memcpy(cal_data[CAL_ISOLN], measured[1], sizeof measured[0]); break; } redraw_request |= REDRAW_CAL_STATUS; } void cal_done(void) { ensure_edit_config(); if (!(cal_status & CALSTAT_LOAD)) eterm_set(ETERM_ED, 0.0, 0.0); //adjust_ed(); if ((cal_status & CALSTAT_SHORT) && (cal_status & CALSTAT_OPEN)) { eterm_calc_es(); eterm_calc_er(-1); } else if (cal_status & CALSTAT_OPEN) { eterm_copy(CAL_SHORT, CAL_OPEN); eterm_set(ETERM_ES, 0.0, 0.0); eterm_calc_er(1); } else if (cal_status & CALSTAT_SHORT) { eterm_set(ETERM_ES, 0.0, 0.0); cal_status &= ~CALSTAT_SHORT; eterm_calc_er(-1); } else { eterm_set(ETERM_ER, 1.0, 0.0); eterm_set(ETERM_ES, 0.0, 0.0); } if (!(cal_status & CALSTAT_ISOLN)) eterm_set(ETERM_EX, 0.0, 0.0); if (cal_status & CALSTAT_THRU) { eterm_calc_et(); } else { eterm_set(ETERM_ET, 1.0, 0.0); } cal_status |= CALSTAT_APPLY; redraw_request |= REDRAW_CAL_STATUS; } static void cal_interpolate(int s) { const properties_t *src = caldata_ref(s); int i, j; int eterm; if (src == NULL) return; ensure_edit_config(); // lower than start freq of src range for (i = 0; i < sweep_points; i++) { if (frequencies[i] >= src->_frequencies[0]) break; // fill cal_data at head of src range for (eterm = 0; eterm < 5; eterm++) { cal_data[eterm][i][0] = src->_cal_data[eterm][0][0]; cal_data[eterm][i][1] = src->_cal_data[eterm][0][1]; } } j = 0; for (; i < sweep_points; i++) { uint32_t f = frequencies[i]; for (; j < sweep_points-1; j++) { if (src->_frequencies[j] <= f && f < src->_frequencies[j+1]) { // found f between freqs at j and j+1 float k1 = (float)(f - src->_frequencies[j]) / (src->_frequencies[j+1] - src->_frequencies[j]); // avoid glitch between freqs in different harmonics mode if (IS_HARMONIC_MODE(src->_frequencies[j]) != IS_HARMONIC_MODE(src->_frequencies[j+1])) { // assume f[j] < f[j+1] k1 = IS_HARMONIC_MODE(f) ? 1.0 : 0.0; } float k0 = 1.0 - k1; for (eterm = 0; eterm < 5; eterm++) { cal_data[eterm][i][0] = src->_cal_data[eterm][j][0] * k0 + src->_cal_data[eterm][j+1][0] * k1; cal_data[eterm][i][1] = src->_cal_data[eterm][j][1] * k0 + src->_cal_data[eterm][j+1][1] * k1; } break; } } if (j == sweep_points-1) break; } // upper than end freq of src range for (; i < sweep_points; i++) { // fill cal_data at tail of src for (eterm = 0; eterm < 5; eterm++) { cal_data[eterm][i][0] = src->_cal_data[eterm][sweep_points-1][0]; cal_data[eterm][i][1] = src->_cal_data[eterm][sweep_points-1][1]; } } cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED; redraw_request |= REDRAW_CAL_STATUS; } VNA_SHELL_FUNCTION(cmd_cal) { static const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" }; if (argc == 0) { int i; for (i = 0; i < 9; i++) { if (cal_status & (1< 1) ? my_atoi(argv[1]) : 0); redraw_request|=REDRAW_CAL_STATUS; return; default:break; } shell_printf("usage: cal [%s]\r\n", cmd_cal_list); } VNA_SHELL_FUNCTION(cmd_save) { if (argc != 1) goto usage; int id = my_atoi(argv[0]); if (id < 0 || id >= SAVEAREA_MAX) goto usage; caldata_save(id); redraw_request |= REDRAW_CAL_STATUS; return; usage: shell_printf("save {id}\r\n"); } VNA_SHELL_FUNCTION(cmd_recall) { if (argc != 1) goto usage; int id = my_atoi(argv[0]); if (id < 0 || id >= SAVEAREA_MAX) goto usage; pause_sweep(); if (caldata_recall(id) == 0) { // success update_frequencies(); redraw_request |= REDRAW_CAL_STATUS; } resume_sweep(); return; usage: shell_printf("recall {id}\r\n"); } static const struct { const char *name; uint16_t refpos; float