/* * Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com * All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ch.h" #include "hal.h" #include "usbcfg.h" #include "si5351.h" #include "nanovna.h" #include "fft.h" #include #include #include /* * Shell settings */ // If need run shell as thread (use more amount of memory fore stack), after // enable this need reduce spi_buffer size, by default shell run in main thread // #define VNA_SHELL_THREAD static BaseSequentialStream *shell_stream = (BaseSequentialStream *)&SDU1; // Shell new line #define VNA_SHELL_NEWLINE_STR "\r\n" // Shell command promt #define VNA_SHELL_PROMPT_STR "ch> " // Shell max arguments #define VNA_SHELL_MAX_ARGUMENTS 4 // Shell max command line size #define VNA_SHELL_MAX_LENGTH 48 // Shell command functions prototypes typedef void (*vna_shellcmd_t)(int argc, char *argv[]); #define VNA_SHELL_FUNCTION(command_name) \ static void command_name(int argc, char *argv[]) // Shell command line buffer, args, nargs, and function ptr static char shell_line[VNA_SHELL_MAX_LENGTH]; static char *shell_args[VNA_SHELL_MAX_ARGUMENTS + 1]; static uint16_t shell_nargs; static volatile vna_shellcmd_t shell_function = 0; //#define ENABLED_DUMP // Allow get threads debug info //#define ENABLE_THREADS_COMMAND // RTC time not used //#define ENABLE_TIME_COMMAND // Enable vbat_offset command, allow change battery voltage correction in config #define ENABLE_VBAT_OFFSET_COMMAND // Info about NanoVNA, need fore soft #define ENABLE_INFO_COMMAND // Enable color command, allow change config color for traces, grid, menu #define ENABLE_COLOR_COMMAND // Enable I2C command for send data to AIC3204, used for debug //#define ENABLE_I2C_COMMAND static void apply_CH0_error_term_at(int i); static void apply_CH1_error_term_at(int i); static void apply_edelay(void); static uint16_t get_sweep_mode(void); static void cal_interpolate(int s); static void update_frequencies(void); static void set_frequencies(uint32_t start, uint32_t stop, uint16_t points); static bool sweep(bool break_on_operation); static void transform_domain(void); static int32_t my_atoi(const char *p); static uint32_t my_atoui(const char *p); #define DRIVE_STRENGTH_AUTO (-1) #define FREQ_HARMONICS (config.harmonic_freq_threshold) #define IS_HARMONIC_MODE(f) ((f) > FREQ_HARMONICS) // Obsolete, always use interpolate #define cal_auto_interpolate TRUE static int8_t drive_strength = DRIVE_STRENGTH_AUTO; int8_t sweep_mode = SWEEP_ENABLE; volatile uint8_t redraw_request = 0; // contains REDRAW_XXX flags // sweep operation variables volatile uint16_t wait_count = 0; static uint16_t p_sweep = 0; // ChibiOS i2s buffer must be 2x size (for process one while next buffer filled by DMA) static int16_t rx_buffer[AUDIO_BUFFER_LEN * 2]; // Sweep measured data float measured[2][POINTS_COUNT][2]; uint32_t frequencies[POINTS_COUNT]; // Version text, displayed in Config->Version menu, also send by info command const char *info_about[]={ BOARD_NAME, "2016-2020 Copyright @edy555", "Licensed under GPL. See: https://github.com/ttrftech/NanoVNA", "Version: " VERSION, "Build Time: " __DATE__ " - " __TIME__, "Kernel: " CH_KERNEL_VERSION, "Compiler: " PORT_COMPILER_NAME, "Architecture: " PORT_ARCHITECTURE_NAME " Core Variant: " PORT_CORE_VARIANT_NAME, "Port Info: " PORT_INFO, "Platform: " PLATFORM_NAME, 0 // sentinel }; static THD_WORKING_AREA(waThread1, 640); static THD_FUNCTION(Thread1, arg) { (void)arg; chRegSetThreadName("sweep"); while (1) { bool completed = false; if (sweep_mode&(SWEEP_ENABLE|SWEEP_ONCE)) { completed = sweep(true); sweep_mode&=~SWEEP_ONCE; } else { __WFI(); } // Run Shell command in sweep thread if (shell_function) { shell_function(shell_nargs - 1, &shell_args[1]); shell_function = 0; osalThreadSleepMilliseconds(10); continue; } // Process UI inputs ui_process(); // Process collected data, calculate trace coordinates and plot only if scan completed if (sweep_mode & SWEEP_ENABLE && completed) { if (electrical_delay != 0) apply_edelay(); if ((domain_mode & DOMAIN_MODE) == DOMAIN_TIME) transform_domain(); // Prepare draw graphics, cache all lines, mark screen cells for redraw plot_into_index(measured); redraw_request |= REDRAW_CELLS | REDRAW_BATTERY; if (uistat.marker_tracking) { int i = marker_search(); if (i != -1 && active_marker != -1) { markers[active_marker].index = i; redraw_request |= REDRAW_MARKER; } } } // plot trace and other indications as raster draw_all(completed); // flush markmap only if scan completed to prevent // remaining traces } } static inline void pause_sweep(void) { sweep_mode &= ~SWEEP_ENABLE; } static inline void resume_sweep(void) { sweep_mode |= SWEEP_ENABLE; } void toggle_sweep(void) { sweep_mode ^= SWEEP_ENABLE; } static float bessel0(float x) { const float eps = 0.0001; float ret = 0; float term = 1; float m = 0; while (term > eps * ret) { ret += term; ++m; term *= (x*x) / (4*m*m); } return ret; } static float kaiser_window(float k, float n, float beta) { if (beta == 0.0) return 1.0; float r = (2 * k) / (n - 1) - 1; return bessel0(beta * sqrt(1 - r * r)) / bessel0(beta); } static void transform_domain(void) { // use spi_buffer as temporary buffer // and calculate ifft for time domain float* tmp = (float*)spi_buffer; uint16_t window_size = POINTS_COUNT, offset = 0; uint8_t is_lowpass = FALSE; switch (domain_mode & TD_FUNC) { case TD_FUNC_BANDPASS: offset = 0; window_size = POINTS_COUNT; break; case TD_FUNC_LOWPASS_IMPULSE: case TD_FUNC_LOWPASS_STEP: is_lowpass = TRUE; offset = POINTS_COUNT; window_size = POINTS_COUNT * 2; break; } float beta = 0.0; switch (domain_mode & TD_WINDOW) { case TD_WINDOW_MINIMUM: beta = 0.0; // this is rectangular break; case TD_WINDOW_NORMAL: beta = 6.0; break; case TD_WINDOW_MAXIMUM: beta = 13; break; } uint16_t ch_mask = get_sweep_mode(); for (int ch = 0; ch < 2; ch++,ch_mask>>=1) { if ((ch_mask&1)==0) continue; memcpy(tmp, measured[ch], sizeof(measured[0])); for (int i = 0; i < POINTS_COUNT; i++) { float w = kaiser_window(i + offset, window_size, beta); tmp[i * 2 + 0] *= w; tmp[i * 2 + 1] *= w; } for (int i = POINTS_COUNT; i < FFT_SIZE; i++) { tmp[i * 2 + 0] = 0.0; tmp[i * 2 + 1] = 0.0; } if (is_lowpass) { for (int i = 1; i < POINTS_COUNT; i++) { tmp[(FFT_SIZE - i) * 2 + 0] = tmp[i * 2 + 0]; tmp[(FFT_SIZE - i) * 2 + 1] = -tmp[i * 2 + 1]; } } fft256_inverse((float(*)[2])tmp); memcpy(measured[ch], tmp, sizeof(measured[0])); for (int i = 0; i < POINTS_COUNT; i++) { measured[ch][i][0] /= (float)FFT_SIZE; if (is_lowpass) { measured[ch][i][1] = 0.0; } else { measured[ch][i][1] /= (float)FFT_SIZE; } } if ((domain_mode & TD_FUNC) == TD_FUNC_LOWPASS_STEP) { for (int i = 1; i < POINTS_COUNT; i++) { measured[ch][i][0] += measured[ch][i - 1][0]; } } } } // Shell commands output static int shell_printf(const char *fmt, ...) { va_list ap; int formatted_bytes; va_start(ap, fmt); formatted_bytes = chvprintf(shell_stream, fmt, ap); va_end(ap); return formatted_bytes; } VNA_SHELL_FUNCTION(cmd_pause) { (void)argc; (void)argv; pause_sweep(); } VNA_SHELL_FUNCTION(cmd_resume) { (void)argc; (void)argv; // restore frequencies array and cal