/* * fft.h is Based on * Free FFT and convolution (C) * * Copyright (c) 2019 Project Nayuki. (MIT License) * https://www.nayuki.io/page/free-small-fft-in-multiple-languages * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ #include #include static uint16_t reverse_bits(uint16_t x, int n) { uint16_t result = 0; for (int i = 0; i < n; i++, x >>= 1) result = (result << 1) | (x & 1U); return result; } static const float sin_table[] = { /* * float has about 7.2 digits of precision for (uint8_t i = 0; i < FFT_SIZE - (FFT_SIZE / 4); i++) { printf("% .8f,%c", sin(2 * M_PI * i / FFT_SIZE), i % 8 == 7 ? '\n' : ' '); } */ 0.00000000, 0.02454123, 0.04906767, 0.07356456, 0.09801714, 0.12241068, 0.14673047, 0.17096189, 0.19509032, 0.21910124, 0.24298018, 0.26671276, 0.29028468, 0.31368174, 0.33688985, 0.35989504, 0.38268343, 0.40524131, 0.42755509, 0.44961133, 0.47139674, 0.49289819, 0.51410274, 0.53499762, 0.55557023, 0.57580819, 0.59569930, 0.61523159, 0.63439328, 0.65317284, 0.67155895, 0.68954054, 0.70710678, 0.72424708, 0.74095113, 0.75720885, 0.77301045, 0.78834643, 0.80320753, 0.81758481, 0.83146961, 0.84485357, 0.85772861, 0.87008699, 0.88192126, 0.89322430, 0.90398929, 0.91420976, 0.92387953, 0.93299280, 0.94154407, 0.94952818, 0.95694034, 0.96377607, 0.97003125, 0.97570213, 0.98078528, 0.98527764, 0.98917651, 0.99247953, 0.99518473, 0.99729046, 0.99879546, 0.99969882, 1.00000000, 0.99969882, 0.99879546, 0.99729046, 0.99518473, 0.99247953, 0.98917651, 0.98527764, 0.98078528, 0.97570213, 0.97003125, 0.96377607, 0.95694034, 0.94952818, 0.94154407, 0.93299280, 0.92387953, 0.91420976, 0.90398929, 0.89322430, 0.88192126, 0.87008699, 0.85772861, 0.84485357, 0.83146961, 0.81758481, 0.80320753, 0.78834643, 0.77301045, 0.75720885, 0.74095113, 0.72424708, 0.70710678, 0.68954054, 0.67155895, 0.65317284, 0.63439328, 0.61523159, 0.59569930, 0.57580819, 0.55557023, 0.53499762, 0.51410274, 0.49289819, 0.47139674, 0.44961133, 0.42755509, 0.40524131, 0.38268343, 0.35989504, 0.33688985, 0.31368174, 0.29028468, 0.26671276, 0.24298018, 0.21910124, 0.19509032, 0.17096189, 0.14673047, 0.12241068, 0.09801714, 0.07356456, 0.04906767, 0.02454123, 0.00000000, -0.02454123, -0.04906767, -0.07356456, -0.09801714, -0.12241068, -0.14673047, -0.17096189, -0.19509032, -0.21910124, -0.24298018, -0.26671276, -0.29028468, -0.31368174, -0.33688985, -0.35989504, -0.38268343, -0.40524131, -0.42755509, -0.44961133, -0.47139674, -0.49289819, -0.51410274, -0.53499762, -0.55557023, -0.57580819, -0.59569930, -0.61523159, -0.63439328, -0.65317284, -0.67155895, -0.68954054, -0.70710678, -0.72424708, -0.74095113, -0.75720885, -0.77301045, -0.78834643, -0.80320753, -0.81758481, -0.83146961, -0.84485357, -0.85772861, -0.87008699, -0.88192126, -0.89322430, -0.90398929, -0.91420976, -0.92387953, -0.93299280, -0.94154407, -0.94952818, -0.95694034, -0.96377607, -0.97003125, -0.97570213, -0.98078528, -0.98527764, -0.98917651, -0.99247953, -0.99518473, -0.99729046, -0.99879546, -0.99969882, }; /*** * dir = forward: 0, inverse: 1 * https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c */ static void fft256(float array[][2], const uint8_t dir) { const uint16_t n = 256; const uint8_t levels = 8; // log2(n) const float* const cos_table = &sin_table[64]; const uint8_t real = dir & 1; const uint8_t imag = ~real & 1; for (uint16_t i = 0; i < n; i++) { uint16_t j = reverse_bits(i, levels); if (j > i) { float temp = array[i][real]; array[i][real] = array[j][real]; array[j][real] = temp; temp = array[i][imag]; array[i][imag] = array[j][imag]; array[j][imag] = temp; } } // Cooley-Tukey decimation-in-time radix-2 FFT for (uint16_t size = 2; size <= n; size *= 2) { uint16_t halfsize = size / 2; uint16_t tablestep = n / size; for (uint16_t i = 0; i < n; i += size) { for (uint16_t j = i, k = 0; j < i + halfsize; j++, k += tablestep) { uint16_t l = j + halfsize; float tpre = array[l][real] * cos_table[k] + array[l][imag] * sin_table[k]; float tpim = -array[l][real] * sin_table[k] + array[l][imag] * cos_table[k] ; array[l][real] = array[j][real] - tpre; array[l][imag] = array[j][imag] - tpim; array[j][real] += tpre; array[j][imag] += tpim; } } if (size == n) // Prevent overflow in 'size *= 2' break; } } static inline void fft256_forward(float array[][2]) { fft256(array, 0); } static inline void fft256_inverse(float array[][2]) { fft256(array, 1); }