scale_unit; } trace_info[] = { { "LOGMAG", NGRIDY-1, 10.0 }, { "PHASE", NGRIDY/2, 90.0 }, { "DELAY", NGRIDY/2, 1e-9 }, { "SMITH", 0, 1.00 }, { "POLAR", 0, 1.00 }, { "LINEAR", 0, 0.125}, { "SWR", 0, 0.25 }, { "REAL", NGRIDY/2, 0.25 }, { "IMAG", NGRIDY/2, 0.25 }, { "R", NGRIDY/2, 100.0 }, { "X", NGRIDY/2, 100.0 } }; static const char * const trc_channel_name[] = { "CH0", "CH1" }; const char *get_trace_typename(int t) { return trace_info[trace[t].type].name; } void set_trace_type(int t, int type) { int enabled = type != TRC_OFF; int force = FALSE; if (trace[t].enabled != enabled) { trace[t].enabled = enabled; force = TRUE; } if (trace[t].type != type) { trace[t].type = type; // Set default trace refpos trace[t].refpos = trace_info[type].refpos; // Set default trace scale trace[t].scale = trace_info[type].scale_unit; force = TRUE; } if (force) { plot_into_index(measured); force_set_markmap(); } } void set_trace_channel(int t, int channel) { if (trace[t].channel != channel) { trace[t].channel = channel; force_set_markmap(); } } void set_trace_scale(int t, float scale) { if (trace[t].scale != scale) { trace[t].scale = scale; force_set_markmap(); } } float get_trace_scale(int t) { return trace[t].scale; } void set_trace_refpos(int t, float refpos) { if (trace[t].refpos != refpos) { trace[t].refpos = refpos; force_set_markmap(); } } float get_trace_refpos(int t) { return trace[t].refpos; } VNA_SHELL_FUNCTION(cmd_trace) { int t; if (argc == 0) { for (t = 0; t < TRACES_MAX; t++) { if (trace[t].enabled) { const char *type = get_trace_typename(t); const char *channel = trc_channel_name[trace[t].channel]; float scale = get_trace_scale(t); float refpos = get_trace_refpos(t); shell_printf("%d %s %s %f %f\r\n", t, type, channel, scale, refpos); } } return; } if (strcmp(argv[0], "all") == 0 && argc > 1 && strcmp(argv[1], "off") == 0) { for (t = 0; t < TRACES_MAX; t++) set_trace_type(t, TRC_OFF); goto exit; } t = my_atoi(argv[0]); if (t < 0 || t >= TRACES_MAX) goto usage; if (argc == 1) { const char *type = get_trace_typename(t); const char *channel = trc_channel_name[trace[t].channel]; shell_printf("%d %s %s\r\n", t, type, channel); return; } #if MAX_TRACE_TYPE!=12 #error "Trace type enum possibly changed, check cmd_trace function" #endif // enum TRC_LOGMAG, TRC_PHASE, TRC_DELAY, TRC_SMITH, TRC_POLAR, TRC_LINEAR, TRC_SWR, TRC_REAL, TRC_IMAG, TRC_R, TRC_X, TRC_OFF static const char cmd_type_list[] = "logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|off"; int type = getStringIndex(argv[1], cmd_type_list); if (type >= 0){ set_trace_type(t, type); goto check_ch_num; } // 0 1 static const char cmd_scale_ref_list[] = "scale|refpos"; if (argc >= 3){ switch (getStringIndex(argv[1], cmd_scale_ref_list)){ case 0: //trace[t].scale = my_atof(argv[2]); set_trace_scale(t, my_atof(argv[2])); goto exit; case 1: //trace[t].refpos = my_atof(argv[2]); set_trace_refpos(t, my_atof(argv[2])); goto exit; default: goto usage; } } check_ch_num: if (argc > 2) { int src = my_atoi(argv[2]); if (src != 0 && src != 1) goto usage; trace[t].channel = src; } exit: return; usage: shell_printf("trace {0|1|2|3|all} [%s] [src]\r\n"\ "trace {0|1|2|3} {%s} {value}\r\n", cmd_type_list, cmd_scale_ref_list); } void set_electrical_delay(float picoseconds) { if (electrical_delay != picoseconds) { electrical_delay = picoseconds; force_set_markmap(); } } float get_electrical_delay(void) { return electrical_delay; } VNA_SHELL_FUNCTION(cmd_edelay) { if (argc == 0) { shell_printf("%f\r\n", electrical_delay); return; } if (argc > 0) { set_electrical_delay(my_atof(argv[0])); } } VNA_SHELL_FUNCTION(cmd_marker) { int t; if (argc == 0) { for (t = 0; t < MARKERS_MAX; t++) { if (markers[t].enabled) { shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency); } } return; } if (strcmp(argv[0], "off") == 0) { active_marker = -1; for (t = 0; t < MARKERS_MAX; t++) markers[t].enabled = FALSE; redraw_request |= REDRAW_MARKER; return; } t = my_atoi(argv[0])-1; if (t < 0 || t >= MARKERS_MAX) goto usage; if (argc == 1) { shell_printf("%d %d %d\r\n", t+1, markers[t].index, frequency); active_marker = t; // select active marker markers[t].enabled = TRUE; redraw_request |= REDRAW_MARKER; return; } static const char cmd_marker_list[] = "on|off"; switch (getStringIndex(argv[1], cmd_marker_list)){ case 0: markers[t].enabled = TRUE; active_marker = t; redraw_request |= REDRAW_MARKER; return; case 1: markers[t].enabled =FALSE; if (active_marker == t) active_marker = -1; redraw_request|=REDRAW_MARKER; return; default: // select active marker and move to index markers[t].enabled = TRUE; int index = my_atoi(argv[1]); markers[t].index = index; markers[t].frequency = frequencies[index]; active_marker = t; redraw_request |= REDRAW_MARKER; return; } usage: shell_printf("marker [n] [%s|{index}]\r\n", cmd_marker_list); } VNA_SHELL_FUNCTION(cmd_touchcal) { (void)argc; (void)argv; //extern int16_t touch_cal[4]; int i; shell_printf("first touch upper left, then lower right..."); touch_cal_exec(); shell_printf("done\r\n"); shell_printf("touch cal params: "); for (i = 0; i < 4; i++) { shell_printf("%d ", config.touch_cal[i]); } shell_printf("\r\n"); } VNA_SHELL_FUNCTION(cmd_touchtest) { (void)argc; (void)argv; do { touch_draw_test(); } while(argc); } VNA_SHELL_FUNCTION(cmd_frequencies) { int i; (void)argc; (void)argv; for (i = 0; i < sweep_points; i++) { if (frequencies[i] != 0) shell_printf("%d\r\n", frequencies[i]); } } static void set_domain_mode(int mode) // accept DOMAIN_FREQ or DOMAIN_TIME { if (mode != (domain_mode & DOMAIN_MODE)) { domain_mode = (domain_mode & ~DOMAIN_MODE) | (mode & DOMAIN_MODE); redraw_request |= REDRAW_FREQUENCY; uistat.lever_mode = LM_MARKER; } } static void set_timedomain_func(int func) // accept TD_FUNC_LOWPASS_IMPULSE, TD_FUNC_LOWPASS_STEP or TD_FUNC_BANDPASS { domain_mode = (domain_mode & ~TD_FUNC) | (func & TD_FUNC); } static void set_timedomain_window(int func) // accept TD_WINDOW_MINIMUM/TD_WINDOW_NORMAL/TD_WINDOW_MAXIMUM { domain_mode = (domain_mode & ~TD_WINDOW) | (func & TD_WINDOW); } VNA_SHELL_FUNCTION(cmd_transform) { int i; if (argc == 0) { goto usage; } // 0 1 2 3 4 5 6 7 static const char cmd_transform_list[] = "on|off|impulse|step|bandpass|minimum|normal|maximum"; for (i = 0; i < argc; i++) { switch (getStringIndex(argv[i], cmd_transform_list)){ case 0:set_domain_mode(DOMAIN_TIME);return; case 1:set_domain_mode(DOMAIN_FREQ);return; case 2:set_timedomain_func(TD_FUNC_LOWPASS_IMPULSE);return; case 3:set_timedomain_func(TD_FUNC_LOWPASS_STEP);return; case 4:set_timedomain_func(TD_FUNC_BANDPASS);return; case 5:set_timedomain_window(TD_WINDOW_MINIMUM);return; case 6:set_timedomain_window(TD_WINDOW_NORMAL);return; case 7:set_timedomain_window(TD_WINDOW_MAXIMUM);return; default: goto usage; } } return; usage: shell_printf("usage: transform {%s} [...]