update_frequencies(); if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY)) cal_interpolate(lastsaveid); resume_sweep(); } VNA_SHELL_FUNCTION(cmd_reset) { (void)argc; (void)argv; if (argc == 1) { if (strcmp(argv[0], "dfu") == 0) { shell_printf("Performing reset to DFU mode\r\n"); enter_dfu(); return; } } shell_printf("Performing reset\r\n"); rccEnableWWDG(FALSE); WWDG->CFR = 0x60; WWDG->CR = 0xff; /* wait forever */ while (1) ; } const int8_t gain_table[] = { 0, // 0 ~ 300MHz 40, // 300 ~ 600MHz 50, // 600 ~ 900MHz 75, // 900 ~ 1200MHz 85, // 1200 ~ 1500MHz 95, // 1500MHz ~ 95, // 1800MHz ~ 95, // 2100MHz ~ 95 // 2400MHz ~ }; #define DELAY_GAIN_CHANGE 2 static int adjust_gain(uint32_t newfreq) { int new_order = newfreq / FREQ_HARMONICS; int old_order = si5351_get_frequency() / FREQ_HARMONICS; if (new_order != old_order) { tlv320aic3204_set_gain(gain_table[new_order], gain_table[new_order]); return DELAY_GAIN_CHANGE; } return 0; } int set_frequency(uint32_t freq) { int delay = adjust_gain(freq); int8_t ds = drive_strength; if (ds == DRIVE_STRENGTH_AUTO) { ds = freq > FREQ_HARMONICS ? SI5351_CLK_DRIVE_STRENGTH_8MA : SI5351_CLK_DRIVE_STRENGTH_2MA; } delay += si5351_set_frequency(freq, ds); return delay; } // Use macro, std isdigit more big #define _isdigit(c) (c >= '0' && c <= '9') // Rewrite universal standart str to value functions to more compact // // Convert string to int32 static int32_t my_atoi(const char *p) { int32_t value = 0; uint32_t c; bool neg = false; if (*p == '-') {neg = true; p++;} if (*p == '+') p++; while ((c = *p++ - '0') < 10) value = value * 10 + c; return neg ? -value : value; } // Convert string to uint32 // 0x - for hex radix // 0o - for oct radix // 0b - for bin radix // default dec radix static uint32_t my_atoui(const char *p) { uint32_t value = 0, radix = 10, c; if (*p == '+') p++; if (*p == '0') { switch (p[1]) { case 'x': radix = 16; break; case 'o': radix = 8; break; case 'b': radix = 2; break; default: goto calculate; } p+=2; } calculate: while (1) { c = *p++ - '0'; // c = to_upper(*p) - 'A' + 10 if (c >= 'A' - '0') c = (c&(~0x20)) - ('A' - '0') + 10; if (c >= radix) return value; value = value * radix + c; } } double my_atof(const char *p) { int neg = FALSE; if (*p == '-') neg = TRUE; if (*p == '-' || *p == '+') p++; double x = my_atoi(p); while (_isdigit((int)*p)) p++; if (*p == '.') { double d = 1.0f; p++; while (_isdigit((int)*p)) { d /= 10; x += d * (*p - '0'); p++; } } if (*p == 'e' || *p == 'E') { p++; int exp = my_atoi(p); while (exp > 0) { x *= 10; exp--; } while (exp < 0) { x /= 10; exp++; } } if (neg) x = -x; return x; } // // Function used for search substring v in list // Example need search parameter "center" in "start|stop|center|span|cw" getStringIndex return 2 // If not found return -1 // Used for easy parse command arguments static int get_str_index(char *v, const char *list) { int i = 0; while (1) { char *p = v; while (1) { char c = *list; if (c == '|') c = 0; if (c == *p++) { // Found, return index if (c == 0) return i; list++; // Compare next symbol continue; } break; // Not equal, break } // Set new substring ptr while (1) { // End of string, not found if (*list == 0) return -1; if (*list++ == '|') break; } i++; } return -1; } VNA_SHELL_FUNCTION(cmd_offset) { if (argc != 1) { shell_printf("usage: offset {frequency offset(Hz)}\r\n"); return; } int32_t offset = my_atoi(argv[0]); // generate_DSP_Table(offset); si5351_set_frequency_offset(offset); } VNA_SHELL_FUNCTION(cmd_freq) { if (argc != 1) { goto usage; } uint32_t freq = my_atoui(argv[0]); pause_sweep(); set_frequency(freq); return; usage: shell_printf("usage: freq {frequency(Hz)}\r\n"); } VNA_SHELL_FUNCTION(cmd_power) { if (argc != 1) { shell_printf("usage: power {0-3|-1}\r\n"); return; } drive_strength = my_atoi(argv[0]); // set_frequency(frequency); } #ifdef ENABLE_TIME_COMMAND #if HAL_USE_RTC == FALSE #error "Error cmd_time require define HAL_USE_RTC = TRUE in halconf.h" #endif VNA_SHELL_FUNCTION(cmd_time) { RTCDateTime timespec; (void)argc; (void)argv; rtcGetTime(&RTCD1, ×pec); shell_printf("%d/%d/%d %d\r\n", timespec.year+1980, timespec.month, timespec.day, timespec.millisecond); } #endif VNA_SHELL_FUNCTION(cmd_dac) { int value; if (argc != 1) { shell_printf("usage: dac {value(0-4095)}\r\n"\ "current value: %d\r\n", config.dac_value); return; } value = my_atoui(argv[0]); config.dac_value = value; dacPutChannelX(&DACD2, 0, value); } VNA_SHELL_FUNCTION(cmd_threshold) { uint32_t value; if (argc != 1) { shell_printf("usage: threshold {frequency in harmonic mode}\r\n"\ "current: %d\r\n", config.harmonic_freq_threshold); return; } value = my_atoui(argv[0]); config.harmonic_freq_threshold = value; } VNA_SHELL_FUNCTION(cmd_saveconfig) { (void)argc; (void)argv; config_save(); shell_printf("Config saved.\r\n"); } VNA_SHELL_FUNCTION(cmd_clearconfig) { if (argc != 1) { shell_printf("usage: clearconfig {protection key}\r\n"); return; } if (strcmp(argv[0], "1234") != 0) { shell_printf("Key unmatched.\r\n"); return; } clear_all_config_prop_data(); shell_printf("Config and all cal data cleared.\r\n"\ "Do reset manually to take effect. Then do touch cal and save.\r\n"); } static struct { int16_t rms[2]; int16_t ave[2]; int callback_count; #if 0 int32_t last_counter_value; int32_t interval_cycles; int32_t busy_cycles; #endif } stat; VNA_SHELL_FUNCTION(cmd_data) { int i; int sel = 0; float (*array)[2]; if (argc == 1) sel = my_atoi(argv[0]); if (sel == 0 || sel == 1) array = measured[sel]; else if (sel >= 2 && sel < 7) array = cal_data[sel-2]; else goto usage; for (i = 0; i < sweep_points; i++) shell_printf("%f %f\r\n", array[i][0], array[i][1]); return; usage: shell_printf("usage: data [array]\r\n"); } #ifdef ENABLED_DUMP VNA_SHELL_FUNCTION(cmd_dump) { int i, j; int len; if (argc == 1) dump_selection = my_atoi(argv[0]); wait_dsp(3); len = AUDIO_BUFFER_LEN; if (dump_selection == 1 || dump_selection == 2) len /= 2; for (i = 0; i < len; ) { for (j = 0; j < 16; j++, i++) { shell_printf("%04x ", 0xffff & (int)dump_buffer[i]); } shell_printf("\r\n"); } } #endif VNA_SHELL_FUNCTION(cmd_capture) { // read pixel count at one time (PART*2 bytes required for read buffer) (void)argc; (void)argv; int i, y; #if SPI_BUFFER_SIZE < (3*LCD_WIDTH + 1) #error "Low size of spi_buffer for cmd_capture" #endif // read 2 row pixel time (read buffer limit by 2/3 + 1 from spi_buffer size) for (y = 0; y < LCD_HEIGHT; y += 2) { // use uint16_t spi_buffer[2048] (defined in ili9341) for read buffer uint8_t *buf = (uint8_t *)spi_buffer; ili9341_read_memory(0, y, LCD_WIDTH, 2, 2 * LCD_WIDTH, spi_buffer); for (i = 0; i < 4 * LCD_WIDTH; i++) { streamPut(shell_stream, *buf++); } } } #if 0 VNA_SHELL_FUNCTION(cmd_gamma) { float gamma[2]; (void)argc; (void)argv; pause_sweep(); chMtxLock(&mutex); wait_dsp(4); calculate_gamma(gamma); chMtxUnlock(&mutex); shell_printf("%d %d\r\n", gamma[0], gamma[1]); } #endif static void (*sample_func)(float *gamma) = calculate_gamma; VNA_SHELL_FUNCTION(cmd_sample) { if (argc != 1) goto usage; // 0 1 2 static const char cmd_sample_list[] = "gamma|ampl|ref"; switch (get_str_index(argv[0], cmd_sample_list)) { case 0: sample_func = calculate_gamma; return; case 1: sample_func = fetch_amplitude; return; case 2: sample_func = fetch_amplitude_ref; return; default: break; } usage: shell_printf("usage: sample {%s}\r\n", cmd_sample_list); } config_t config = { .magic = CONFIG_MAGIC, .dac_value = 1922, .grid_color = DEFAULT_GRID_COLOR, .menu_normal_color = DEFAULT_MENU_COLOR, .menu_active_color = DEFAULT_MENU_ACTIVE_COLOR, .trace_color = { DEFAULT_TRACE_1_COLOR, DEFAULT_TRACE_2_COLOR, DEFAULT_TRACE_3_COLOR, DEFAULT_TRACE_4_COLOR }, // .touch_cal = { 693, 605, 124, 171 }, // 2.4 inch LCD panel .touch_cal = { 338, 522, 153, 192 }, // 2.8 inch LCD panel // .touch_cal = { 252, 450, 111, 150 }, //4.0" LCD .freq_mode = FREQ_MODE_START_STOP, .harmonic_freq_threshold = 300000000, .vbat_offset = 500, .bandwidth = BANDWIDTH_1000 }; properties_t current_props; properties_t *active_props = ¤t_props; // NanoVNA Default settings static const trace_t def_trace[TRACES_MAX] = {//enable, type, channel, reserved, scale, refpos { 1, TRC_LOGMAG, 0, 0, 10.0, NGRIDY-1 }, { 1, TRC_LOGMAG, 1, 0, 10.0, NGRIDY-1 }, { 1, TRC_SMITH, 0, 0, 1.0, 0 }, { 1, TRC_PHASE, 1, 0, 90.0, NGRIDY/2 } }; static const marker_t def_markers[MARKERS_MAX] = { { 1, 30, 0 }, { 0, 40, 0 }, { 0, 60, 0 }, { 0, 80, 0 } }; // Load propeties default settings void load_default_properties(void) { //Magic add on caldata_save //current_props.magic = CONFIG_MAGIC; current_props._frequency0 = 50000; // start = 50kHz current_props._frequency1 = 900000000; // end = 900MHz current_props._sweep_points = POINTS_COUNT; current_props._cal_status = 0; //This data not loaded by default //current_props._cal_data[5][POINTS_COUNT][2]; //============================================= current_props._electrical_delay = 0.0; memcpy(current_props._trace, def_trace, sizeof(def_trace)); memcpy(current_props._markers, def_markers, sizeof(def_markers)); current_props._velocity_factor = 0.7; current_props._active_marker = 0; current_props._domain_mode = 0; current_props._marker_smith_format = MS_RLC; //Checksum add on caldata_save //current_props.checksum = 0; } int load_properties(uint32_t id){ int r = caldata_recall(id); update_frequencies(); return r; } void ensure_edit_config(void) { if (active_props == ¤t_props) return; //memcpy(¤t_props, active_props, sizeof(config_t)); active_props = ¤t_props; // move to uncal state cal_status = 0; } #ifdef ENABLED_DUMP int16_t dump_buffer[AUDIO_BUFFER_LEN]; int16_t dump_selection = 0; #endif #ifdef ENABLED_DUMP static void duplicate_buffer_to_dump(int16_t *p) { if (dump_selection == 1) p = samp_buf; else if (dump_selection == 2) p = ref_buf; memcpy(dump_buffer, p, sizeof dump_buffer); } #endif // // DMA i2s callback function, called on get 'half' and 'full' buffer size data // need for process data, while DMA fill next buffer void i2s_end_callback(I2SDriver *i2sp, size_t offset, size_t n) { int16_t *p = &rx_buffer[offset]; (void)i2sp; if (wait_count > 0){ if (wait_count <= config.bandwidth+1){ if (wait_count == config.bandwidth+1) reset_dsp_accumerator(); dsp_process(p, n); } #ifdef ENABLED_DUMP duplicate_buffer_to_dump(p); #endif --wait_count; } stat.callback_count++; } static const I2SConfig i2sconfig = { NULL, // TX Buffer rx_buffer, // RX Buffer AUDIO_BUFFER_LEN * 2, // RX Buffer size NULL, // tx callback i2s_end_callback, // rx callback 0, // i2scfgr 0 // i2spr }; #define DSP_START(delay) {wait_count = delay + config.bandwidth;} #define DSP_WAIT_READY while (wait_count) {if (operation_requested && break_on_operation) return false; __WFI();} #define DSP_WAIT while (wait_count) {__WFI();} #define RESET_SWEEP {p_sweep = 0;} #define DELAY_CHANNEL_CHANGE 2 #define SWEEP_CH0_MEASURE 1 #define SWEEP_CH1_MEASURE 2 static uint16_t get_sweep_mode(void){ uint16_t sweep_mode = 0; int t; for (t = 0; t < TRACES_MAX; t++) { if (!trace[t].enabled) continue; if (trace[t].channel == 0) sweep_mode|=SWEEP_CH0_MEASURE; if (trace[t].channel == 1) sweep_mode|=SWEEP_CH1_MEASURE; } return sweep_mode; } // main loop for measurement bool sweep(bool break_on_operation) { int delay; uint16_t sweep_mode = SWEEP_CH0_MEASURE|SWEEP_CH1_MEASURE; if (p_sweep>=sweep_points || break_on_operation == false) RESET_SWEEP; if (break_on_operation && (sweep_mode = get_sweep_mode()) == 0) return false; // blink LED while scanning palClearPad(GPIOC, GPIOC_LED); // Power stabilization after LED off, before measure int st_delay = 3; for (; p_sweep < sweep_points; p_sweep++) { // 5300 if (frequencies[p_sweep] == 0) break; delay = set_frequency(frequencies[p_sweep]); if (sweep_mode & SWEEP_CH0_MEASURE){ tlv320aic3204_select(0); // CH0:REFLECTION, reset and begin measure DSP_START(delay+st_delay); delay = DELAY_CHANNEL_CHANGE; //================================================ // Place some code thats need execute while delay //================================================ DSP_WAIT_READY; (*sample_func)(measured[0][p_sweep]); // calculate reflection coefficient if (cal_status & CALSTAT_APPLY) apply_CH0_error_term_at(p_sweep); } if (sweep_mode & SWEEP_CH1_MEASURE){ tlv320aic3204_select(1); // CH1:TRANSMISSION, reset and begin measure DSP_START(st_delay+delay); //================================================ // Place some code thats need execute while delay //================================================ DSP_WAIT_READY; (*sample_func)(measured[1][p_sweep]); // calculate transmission coefficient if (cal_status & CALSTAT_APPLY) apply_CH1_error_term_at(p_sweep); } st_delay = 0; // Display SPI made noise on measurement (can see in CW mode) // ili9341_fill(OFFSETX+CELLOFFSETX, OFFSETY, (p_sweep * WIDTH)/(sweep_points-1), 1, RGB565(0,0,255)); } // blink LED while scanning palSetPad(GPIOC, GPIOC_LED); return true; } uint32_t get_bandwidth_frequency(void){ return (AUDIO_ADC_FREQ/AUDIO_SAMPLES_COUNT)/(config.bandwidth+1); } VNA_SHELL_FUNCTION(cmd_bandwidth) { if (argc != 1) goto result; config.bandwidth = my_atoui(argv[0])&0xFF; result: shell_printf("bandwidth %d (%uHz)\r\n", config.bandwidth, get_bandwidth_frequency()); } VNA_SHELL_FUNCTION(cmd_scan) { uint32_t start, stop; uint16_t points = sweep_points; int i; if (argc < 2 || argc > 4) { shell_printf("usage: scan {start(Hz)} {stop(Hz)} [points] [outmask]\r\n"); return; } start = my_atoui(argv[0]); stop = my_atoui(argv[1]); if (start == 0 || stop == 0 || start > stop) { shell_printf("frequency range is invalid\r\n"); return; } if (argc >= 3) { points = my_atoui(argv[2]); if (points == 0 || points > POINTS_COUNT) { shell_printf("sweep points exceeds range "define_to_STR(POINTS_COUNT)"\r\n"); return; } } set_frequencies(start, stop, points); if (cal_auto_interpolate && (cal_status & CALSTAT_APPLY)) cal_interpolate(lastsaveid); pause_sweep(); sweep(false); // Output data after if set (faster data recive) if (argc == 4) { uint16_t mask = my_atoui(argv[3]); if (mask) { for (i = 0; i < points; i++) { if (mask & 1) shell_printf("%u ", frequencies[i]); if (mask & 2) shell_printf("%f %f ", measured[0][i][0], measured[0][i][1]); if (mask & 4) shell_printf("%f %f ", measured[1][i][0], measured[1][i][1]); shell_printf("\r\n"); } } } } static void update_marker_index(void) { int m; int i; for (m = 0; m < MARKERS_MAX; m++) { if (!markers[m].enabled) continue; uint32_t f = markers[m].frequency; uint32_t fstart = get_sweep_frequency(ST_START); uint32_t fstop = get_sweep_frequency(ST_STOP); if (f < fstart) { markers[m].index = 0; markers[m].frequency = fstart; } else if (f >= fstop) { markers[m].index = sweep_points-1; markers[m].frequency = fstop; } else { for (i = 0; i < sweep_points-1; i++) { if (frequencies[i] <= f && f < frequencies[i+1]) { markers[m].index = f < (frequencies[i] / 2 + frequencies[i + 1] / 2) ? i : i + 1; break; } } } } } static void set_frequencies(uint32_t start, uint32_t stop, uint16_t points) { uint32_t i; uint32_t step = (points - 1); uint32_t span = stop - start; uint32_t delta = span / step; uint32_t error = span % step; uint32_t f = start, df = step>>1; for (i = 0; i <= step; i++, f+=delta) { frequencies[i] = f; df+=error; if (df >=step) { f++; df -= step; } } // disable at out of sweep range for (; i < POINTS_COUNT; i++) frequencies[i] = 0; } static void update_frequencies(void) { uint32_t start, stop; start = get_sweep_frequency(ST_START); stop = get_sweep_frequency(ST_STOP); set_frequencies(start, stop, sweep_points); // operation_requested|= OP_FREQCHANGE; update_marker_index(); // set grid layout update_grid(); RESET_SWEEP; } void set_sweep_frequency(int type, uint32_t freq) { int cal_applied = cal_status & CALSTAT_APPLY; // Check frequency for out of bounds (minimum SPAN can be any value) if (type != ST_SPAN && freq < START_MIN) freq = START_MIN; if (freq > STOP_MAX) freq = STOP_MAX; ensure_edit_config(); switch (type) { case ST_START: config.freq_mode &= ~FREQ_MODE_CENTER_SPAN; if (frequency0 != freq) { frequency0 = freq; // if start > stop then make start = stop if (frequency1 < freq) frequency1 = freq; } break; case ST_STOP: config.freq_mode &= ~FREQ_MODE_CENTER_SPAN; if (frequency1 != freq) { frequency1 = freq; // if start > stop then make start = stop if (frequency0 > freq) frequency0 = freq; } break; case ST_CENTER: config.freq_mode |= FREQ_MODE_CENTER_SPAN; uint32_t center = frequency0 / 2 + frequency1 / 2; if (center != freq) { uint32_t span = frequency1 - frequency0; if (freq < START_MIN + span / 2) { span = (freq - START_MIN) * 2; } if (freq > STOP_MAX - span / 2) { span = (STOP_MAX - freq) * 2; } frequency0 = freq - span / 2; frequency1 = freq + span / 2; } break; case ST_SPAN: config.freq_mode |= FREQ_MODE_CENTER_SPAN; if (frequency1 - frequency0 != freq) { uint32_t center = frequency0 / 2 + frequency1 / 2; if (center < START_MIN + freq / 2) { center = START_MIN + freq / 2; } if (center > STOP_MAX - freq / 2) { center = STOP_MAX - freq / 2; } frequency0 = center - freq / 2; frequency1 = center + freq / 2; } break; case ST_CW: config.freq_mode |= FREQ_MODE_CENTER_SPAN; if (frequency0 != freq || frequency1 != freq) { frequency0 = freq; frequency1 = freq; } break; } update_frequencies(); if (cal_auto_interpolate && cal_applied) cal_interpolate(lastsaveid); } uint32_t get_sweep_frequency(int type) { // Obsolete, ensure correct start/stop, start always must be < stop if (frequency0 > frequency1) { uint32_t t = frequency0; frequency0 = frequency1; frequency1 = t; } switch (type) { case ST_START: return frequency0; case ST_STOP: return frequency1; case ST_CENTER: return frequency0/2 + frequency1/2; case ST_SPAN: return frequency1 - frequency0; case ST_CW: return frequency0; } return 0; } VNA_SHELL_FUNCTION(cmd_sweep) { if (argc == 0) { shell_printf("%u %u %d\r\n", get_sweep_frequency(ST_START), get_sweep_frequency(ST_STOP), sweep_points); return; } else if (argc > 3) { goto usage; } uint32_t value0 = 0; uint32_t value1 = 0; if (argc >= 1) value0 = my_atoui(argv[0]); if (argc >= 2) value1 = my_atoui(argv[1]); #if MAX_FREQ_TYPE != 5 #error "Sweep mode possibly changed, check cmd_sweep function" #endif // Parse sweep {start|stop|center|span|cw} {freq(Hz)} // get enum ST_START, ST_STOP, ST_CENTER, ST_SPAN, ST_CW static const char sweep_cmd[] = "start|stop|center|span|cw"; if (argc == 2 && value0 == 0) { int type = get_str_index(argv[0], sweep_cmd); if (type == -1) goto usage; set_sweep_frequency(type, value1); return; } // Parse sweep {start(Hz)} [stop(Hz)] if (value0) set_sweep_frequency(ST_START, value0); if (value1) set_sweep_frequency(ST_STOP, value1); return; usage: shell_printf("usage: sweep {start(Hz)} [stop(Hz)]\r\n"\ "\tsweep {%s} {freq(Hz)}\r\n", sweep_cmd); } static void eterm_set(int term, float re, float im) { int i; for (i = 0; i < sweep_points; i++) { cal_data[term][i][0] = re; cal_data[term][i][1] = im; } } static void eterm_copy(int dst, int src) { memcpy(cal_data[dst], cal_data[src], sizeof cal_data[dst]); } #if 0 const struct open_model { float c0; float c1; float c2; float c3; } open_model = { 50, 0, -300, 27 }; #endif #if 0 static void adjust_ed(void) { int i; for (i = 0; i < sweep_points; i++) { // z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0 // s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0) // prepare 1/s11ao to avoid dividing complex float c = 1000e-15; float z0 = 50; //float z = 2 * VNA_PI * frequencies[i] * c * z0; float z = 0.02; cal_data[ETERM_ED][i][0] += z; } } #endif static void eterm_calc_es(void) { int i; for (i = 0; i < sweep_points; i++) { // z=1/(jwc*z0) = 1/(2*pi*f*c*z0) Note: normalized with Z0 // s11ao = (z-1)/(z+1) = (1-1/z)/(1+1/z) = (1-jwcz0)/(1+jwcz0) // prepare 1/s11ao for effeiciency float c = 50e-15; //float c = 1.707e-12; float z0 = 50; float z = 2 * VNA_PI * frequencies[i] * c * z0; float sq = 1 + z*z; float s11aor = (1 - z*z) / sq; float s11aoi = 2*z / sq; // S11mo’= S11mo - Ed // S11ms’= S11ms - Ed float s11or = cal_data[CAL_OPEN][i][0] - cal_data[ETERM_ED][i][0]; float s11oi = cal_data[CAL_OPEN][i][1] - cal_data[ETERM_ED][i][1]; float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0]; float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1]; // Es = (S11mo'/s11ao + S11ms’)/(S11mo' - S11ms’) float numr = s11sr + s11or * s11aor - s11oi * s11aoi; float numi = s11si + s11oi * s11aor + s11or * s11aoi; float denomr = s11or - s11sr; float denomi = s11oi - s11si; sq = denomr*denomr+denomi*denomi; cal_data[ETERM_ES][i][0] = (numr*denomr + numi*denomi)/sq; cal_data[ETERM_ES][i][1] = (numi*denomr - numr*denomi)/sq; } cal_status &= ~CALSTAT_OPEN; cal_status |= CALSTAT_ES; } static void eterm_calc_er(int sign) { int i; for (i = 0; i < sweep_points; i++) { // Er = sign*(1-sign*Es)S11ms' float s11sr = cal_data[CAL_SHORT][i][0] - cal_data[ETERM_ED][i][0]; float s11si = cal_data[CAL_SHORT][i][1] - cal_data[ETERM_ED][i][1]; float esr = cal_data[ETERM_ES][i][0]; float esi = cal_data[ETERM_ES][i][1]; if (sign > 0) { esr = -esr; esi = -esi; } esr = 1 + esr; float err = esr * s11sr - esi * s11si; float eri = esr * s11si + esi * s11sr; if (sign < 0) { err = -err; eri = -eri; } cal_data[ETERM_ER][i][0] = err; cal_data[ETERM_ER][i][1] = eri; } cal_status &= ~CALSTAT_SHORT; cal_status |= CALSTAT_ER; } // CAUTION: Et is inversed for efficiency static void eterm_calc_et(void) { int i; for (i = 0; i < sweep_points; i++) { // Et = 1/(S21mt - Ex) float etr = cal_data[CAL_THRU][i][0] - cal_data[CAL_ISOLN][i][0]; float eti = cal_data[CAL_THRU][i][1] - cal_data[CAL_ISOLN][i][1]; float sq = etr*etr + eti*eti; float invr = etr / sq; float invi = -eti / sq; cal_data[ETERM_ET][i][0] = invr; cal_data[ETERM_ET][i][1] = invi; } cal_status &= ~CALSTAT_THRU; cal_status |= CALSTAT_ET; } #if 0 void apply_error_term(void) { int i; for (i = 0; i < sweep_points; i++) { // S11m' = S11m - Ed // S11a = S11m' / (Er + Es S11m') float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0]; float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1]; float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1]; float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0]; float sq = err*err + eri*eri; float s11ar = (s11mr * err + s11mi * eri) / sq; float s11ai = (s11mi * err - s11mr * eri) / sq; measured[0][i][0] = s11ar; measured[0][i][1] = s11ai; // CAUTION: Et is inversed for efficiency // S21m' = S21m - Ex // S21a = S21m' (1-EsS11a)Et float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0]; float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1]; float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai); float esi = - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai); float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1]; float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0]; float s21ar = s21mr * etr - s21mi * eti; float s21ai = s21mi * etr + s21mr * eti; measured[1][i][0] = s21ar; measured[1][i][1] = s21ai; } } static void apply_error_term_at(int i) { // S11m' = S11m - Ed // S11a = S11m' / (Er + Es S11m') float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0]; float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1]; float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1]; float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0]; float sq = err*err + eri*eri; float s11ar = (s11mr * err + s11mi * eri) / sq; float s11ai = (s11mi * err - s11mr * eri) / sq; measured[0][i][0] = s11ar; measured[0][i][1] = s11ai; // CAUTION: Et is inversed for efficiency // S21m' = S21m - Ex // S21a = S21m' (1-EsS11a)Et float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0]; float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1]; #if 0 float esr = 1 - (cal_data[ETERM_ES][i][0] * s11ar - cal_data[ETERM_ES][i][1] * s11ai); float esi = 0 - (cal_data[ETERM_ES][i][1] * s11ar + cal_data[ETERM_ES][i][0] * s11ai); float etr = esr * cal_data[ETERM_ET][i][0] - esi * cal_data[ETERM_ET][i][1]; float eti = esr * cal_data[ETERM_ET][i][1] + esi * cal_data[ETERM_ET][i][0]; float s21ar = s21mr * etr - s21mi * eti; float s21ai = s21mi * etr + s21mr * eti; #else // Not made CH1 correction by CH0 data float s21ar = s21mr * cal_data[ETERM_ET][i][0] - s21mi * cal_data[ETERM_ET][i][1]; float s21ai = s21mi * cal_data[ETERM_ET][i][0] + s21mr * cal_data[ETERM_ET][i][1]; #endif measured[1][i][0] = s21ar; measured[1][i][1] = s21ai; } #endif static void apply_CH0_error_term_at(int i) { // S11m' = S11m - Ed // S11a = S11m' / (Er + Es S11m') float s11mr = measured[0][i][0] - cal_data[ETERM_ED][i][0]; float s11mi = measured[0][i][1] - cal_data[ETERM_ED][i][1]; float err = cal_data[ETERM_ER][i][0] + s11mr * cal_data[ETERM_ES][i][0] - s11mi * cal_data[ETERM_ES][i][1]; float eri = cal_data[ETERM_ER][i][1] + s11mr * cal_data[ETERM_ES][i][1] + s11mi * cal_data[ETERM_ES][i][0]; float sq = err*err + eri*eri; float s11ar = (s11mr * err + s11mi * eri) / sq; float s11ai = (s11mi * err - s11mr * eri) / sq; measured[0][i][0] = s11ar; measured[0][i][1] = s11ai; } static void apply_CH1_error_term_at(int i) { // CAUTION: Et is inversed for efficiency // S21a = (S21m - Ex) * Et float s21mr = measured[1][i][0] - cal_data[ETERM_EX][i][0]; float s21mi = measured[1][i][1] - cal_data[ETERM_EX][i][1]; // Not made CH1 correction by CH0 data float s21ar = s21mr * cal_data[ETERM_ET][i][0] - s21mi * cal_data[ETERM_ET][i][1]; float s21ai = s21mi * cal_data[ETERM_ET][i][0] + s21mr * cal_data[ETERM_ET][i][1]; measured[1][i][0] = s21ar; measured[1][i][1] = s21ai; } static void apply_edelay(void) { int i; uint16_t sweep_mode = get_sweep_mode(); for (i=0;i_frequency0; // lower than start freq of src range for (i = 0; i < sweep_points; i++) { if (frequencies[i] >= src_f) break; // fill cal_data at head of src range for (eterm = 0; eterm < 5; eterm++) { cal_data[eterm][i][0] = src->_cal_data[eterm][0][0]; cal_data[eterm][i][1] = src->_cal_data[eterm][0][1]; } } // ReBuild src freq list uint32_t src_points = (src->_sweep_points - 1); uint32_t span = src->_frequency1 - src->_frequency0; uint32_t delta = span / src_points; uint32_t error = span % src_points; uint32_t df = src_points>>1; j = 0; for (; i < sweep_points; i++) { uint32_t f = frequencies[i]; if (f == 0) goto interpolate_finish; for (; j < src_points; j++) { if (src_f <= f && f < src_f + delta) { // found f between freqs at j and j+1 float k1 = (delta == 0) ? 0.0 : (float)(f - src_f) / delta; // avoid glitch between freqs in different harmonics mode uint16_t idx = j; if (si5351_get_harmonic_lvl(src_f) != si5351_get_harmonic_lvl(src_f+delta)) { // f in prev harmonic, need extrapolate from prev 2 points if (si5351_get_harmonic_lvl(f) == si5351_get_harmonic_lvl(src_f)){ if (idx >=1){ idx--; k1+= 1.0; } else // point limit k1 = 0.0; } // f in next harmonic, need extrapolate from next 2 points else { if (idx_cal_data[eterm][idx][0] * k0 + src->_cal_data[eterm][idx+1][0] * k1; cal_data[eterm][i][1] = src->_cal_data[eterm][idx][1] * k0 + src->_cal_data[eterm][idx+1][1] * k1; } break; } df+=error;if (df >=src_points) {src_f++;df -= src_points;} src_f+=delta; } if (j == src_points) break; } // upper than end freq of src range for (; i < sweep_points; i++) { // fill cal_data at tail of src for (eterm = 0; eterm < 5; eterm++) { cal_data[eterm][i][0] = src->_cal_data[eterm][src_points][0]; cal_data[eterm][i][1] = src->_cal_data[eterm][src_points][1]; } } interpolate_finish: cal_status |= src->_cal_status | CALSTAT_APPLY | CALSTAT_INTERPOLATED; redraw_request |= REDRAW_CAL_STATUS; } VNA_SHELL_FUNCTION(cmd_cal) { static const char *items[] = { "load", "open", "short", "thru", "isoln", "Es", "Er", "Et", "cal'ed" }; if (argc == 0) { int i; for (i = 0; i < 9; i++) { if (cal_status & (1< 1) ? my_atoi(argv[1]) : 0); return; default: break; } shell_printf("usage: cal [%s]\r\n", cmd_cal_list); } VNA_SHELL_FUNCTION(cmd_save) { if (argc != 1) goto usage; int id = my_atoi(argv[0]); if (id < 0 || id >= SAVEAREA_MAX) goto usage; caldata_save(id); redraw_request |= REDRAW_CAL_STATUS; return; usage: shell_printf("save {id}\r\n"); } VNA_SHELL_FUNCTION(cmd_recall) { if (argc != 1) goto usage; int id = my_atoi(argv[0]); if (id < 0 || id >= SAVEAREA_MAX) goto usage; // Check for success if (load_properties(id) == -1) shell_printf("Err, default load\r\n"); redraw_request |= REDRAW_CAL_STATUS; return; usage: shell_printf("recall {id}\r\n"); } static const struct { const char *name; uint16_t refpos; float scale_unit; } trace_info[MAX_TRACE_TYPE-1] = { { "LOGMAG", NGRIDY-1, 10.0 }, { "PHASE", NGRIDY/2, 90.0 }, { "DELAY", NGRIDY/2, 1e-9 }, { "SMITH", 0, 1.00 }, { "POLAR", 0, 1.00 }, { "LINEAR", 0, 0.125}, { "SWR", 0, 0.25 }, { "REAL", NGRIDY/2, 0.25 }, { "IMAG", NGRIDY/2, 0.25 }, { "R", NGRIDY/2, 100.0 }, { "X", NGRIDY/2, 100.0 } }; static const char * const trc_channel_name[] = { "CH0", "CH1" }; const char *get_trace_typename(int t) { return trace_info[trace[t].type].name; } void set_trace_type(int