/* * fft.h is Based on * Free FFT and convolution (C) * * Copyright (c) 2019 Project Nayuki. (MIT License) * https://www.nayuki.io/page/free-small-fft-in-multiple-languages * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ #include #include static uint16_t reverse_bits(uint16_t x, int n) { uint16_t result = 0; int i; for (i = 0; i < n; i++, x >>= 1) result = (result << 1) | (x & 1U); return result; } /*** * dir = forward: 0, inverse: 1 * https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c */ static void fft256(float array[][2], const uint8_t dir) { const uint16_t n = 256; const uint8_t levels = 8; // log2(n) const uint8_t real = dir & 1; const uint8_t imag = ~real & 1; uint16_t i; uint16_t size; for (i = 0; i < n; i++) { uint16_t j = reverse_bits(i, levels); if (j > i) { float temp = array[i][real]; array[i][real] = array[j][real]; array[j][real] = temp; temp = array[i][imag]; array[i][imag] = array[j][imag]; array[j][imag] = temp; } } // Cooley-Tukey decimation-in-time radix-2 FFT for (size = 2; size <= n; size *= 2) { uint16_t halfsize = size / 2; uint16_t tablestep = n / size; uint16_t i; for (i = 0; i < n; i += size) { uint16_t j, k; for (j = i, k = 0; j < i + halfsize; j++, k += tablestep) { uint16_t l = j + halfsize; float tpre = array[l][real] * cos(2 * M_PI * k / 256) + array[l][imag] * sin(2 * M_PI * k / 256); float tpim = -array[l][real] * sin(2 * M_PI * k / 256) + array[l][imag] * cos(2 * M_PI * k / 256); array[l][real] = array[j][real] - tpre; array[l][imag] = array[j][imag] - tpim; array[j][real] += tpre; array[j][imag] += tpim; } } if (size == n) // Prevent overflow in 'size *= 2' break; } } static inline void fft256_forward(float array[][2]) { fft256(array, 0); } static inline void fft256_inverse(float array[][2]) { fft256(array, 1); }