\r\n", cmd_transform_list); } VNA_SHELL_FUNCTION(cmd_test) { (void)argc; (void)argv; #if 0 int i; for (i = 0; i < 100; i++) { palClearPad(GPIOC, GPIOC_LED); set_frequency(10000000); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); palClearPad(GPIOC, GPIOC_LED); set_frequency(90000000); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); } #endif #if 0 int i; int mode = 0; if (argc >= 1) mode = my_atoi(argv[0]); for (i = 0; i < 20; i++) { palClearPad(GPIOC, GPIOC_LED); ili9341_test(mode); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); } #endif #if 0 //extern adcsample_t adc_samples[2]; //shell_printf("adc: %d %d\r\n", adc_samples[0], adc_samples[1]); int i; int x, y; for (i = 0; i < 50; i++) { test_touch(&x, &y); shell_printf("adc: %d %d\r\n", x, y); chThdSleepMilliseconds(200); } //extern int touch_x, touch_y; //shell_printf("adc: %d %d\r\n", touch_x, touch_y); #endif while (argc > 1) { int x, y; touch_position(&x, &y); shell_printf("touch: %d %d\r\n", x, y); chThdSleepMilliseconds(200); } } VNA_SHELL_FUNCTION(cmd_gain) { int rvalue; int lvalue = 0; if (argc != 1 && argc != 2) { shell_printf("usage: gain {lgain(0-95)} [rgain(0-95)]\r\n"); return; } rvalue = my_atoi(argv[0]); if (argc == 2) lvalue = my_atoi(argv[1]); tlv320aic3204_set_gain(lvalue, rvalue); } VNA_SHELL_FUNCTION(cmd_port) { int port; if (argc != 1) { shell_printf("usage: port {0:TX 1:RX}\r\n"); return; } port = my_atoi(argv[0]); tlv320aic3204_select(port); } VNA_SHELL_FUNCTION(cmd_stat) { int16_t *p = &rx_buffer[0]; int32_t acc0, acc1; int32_t ave0, ave1; int32_t count = AUDIO_BUFFER_LEN; int i; (void)argc; (void)argv; acc0 = acc1 = 0; for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) { acc0 += p[i]; acc1 += p[i+1]; } ave0 = acc0 / count; ave1 = acc1 / count; acc0 = acc1 = 0; for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) { acc0 += (p[i] - ave0)*(p[i] - ave0); acc1 += (p[i+1] - ave1)*(p[i+1] - ave1); } stat.rms[0] = sqrtf(acc0 / count); stat.rms[1] = sqrtf(acc1 / count); stat.ave[0] = ave0; stat.ave[1] = ave1; shell_printf("average: %d %d\r\n", stat.ave[0], stat.ave[1]); shell_printf("rms: %d %d\r\n", stat.rms[0], stat.rms[1]); shell_printf("callback count: %d\r\n", stat.callback_count); //shell_printf("interval cycle: %d\r\n", stat.interval_cycles); //shell_printf("busy cycle: %d\r\n", stat.busy_cycles); //shell_printf("load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles); extern int awd_count; shell_printf("awd: %d\r\n", awd_count); } #ifndef VERSION #define VERSION "unknown" #endif const char NANOVNA_VERSION[] = VERSION; VNA_SHELL_FUNCTION(cmd_version) { (void)argc; (void)argv; shell_printf("%s\r\n", NANOVNA_VERSION); } VNA_SHELL_FUNCTION(cmd_vbat) { (void)argc; (void)argv; shell_printf("%d mV\r\n", vbat); } #ifdef ENABLE_THREADS_COMMAND #if CH_CFG_USE_REGISTRY == FALSE #error "Threads Requite enabled CH_CFG_USE_REGISTRY in chconf.h" #endif VNA_SHELL_FUNCTION(cmd_threads) { static const char *states[] = {CH_STATE_NAMES}; thread_t *tp; (void)argc; (void)argv; chprintf(chp, "stklimit stack addr refs prio state name"VNA_SHELL_NEWLINE_STR); tp = chRegFirstThread(); do { uint32_t stklimit = (uint32_t)tp->wabase; shell_printf("%08x %08x %08x %4u %4u %9s %12s"VNA_SHELL_NEWLINE_STR, stklimit, (uint32_t)tp->ctx.sp, (uint32_t)tp, (uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state], tp->name == NULL ? "" : tp->name); tp = chRegNextThread(tp); } while (tp != NULL); } #endif //============================================================================= VNA_SHELL_FUNCTION(cmd_help); #pragma pack(push, 2) typedef struct { const char *sc_name; vna_shellcmd_t sc_function; uint16_t flags; } VNAShellCommand; #pragma pack(pop) // Some commands can executed only if process thread not in main cycle #define CMD_WAIT_MUTEX 1 static const VNAShellCommand commands[] = { {"version" , cmd_version , 0}, {"reset" , cmd_reset , 0}, {"freq" , cmd_freq , CMD_WAIT_MUTEX}, {"offset" , cmd_offset , 0}, {"time" , cmd_time , 0}, {"dac" , cmd_dac , 0}, {"saveconfig" , cmd_saveconfig , 0}, {"clearconfig" , cmd_clearconfig , 0}, {"data" , cmd_data , CMD_WAIT_MUTEX}, #ifdef ENABLED_DUMP {"dump" , cmd_dump , 0}, #endif {"frequencies" , cmd_frequencies , 0}, {"port" , cmd_port , 0}, {"stat" , cmd_stat , 0}, {"gain" , cmd_gain , 0}, {"power" , cmd_power , 0}, {"sample" , cmd_sample , 0}, // {"gamma" , cmd_gamma , 0}, {"scan" , cmd_scan , 0}, // Wait mutex hardcoded in cmd, need wait one sweep manually {"sweep" , cmd_sweep , 0}, {"test" , cmd_test , 0}, {"touchcal" , cmd_touchcal , CMD_WAIT_MUTEX}, {"touchtest" , cmd_touchtest , CMD_WAIT_MUTEX}, {"pause" , cmd_pause , 0}, {"resume" , cmd_resume , 0}, {"cal" , cmd_cal , CMD_WAIT_MUTEX}, {"save" , cmd_save , 0}, {"recall" , cmd_recall , CMD_WAIT_MUTEX}, {"trace" , cmd_trace , 0}, {"marker" , cmd_marker , 0}, {"edelay" , cmd_edelay , 0}, {"capture" , cmd_capture , CMD_WAIT_MUTEX}, {"vbat" , cmd_vbat , 0}, {"transform" , cmd_transform , 0}, {"threshold" , cmd_threshold , 0}, {"help" , cmd_help , 0}, #ifdef ENABLE_THREADS_COMMAND {"threads" , cmd_threads , 0}, #endif {NULL , NULL , 0} }; VNA_SHELL_FUNCTION(cmd_help) { (void)argc; (void)argv; const VNAShellCommand *scp = commands; shell_printf("Commands:"); while (scp->sc_name != NULL) { shell_printf(" %s", scp->sc_name); scp++; } shell_printf(VNA_SHELL_NEWLINE_STR); return; } /* * VNA shell functions */ // // Read command line from shell_stream // static int VNAShell_readLine(char *line, int max_size){ // Read line from input stream uint8_t c; char *ptr = line; while (1){ // Return 0 only if stream not active if (streamRead(shell_stream, &c, 1) == 0) return 0; // Backspace or Delete if (c == 8 || c == 0x7f) { if (ptr != line) { static const char backspace[] = {0x08,0x20,0x08,0x00}; shell_printf(backspace); ptr--; } continue; } // New line (Enter) if (c == '\r') { shell_printf(VNA_SHELL_NEWLINE_STR); *ptr = 0; return 1; } // Others (skip) if (c < 0x20) continue; // Store if (ptr < line + max_size - 1) { streamPut(shell_stream, c); // Echo *ptr++ = (char)c; } } return 0; } // Macros for convert define value to string #define STR1(x) #x #define define_to_STR(x) STR1(x) // // Parse and run command line // static void VNAShell_executeLine(char *line){ // Parse and execute line char *args[VNA_SHELL_MAX_ARGUMENTS + 1]; int n = 0; char *lp = line, *ep; while (*lp!=0){ // Skipping white space and tabs at string begin. while (*lp==' ' || *lp=='\t') lp++; // If an argument starts with a double quote then its delimiter is another quote, else delimiter is white space. ep = (*lp == '"') ? strpbrk(++lp, "\"") : strpbrk( lp, " \t"); // Store in args string args[n++]=lp; // Stop, end of input string if ((lp = ep) == NULL) break; // Argument limits check if (n > VNA_SHELL_MAX_ARGUMENTS) { shell_printf("too many arguments, max "define_to_STR(VNA_SHELL_MAX_ARGUMENTS)""VNA_SHELL_NEWLINE_STR); return; } // Set zero at the end of string and continue check *lp++ = 0; } if (n == 0) return; // Execute line const VNAShellCommand *scp; for (scp = commands; scp->sc_name!