t, int type) { int enabled = type != TRC_OFF; int force = FALSE; if (trace[t].enabled != enabled) { trace[t].enabled = enabled; force = TRUE; } if (trace[t].type != type) { trace[t].type = type; // Set default trace refpos trace[t].refpos = trace_info[type].refpos; // Set default trace scale trace[t].scale = trace_info[type].scale_unit; force = TRUE; } if (force) { plot_into_index(measured); force_set_markmap(); } } void set_trace_channel(int t, int channel) { if (trace[t].channel != channel) { trace[t].channel = channel; force_set_markmap(); } } void set_trace_scale(int t, float scale) { if (trace[t].scale != scale) { trace[t].scale = scale; force_set_markmap(); } } float get_trace_scale(int t) { return trace[t].scale; } void set_trace_refpos(int t, float refpos) { if (trace[t].refpos != refpos) { trace[t].refpos = refpos; force_set_markmap(); } } float get_trace_refpos(int t) { return trace[t].refpos; } VNA_SHELL_FUNCTION(cmd_trace) { int t; if (argc == 0) { for (t = 0; t < TRACES_MAX; t++) { if (trace[t].enabled) { const char *type = get_trace_typename(t); const char *channel = trc_channel_name[trace[t].channel]; float scale = get_trace_scale(t); float refpos = get_trace_refpos(t); shell_printf("%d %s %s %f %f\r\n", t, type, channel, scale, refpos); } } return; } if (strcmp(argv[0], "all") == 0 && argc > 1 && strcmp(argv[1], "off") == 0) { for (t = 0; t < TRACES_MAX; t++) set_trace_type(t, TRC_OFF); goto exit; } t = my_atoi(argv[0]); if (t < 0 || t >= TRACES_MAX) goto usage; if (argc == 1) { const char *type = get_trace_typename(t); const char *channel = trc_channel_name[trace[t].channel]; shell_printf("%d %s %s\r\n", t, type, channel); return; } #if MAX_TRACE_TYPE != 12 #error "Trace type enum possibly changed, check cmd_trace function" #endif // enum TRC_LOGMAG, TRC_PHASE, TRC_DELAY, TRC_SMITH, TRC_POLAR, TRC_LINEAR, TRC_SWR, TRC_REAL, TRC_IMAG, TRC_R, TRC_X, TRC_OFF static const char cmd_type_list[] = "logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|off"; int type = get_str_index(argv[1], cmd_type_list); if (type >= 0) { set_trace_type(t, type); goto check_ch_num; } // 0 1 static const char cmd_scale_ref_list[] = "scale|refpos"; if (argc >= 3) { switch (get_str_index(argv[1], cmd_scale_ref_list)) { case 0: //trace[t].scale = my_atof(argv[2]); set_trace_scale(t, my_atof(argv[2])); goto exit; case 1: //trace[t].refpos = my_atof(argv[2]); set_trace_refpos(t, my_atof(argv[2])); goto exit; default: goto usage; } } check_ch_num: if (argc > 2) { int src = my_atoi(argv[2]); if (src != 0 && src != 1) goto usage; trace[t].channel = src; } exit: return; usage: shell_printf("trace {0|1|2|3|all} [%s] [src]\r\n"\ "trace {0|1|2|3} {%s} {value}\r\n", cmd_type_list, cmd_scale_ref_list); } void set_electrical_delay(float picoseconds) { if (electrical_delay != picoseconds) { electrical_delay = picoseconds; force_set_markmap(); } redraw_request |= REDRAW_MARKER; } float get_electrical_delay(void) { return electrical_delay; } VNA_SHELL_FUNCTION(cmd_edelay) { if (argc == 0) { shell_printf("%f\r\n", electrical_delay); return; } if (argc > 0) { set_electrical_delay(my_atof(argv[0])); } } VNA_SHELL_FUNCTION(cmd_marker) { int t; if (argc == 0) { for (t = 0; t < MARKERS_MAX; t++) { if (markers[t].enabled) { shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency); } } return; } redraw_request |= REDRAW_MARKER; if (strcmp(argv[0], "off") == 0) { active_marker = -1; for (t = 0; t < MARKERS_MAX; t++) markers[t].enabled = FALSE; return; } t = my_atoi(argv[0])-1; if (t < 0 || t >= MARKERS_MAX) goto usage; if (argc == 1) { shell_printf("%d %d %d\r\n", t+1, markers[t].index, markers[t].frequency); active_marker = t; // select active marker markers[t].enabled = TRUE; return; } static const char cmd_marker_list[] = "on|off"; switch (get_str_index(argv[1], cmd_marker_list)) { case 0: markers[t].enabled = TRUE; active_marker = t; return; case 1: markers[t].enabled =FALSE; if (active_marker == t) active_marker = -1; return; default: // select active marker and move to index markers[t].enabled = TRUE; int index = my_atoi(argv[1]); markers[t].index = index; markers[t].frequency = frequencies[index]; active_marker = t; return; } usage: shell_printf("marker [n] [%s|{index}]\r\n", cmd_marker_list); } VNA_SHELL_FUNCTION(cmd_touchcal) { (void)argc; (void)argv; //extern int16_t touch_cal[4]; int i; shell_printf("first touch upper left, then lower right..."); touch_cal_exec(); shell_printf("done\r\n"); shell_printf("touch cal params: "); for (i = 0; i < 4; i++) { shell_printf("%d ", config.touch_cal[i]); } shell_printf("\r\n"); } VNA_SHELL_FUNCTION(cmd_touchtest) { (void)argc; (void)argv; do { touch_draw_test(); } while (argc); } VNA_SHELL_FUNCTION(cmd_frequencies) { int i; (void)argc; (void)argv; for (i = 0; i < sweep_points; i++) { if (frequencies[i] != 0) shell_printf("%u\r\n", frequencies[i]); } } static void set_domain_mode(int mode) // accept DOMAIN_FREQ or DOMAIN_TIME { if (mode != (domain_mode & DOMAIN_MODE)) { domain_mode = (domain_mode & ~DOMAIN_MODE) | (mode & DOMAIN_MODE); redraw_request |= REDRAW_FREQUENCY; uistat.lever_mode = LM_MARKER; } } static void set_timedomain_func(int func) // accept TD_FUNC_LOWPASS_IMPULSE, TD_FUNC_LOWPASS_STEP or TD_FUNC_BANDPASS { domain_mode = (domain_mode & ~TD_FUNC) | (func & TD_FUNC); } static void set_timedomain_window(int func) // accept TD_WINDOW_MINIMUM/TD_WINDOW_NORMAL/TD_WINDOW_MAXIMUM { domain_mode = (domain_mode & ~TD_WINDOW) | (func & TD_WINDOW); } VNA_SHELL_FUNCTION(cmd_transform) { int i; if (argc == 0) { goto usage; } // 0 1 2 3 4 5 6 7 static const char cmd_transform_list[] = "on|off|impulse|step|bandpass|minimum|normal|maximum"; for (i = 0; i < argc; i++) { switch (get_str_index(argv[i], cmd_transform_list)) { case 0: set_domain_mode(DOMAIN_TIME); return; case 1: set_domain_mode(DOMAIN_FREQ); return; case 2: set_timedomain_func(TD_FUNC_LOWPASS_IMPULSE); return; case 3: set_timedomain_func(TD_FUNC_LOWPASS_STEP); return; case 4: set_timedomain_func(TD_FUNC_BANDPASS); return; case 5: set_timedomain_window(TD_WINDOW_MINIMUM); return; case 6: set_timedomain_window(TD_WINDOW_NORMAL); return; case 7: set_timedomain_window(TD_WINDOW_MAXIMUM); return; default: goto usage; } } return; usage: shell_printf("usage: transform {%s} [...]