=NULL;scp++) { if (strcmp(scp->sc_name, args[0]) == 0) { if (scp->flags&CMD_WAIT_MUTEX) { chMtxLock(&mutex); scp->sc_function(n-1, &args[1]); chMtxUnlock(&mutex); } else scp->sc_function(n-1, &args[1]); return; } } shell_printf("%s?"VNA_SHELL_NEWLINE_STR, args[0]); } #ifdef VNA_SHELL_THREAD static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442); THD_FUNCTION(myshellThread, p) { (void)p; chRegSetThreadName("shell"); shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR); while (true) { shell_printf(VNA_SHELL_PROMPT_STR); if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH)) VNAShell_executeLine(shell_line); else // Putting a delay in order to avoid an endless loop trying to read an unavailable stream. osalThreadSleepMilliseconds(100); } } #endif static const I2CConfig i2ccfg = { 0x00300506, //voodoo magic 400kHz @ HSI 8MHz 0, 0 }; static DACConfig dac1cfg1 = { //init: 2047U, init: 1922U, datamode: DAC_DHRM_12BIT_RIGHT }; int main(void) { halInit(); chSysInit(); chMtxObjectInit(&mutex); //palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN); //palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN); i2cStart(&I2CD1, &i2ccfg); si5351_init(); // MCO on PA8 //palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0)); /* * Initializes a serial-over-USB CDC driver. */ sduObjectInit(&SDU1); sduStart(&SDU1, &serusbcfg); /* * Activates the USB driver and then the USB bus pull-up on D+. * Note, a delay is inserted in order to not have to disconnect the cable * after a reset. */ usbDisconnectBus(serusbcfg.usbp); chThdSleepMilliseconds(100); usbStart(serusbcfg.usbp, &usbcfg); usbConnectBus(serusbcfg.usbp); /* * SPI LCD Initialize */ ili9341_init(); /* * Initialize graph plotting */ plot_init(); /* restore config */ config_recall(); dac1cfg1.init = config.dac_value; /* * Starting DAC1 driver, setting up the output pin as analog as suggested * by the Reference Manual. */ dacStart(&DACD2, &dac1cfg1); /* initial frequencies */ update_frequencies(); /* restore frequencies and calibration properties from flash memory */ if (config.default_loadcal >= 0) caldata_recall(config.default_loadcal); redraw_frame(); /* * I2S Initialize */ tlv320aic3204_init(); i2sInit(); i2sObjectInit(&I2SD2); i2sStart(&I2SD2, &i2sconfig); i2sStartExchange(&I2SD2); ui_init(); chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO-1, Thread1, NULL); while (1) { if (SDU1.config->usbp->state == USB_ACTIVE) { #ifdef VNA_SHELL_THREAD thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2), NORMALPRIO + 1, myshellThread, NULL); chThdWait(shelltp); #else shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR); do { shell_printf(VNA_SHELL_PROMPT_STR); if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH)) VNAShell_executeLine(shell_line); else chThdSleepMilliseconds(200); } while (SDU1.config->usbp->state == USB_ACTIVE); #endif } chThdSleepMilliseconds(1000); } } /* The prototype shows it is a naked function - in effect this is just an assembly function. */ void HardFault_Handler( void ); void hard_fault_handler_c(uint32_t *sp) __attribute__( ( naked ) );; void HardFault_Handler(void) { uint32_t* sp; //__asm volatile ("mrs %0, msp \n\t": "=r" (sp) ); __asm volatile ("mrs %0, psp \n\t": "=r" (sp) ); hard_fault_handler_c(sp); } void hard_fault_handler_c(uint32_t* sp) { (void)sp; while (true) {} }