\r\n", cmd_transform_list); } VNA_SHELL_FUNCTION(cmd_test) { (void)argc; (void)argv; #if 0 int i; for (i = 0; i < 100; i++) { palClearPad(GPIOC, GPIOC_LED); set_frequency(10000000); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); palClearPad(GPIOC, GPIOC_LED); set_frequency(90000000); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); } #endif #if 0 int i; int mode = 0; if (argc >= 1) mode = my_atoi(argv[0]); for (i = 0; i < 20; i++) { palClearPad(GPIOC, GPIOC_LED); ili9341_test(mode); palSetPad(GPIOC, GPIOC_LED); chThdSleepMilliseconds(50); } #endif #if 0 //extern adcsample_t adc_samples[2]; //shell_printf("adc: %d %d\r\n", adc_samples[0], adc_samples[1]); int i; int x, y; for (i = 0; i < 50; i++) { test_touch(&x, &y); shell_printf("adc: %d %d\r\n", x, y); chThdSleepMilliseconds(200); } //extern int touch_x, touch_y; //shell_printf("adc: %d %d\r\n", touch_x, touch_y); #endif while (argc > 1) { int x, y; touch_position(&x, &y); shell_printf("touch: %d %d\r\n", x, y); chThdSleepMilliseconds(200); } } VNA_SHELL_FUNCTION(cmd_gain) { int rvalue; int lvalue = 0; if (argc != 1 && argc != 2) { shell_printf("usage: gain {lgain(0-95)} [rgain(0-95)]\r\n"); return; } rvalue = my_atoi(argv[0]); if (argc == 2) lvalue = my_atoi(argv[1]); tlv320aic3204_set_gain(lvalue, rvalue); } VNA_SHELL_FUNCTION(cmd_port) { int port; if (argc != 1) { shell_printf("usage: port {0:TX 1:RX}\r\n"); return; } port = my_atoi(argv[0]); tlv320aic3204_select(port); } VNA_SHELL_FUNCTION(cmd_stat) { int16_t *p = &rx_buffer[0]; int32_t acc0, acc1; int32_t ave0, ave1; // float sample[2], ref[2]; // minr, maxr, mins, maxs; int32_t count = AUDIO_BUFFER_LEN; int i; (void)argc; (void)argv; for (int ch=0;ch<2;ch++){ tlv320aic3204_select(ch); DSP_START(4); DSP_WAIT; // reset_dsp_accumerator(); // dsp_process(&p[ 0], AUDIO_BUFFER_LEN); // dsp_process(&p[AUDIO_BUFFER_LEN], AUDIO_BUFFER_LEN); acc0 = acc1 = 0; for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) { acc0 += p[i ]; acc1 += p[i+1]; } ave0 = acc0 / count; ave1 = acc1 / count; acc0 = acc1 = 0; // minr = maxr = 0; // mins = maxs = 0; for (i = 0; i < AUDIO_BUFFER_LEN*2; i += 2) { acc0 += (p[i ] - ave0)*(p[i ] - ave0); acc1 += (p[i+1] - ave1)*(p[i+1] - ave1); // if (minr < p[i ]) minr = p[i ]; // if (maxr > p[i ]) maxr = p[i ]; // if (mins < p[i+1]) mins = p[i+1]; // if (maxs > p[i+1]) maxs = p[i+1]; } stat.rms[0] = sqrtf(acc0 / count); stat.rms[1] = sqrtf(acc1 / count); stat.ave[0] = ave0; stat.ave[1] = ave1; shell_printf("Ch: %d\r\n", ch); shell_printf("average: r: %6d s: %6d\r\n", stat.ave[0], stat.ave[1]); shell_printf("rms: r: %6d s: %6d\r\n", stat.rms[0], stat.rms[1]); // shell_printf("min: ref %6d ch %6d\r\n", minr, mins); // shell_printf("max: ref %6d ch %6d\r\n", maxr, maxs); } //shell_printf("callback count: %d\r\n", stat.callback_count); //shell_printf("interval cycle: %d\r\n", stat.interval_cycles); //shell_printf("busy cycle: %d\r\n", stat.busy_cycles); //shell_printf("load: %d\r\n", stat.busy_cycles * 100 / stat.interval_cycles); // extern int awd_count; // shell_printf("awd: %d\r\n", awd_count); } #ifndef VERSION #define VERSION "unknown" #endif const char NANOVNA_VERSION[] = VERSION; VNA_SHELL_FUNCTION(cmd_version) { (void)argc; (void)argv; shell_printf("%s\r\n", NANOVNA_VERSION); } VNA_SHELL_FUNCTION(cmd_vbat) { (void)argc; (void)argv; shell_printf("%d mV\r\n", adc_vbat_read()); } #ifdef ENABLE_VBAT_OFFSET_COMMAND VNA_SHELL_FUNCTION(cmd_vbat_offset) { if (argc != 1) { shell_printf("%d\r\n", config.vbat_offset); return; } config.vbat_offset = (int16_t)my_atoi(argv[0]); } #endif #ifdef ENABLE_INFO_COMMAND VNA_SHELL_FUNCTION(cmd_info) { (void)argc; (void)argv; int i = 0; while (info_about[i]) shell_printf("%s\r\n", info_about[i++]); } #endif #ifdef ENABLE_COLOR_COMMAND VNA_SHELL_FUNCTION(cmd_color) { uint32_t color; int i; if (argc != 2) { shell_printf("usage: color {id} {rgb24}\r\n"); for (i=-3; i < TRACES_MAX; i++) { #if 0 switch(i) { case -3: color = config.grid_color; break; case -2: color = config.menu_normal_color; break; case -1: color = config.menu_active_color; break; default: color = config.trace_color[i];break; } #else // WARNING!!! Dirty hack for size, depend from config struct color = config.trace_color[i]; #endif color = ((color >> 3) & 0x001c00) | ((color >> 5) & 0x0000f8) | ((color << 16) & 0xf80000) | ((color << 13) & 0x00e000); // color = (color>>8)|(color<<8); // color = ((color<<8)&0xF80000)|((color<<5)&0x00FC00)|((color<<3)&0x0000F8); shell_printf(" %d: 0x%06x\r\n", i, color); } return; } i = my_atoi(argv[0]); if (i < -3 && i >= TRACES_MAX) return; color = RGBHEX(my_atoui(argv[1])); #if 0 switch(i) { case -3: config.grid_color = color; break; case -2: config.menu_normal_color = color; break; case -1: config.menu_active_color = color; break; default: config.trace_color[i] = color;break; } #else // WARNING!!! Dirty hack for size, depend from config struct config.trace_color[i] = color; #endif // Redraw all redraw_request|= REDRAW_AREA; } #endif #ifdef ENABLE_I2C_COMMAND VNA_SHELL_FUNCTION(cmd_i2c){ (void)argc; uint8_t page = my_atoui(argv[0]); uint8_t reg = my_atoui(argv[1]); uint8_t data = my_atoui(argv[2]); uint8_t d1[] = {0x00, page}; uint8_t d2[] = { reg, data}; i2cAcquireBus(&I2CD1); (void)i2cMasterTransmitTimeout(&I2CD1, 0x18, d1, 2, NULL, 0, 1000); (void)i2cMasterTransmitTimeout(&I2CD1, 0x18, d2, 2, NULL, 0, 1000); i2cReleaseBus(&I2CD1); } #endif #ifdef ENABLE_THREADS_COMMAND #if CH_CFG_USE_REGISTRY == FALSE #error "Threads Requite enabled CH_CFG_USE_REGISTRY in chconf.h" #endif VNA_SHELL_FUNCTION(cmd_threads) { static const char *states[] = {CH_STATE_NAMES}; thread_t *tp; (void)argc; (void)argv; shell_printf("stklimit| stack|stk free| addr|refs|prio| state| name"VNA_SHELL_NEWLINE_STR); tp = chRegFirstThread(); do { uint32_t max_stack_use = 0U; #if (CH_DBG_ENABLE_STACK_CHECK == TRUE) || (CH_CFG_USE_DYNAMIC == TRUE) uint32_t stklimit = (uint32_t)tp->wabase; #if CH_DBG_FILL_THREADS == TRUE uint8_t *p = (uint8_t *)tp->wabase; while(p[max_stack_use]==CH_DBG_STACK_FILL_VALUE) max_stack_use++; #endif #else uint32_t stklimit = 0U; #endif shell_printf("%08x|%08x|%08x|%08x|%4u|%4u|%9s|%12s"VNA_SHELL_NEWLINE_STR, stklimit, (uint32_t)tp->ctx.sp, max_stack_use, (uint32_t)tp, (uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state], tp->name == NULL ? "" : tp->name); tp = chRegNextThread(tp); } while (tp != NULL); } #endif //============================================================================= VNA_SHELL_FUNCTION(cmd_help); #pragma pack(push, 2) typedef struct { const char *sc_name; vna_shellcmd_t sc_function; uint16_t flags; } VNAShellCommand; #pragma pack(pop) // Some commands can executed only in sweep thread, not in main cycle #define CMD_WAIT_MUTEX 1 static const VNAShellCommand commands[] = { {"version" , cmd_version , 0}, {"reset" , cmd_reset , 0}, {"freq" , cmd_freq , CMD_WAIT_MUTEX}, {"offset" , cmd_offset , CMD_WAIT_MUTEX}, {"bandwidth" , cmd_bandwidth , 0}, #ifdef ENABLE_TIME_COMMAND {"time" , cmd_time , 0}, #endif {"dac" , cmd_dac , 0}, {"saveconfig" , cmd_saveconfig , 0}, {"clearconfig" , cmd_clearconfig , 0}, {"data" , cmd_data , CMD_WAIT_MUTEX}, #ifdef ENABLED_DUMP {"dump" , cmd_dump , 0}, #endif {"frequencies" , cmd_frequencies , 0}, {"port" , cmd_port , 0}, {"stat" , cmd_stat , CMD_WAIT_MUTEX}, {"gain" , cmd_gain , CMD_WAIT_MUTEX}, {"power" , cmd_power , 0}, {"sample" , cmd_sample , 0}, // {"gamma" , cmd_gamma , 0}, {"scan" , cmd_scan , CMD_WAIT_MUTEX}, {"sweep" , cmd_sweep , 0}, {"test" , cmd_test , 0}, {"touchcal" , cmd_touchcal , CMD_WAIT_MUTEX}, {"touchtest" , cmd_touchtest , CMD_WAIT_MUTEX}, {"pause" , cmd_pause , 0}, {"resume" , cmd_resume , 0}, {"cal" , cmd_cal , CMD_WAIT_MUTEX}, {"save" , cmd_save , 0}, {"recall" , cmd_recall , CMD_WAIT_MUTEX}, {"trace" , cmd_trace , 0}, {"marker" , cmd_marker , 0}, {"edelay" , cmd_edelay , 0}, {"capture" , cmd_capture , CMD_WAIT_MUTEX}, {"vbat" , cmd_vbat , 0}, #ifdef ENABLE_VBAT_OFFSET_COMMAND {"vbat_offset" , cmd_vbat_offset , 0}, #endif {"transform" , cmd_transform , 0}, {"threshold" , cmd_threshold , 0}, {"help" , cmd_help , 0}, #ifdef ENABLE_INFO_COMMAND {"info" , cmd_info , 0}, #endif #ifdef ENABLE_COLOR_COMMAND {"color" , cmd_color , 0}, #endif #ifdef ENABLE_I2C_COMMAND {"i2c" , cmd_i2c , CMD_WAIT_MUTEX}, #endif #ifdef ENABLE_THREADS_COMMAND {"threads" , cmd_threads , 0}, #endif {NULL , NULL , 0} }; VNA_SHELL_FUNCTION(cmd_help) { (void)argc; (void)argv; const VNAShellCommand *scp = commands; shell_printf("Commands:"); while (scp->sc_name != NULL) { shell_printf(" %s", scp->sc_name); scp++; } shell_printf(VNA_SHELL_NEWLINE_STR); return; } /* * VNA shell functions */ // // Read command line from shell_stream // static int VNAShell_readLine(char *line, int max_size) { // Read line from input stream uint8_t c; char *ptr = line; while (1) { // Return 0 only if stream not active if (streamRead(shell_stream, &c, 1) == 0) return 0; // Backspace or Delete if (c == 8 || c == 0x7f) { if (ptr != line) { static const char backspace[] = {0x08, 0x20, 0x08, 0x00}; shell_printf(backspace); ptr--; } continue; } // New line (Enter) if (c == '\r') { shell_printf(VNA_SHELL_NEWLINE_STR); *ptr = 0; return 1; } // Others (skip) if (c < 0x20) continue; // Store if (ptr < line + max_size - 1) { streamPut(shell_stream, c); // Echo *ptr++ = (char)c; } } return 0; } // // Parse and run command line // static void VNAShell_executeLine(char *line) { // Parse and execute line char *lp = line, *ep; shell_nargs = 0; while (*lp != 0) { // Skipping white space and tabs at string begin. while (*lp == ' ' || *lp == '\t') lp++; // If an argument starts with a double quote then its delimiter is another quote, else // delimiter is white space. ep = (*lp == '"') ? strpbrk(++lp, "\"") : strpbrk(lp, " \t"); // Store in args string shell_args[shell_nargs++] = lp; // Stop, end of input string if ((lp = ep) == NULL) break; // Argument limits check if (shell_nargs > VNA_SHELL_MAX_ARGUMENTS) { shell_printf("too many arguments, max " define_to_STR( VNA_SHELL_MAX_ARGUMENTS) "" VNA_SHELL_NEWLINE_STR); return; } // Set zero at the end of string and continue check *lp++ = 0; } if (shell_nargs == 0) return; // Execute line const VNAShellCommand *scp; for (scp = commands; scp->sc_name != NULL; scp++) { if (strcmp(scp->sc_name, shell_args[0]) == 0) { if (scp->flags & CMD_WAIT_MUTEX) { shell_function = scp->sc_function; // Wait execute command in sweep thread do { osalThreadSleepMilliseconds(100); } while (shell_function); } else { scp->sc_function(shell_nargs - 1, &shell_args[1]); } return; } } shell_printf("%s?" VNA_SHELL_NEWLINE_STR, shell_args[0]); } #ifdef VNA_SHELL_THREAD static THD_WORKING_AREA(waThread2, /* cmd_* max stack size + alpha */442); THD_FUNCTION(myshellThread, p) { (void)p; chRegSetThreadName("shell"); shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR); while (true) { shell_printf(VNA_SHELL_PROMPT_STR); if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH)) VNAShell_executeLine(shell_line); else // Putting a delay in order to avoid an endless loop trying to read an unavailable stream. osalThreadSleepMilliseconds(100); } } #endif // I2C clock bus setting: depend from STM32_I2C1SW in mcuconf.h static const I2CConfig i2ccfg = { .timingr = // TIMINGR register initialization. (use I2C timing configuration tool for STM32F3xx and STM32F0xx microcontrollers (AN4235)) #if STM32_I2C1SW == STM32_I2C1SW_HSI // STM32_I2C1SW == STM32_I2C1SW_HSI (HSI=8MHz) // 400kHz @ HSI 8MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual) STM32_TIMINGR_PRESC(0U) | STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(1U) | STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U), // Old values voodoo magic 400kHz @ HSI 8MHz //0x00300506, #elif STM32_I2C1SW == STM32_I2C1SW_SYSCLK // STM32_I2C1SW == STM32_I2C1SW_SYSCLK (SYSCLK = 48MHz) // 400kHz @ SYSCLK 48MHz (Use 26.4.10 I2C_TIMINGR register configuration examples from STM32 RM0091 Reference manual) // STM32_TIMINGR_PRESC(5U) | // STM32_TIMINGR_SCLDEL(3U) | STM32_TIMINGR_SDADEL(3U) | // STM32_TIMINGR_SCLH(3U) | STM32_TIMINGR_SCLL(9U), // 600kHz @ SYSCLK 48MHz, manually get values, x1.5 I2C speed, but need calc timings STM32_TIMINGR_PRESC(3U) | STM32_TIMINGR_SCLDEL(2U) | STM32_TIMINGR_SDADEL(2U) | STM32_TIMINGR_SCLH(4U) | STM32_TIMINGR_SCLL(4U), #else #error "Need Define STM32_I2C1SW and set correct TIMINGR settings" #endif .cr1 = 0, // CR1 register initialization. .cr2 = 0 // CR2 register initialization. }; static DACConfig dac1cfg1 = { //init: 2047U, init: 1922U, datamode: DAC_DHRM_12BIT_RIGHT }; // Main thread stack size defined in makefile USE_PROCESS_STACKSIZE = 0x200 // Profile stack usage (enable threads command by def ENABLE_THREADS_COMMAND) show: // Stack maximum usage = 472 bytes (need test more and run all commands), free stack = 40 bytes // int main(void) { halInit(); chSysInit(); // generate_DSP_Table(FREQUENCY_OFFSET); //palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN); //palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(1) | PAL_STM32_OTYPE_OPENDRAIN); i2cStart(&I2CD1, &i2ccfg); si5351_init(); // MCO on PA8 //palSetPadMode(GPIOA, 8, PAL_MODE_ALTERNATE(0)); /* * Initializes a serial-over-USB CDC driver. */ sduObjectInit(&SDU1); sduStart(&SDU1, &serusbcfg); /* * Activates the USB driver and then the USB bus pull-up on D+. * Note, a delay is inserted in order to not have to disconnect the cable * after a reset. */ usbDisconnectBus(serusbcfg.usbp); chThdSleepMilliseconds(100); usbStart(serusbcfg.usbp, &usbcfg); usbConnectBus(serusbcfg.usbp); /* * SPI LCD Initialize */ ili9341_init(); /* restore config */ config_recall(); /* restore frequencies and calibration 0 slot properties from flash memory */ load_properties(0); dac1cfg1.init = config.dac_value; /* * Starting DAC1 driver, setting up the output pin as analog as suggested * by the Reference Manual. */ dacStart(&DACD2, &dac1cfg1); /* * I2S Initialize */ tlv320aic3204_init(); i2sInit(); i2sObjectInit(&I2SD2); i2sStart(&I2SD2, &i2sconfig); i2sStartExchange(&I2SD2); ui_init(); //Initialize graph plotting plot_init(); redraw_frame(); chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO-1, Thread1, NULL); while (1) { if (SDU1.config->usbp->state == USB_ACTIVE) { #ifdef VNA_SHELL_THREAD #if CH_CFG_USE_WAITEXIT == FALSE #error "VNA_SHELL_THREAD use chThdWait, need enable CH_CFG_USE_WAITEXIT in chconf.h" #endif thread_t *shelltp = chThdCreateStatic(waThread2, sizeof(waThread2), NORMALPRIO + 1, myshellThread, NULL); chThdWait(shelltp); #else shell_printf(VNA_SHELL_NEWLINE_STR"NanoVNA Shell"VNA_SHELL_NEWLINE_STR); do { shell_printf(VNA_SHELL_PROMPT_STR); if (VNAShell_readLine(shell_line, VNA_SHELL_MAX_LENGTH)) VNAShell_executeLine(shell_line); else chThdSleepMilliseconds(200); } while (SDU1.config->usbp->state == USB_ACTIVE); #endif } chThdSleepMilliseconds(1000); } } /* The prototype shows it is a naked function - in effect this is just an assembly function. */ void HardFault_Handler(void); void hard_fault_handler_c(uint32_t *sp) __attribute__((naked)); void HardFault_Handler(void) { uint32_t *sp; //__asm volatile ("mrs %0, msp \n\t": "=r" (sp) ); __asm volatile("mrs %0, psp \n\t" : "=r"(sp)); hard_fault_handler_c(sp); } void hard_fault_handler_c(uint32_t *sp) { (void)sp; while (true) { } }