NanoVNA/si5351.c

535 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* Modified by DiSlord dislordlive@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
2016-09-05 00:27:44 +02:00
#include "hal.h"
2019-10-05 12:56:38 +02:00
#include "nanovna.h"
2016-09-05 00:27:44 +02:00
#include "si5351.h"
// XTAL frequency on si5351
#define XTALFREQ 26000000U
// audio codec frequency clock
#define CLK2_FREQUENCY AUDIO_CLOCK_REF
// Fixed PLL mode multiplier (used in band 1 for frequency 800-10k)
#define PLL_N_1 8
// Fixed PLL mode multiplier (used in band 2 for frequency 10k-100M)
#define PLL_N_2 32
// I2C address on bus (only 0x60 for Si5351A in 10-Pin MSOP)
2020-03-21 00:03:09 +01:00
#define SI5351_I2C_ADDR 0x60
2016-09-05 00:27:44 +02:00
static uint8_t current_band = 0;
static uint32_t current_freq = 0;
static int32_t current_offset = FREQUENCY_OFFSET;
// Use cache for this reg, not update if not change
static uint8_t clk_cache[3] = {0, 0, 0};
2016-09-05 00:27:44 +02:00
#if 1
// Minimum value is 2, freq change apply at next dsp measure, and need skip it
#define DELAY_NORMAL 2
// Delay for bands (depend set band 1 more fast (can change before next dsp buffer ready, need wait additional interval)
#define DELAY_BAND_1_2 2
#define DELAY_BAND_3_4 2
// Band changes need set additional delay after reset PLL
#define DELAY_BANDCHANGE_1_2 3
#define DELAY_BANDCHANGE_3_4 4
// Delay after set new PLL values, and send reset (on band 1 unstable if less then 900, on 2000-5000 no amplitude spike on change)
#define DELAY_RESET_PLL_BEFORE 1000
#define DELAY_RESET_PLL_AFTER 4000
#else
// Debug timer set
uint16_t timings[8]={2,3,2,3,4,1000, 4000};
void si5351_set_timing(int i, int v) {timings[i]=v;}
#define DELAY_NORMAL timings[0]
// Delay for bands (depend set band 1 more fast (can change before next dsp buffer ready, need wait additional interval)
#define DELAY_BAND_1_2 timings[1]
#define DELAY_BAND_3_4 timings[2]
// Band changes need set additional delay after reset PLL
#define DELAY_BANDCHANGE_1_2 timings[3]
#define DELAY_BANDCHANGE_3_4 timings[4]
// Delay after set new PLL values, and send reset (on band 1-2 unstable if less then 900, on 2000-5000 no amplitude spike on change)
#define DELAY_RESET_PLL_BEFORE timings[5]
#define DELAY_RESET_PLL_AFTER timings[6]
#endif
2020-03-21 00:03:09 +01:00
uint32_t si5351_get_frequency(void)
{
return current_freq;
}
2020-03-21 00:03:09 +01:00
void si5351_set_frequency_offset(int32_t offset)
{
current_offset = offset;
current_freq = 0; // reset freq, for
}
2016-09-05 00:27:44 +02:00
static void
si5351_bulk_write(const uint8_t *buf, int len)
{
// i2cAcquireBus(&I2CD1);
(void)i2cMasterTransmitTimeout(&I2CD1, SI5351_I2C_ADDR, buf, len, NULL, 0, 1000);
// i2cReleaseBus(&I2CD1);
2016-09-05 00:27:44 +02:00
}
#if 0
static bool si5351_bulk_read(uint8_t reg, uint8_t* buf, int len)
{
i2cAcquireBus(&I2CD1);
msg_t mr = i2cMasterTransmitTimeout(&I2CD1, SI5351_I2C_ADDR, &reg, 1, buf, len, 1000);
i2cReleaseBus(&I2CD1);
return mr == MSG_OK;
}
static void si5351_wait_pll_lock(void)
{
uint8_t status;
int count = 100;
do{
status=0xFF;
si5351_bulk_read(0, &status, 1);
if ((status & 0x60) == 0) // PLLA and PLLB locked
return;
}while (--count);
}
#endif
static inline void
si5351_write(uint8_t reg, uint8_t dat)
{
uint8_t buf[] = { reg, dat };
si5351_bulk_write(buf, 2);
}
2016-09-05 00:27:44 +02:00
// register addr, length, data, ...
const uint8_t si5351_configs[] = {
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff,
4, SI5351_REG_16_CLK0_CONTROL, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN,
2, SI5351_REG_183_CRYSTAL_LOAD, SI5351_CRYSTAL_LOAD_8PF,
// All of this init code run late on sweep
#if 0
2016-09-05 00:27:44 +02:00
// setup PLL (26MHz * 32 = 832MHz, 32/2-2=14)
9, SI5351_REG_PLL_A, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0,
9, SI5351_REG_PLL_B, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0,
2016-09-05 00:27:44 +02:00
// RESET PLL
2, SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B | 0x0C, //
2016-09-05 00:27:44 +02:00
// setup multisynth (832MHz / 104 = 8MHz, 104/2-2=50)
9, SI5351_REG_58_MULTISYNTH2, /*P3*/0, 1, /*P1*/0, 50, 0, /*P2|P3*/0, 0, 0,
2, SI5351_REG_18_CLK2_CONTROL, SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_INPUT_MULTISYNTH_N | SI5351_CLK_INTEGER_MODE,
#endif
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, ~(SI5351_CLK0_EN|SI5351_CLK1_EN|SI5351_CLK2_EN),
2016-09-05 00:27:44 +02:00
0 // sentinel
};
void
si5351_init(void)
{
const uint8_t *p = si5351_configs;
while (*p) {
uint8_t len = *p++;
si5351_bulk_write(p, len);
p += len;
}
}
static const uint8_t disable_output[] = {
SI5351_REG_16_CLK0_CONTROL,
SI5351_CLK_POWERDOWN, // CLK 0
SI5351_CLK_POWERDOWN, // CLK 1
SI5351_CLK_POWERDOWN // CLK 2
};
/* Get the appropriate starting point for the PLL registers */
static const uint8_t msreg_base[] = {
SI5351_REG_42_MULTISYNTH0,
SI5351_REG_50_MULTISYNTH1,
SI5351_REG_58_MULTISYNTH2,
};
// Reset PLL need then band changes
static void si5351_reset_pll(uint8_t mask)
{
// Writing a 1<<5 will reset PLLA, 1<<7 reset PLLB, this is a self clearing bits.
si5351_write(SI5351_REG_177_PLL_RESET, mask | 0x0C);
}
void si5351_disable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, SI5351_CLK0_EN|SI5351_CLK1_EN|SI5351_CLK2_EN);
si5351_bulk_write(disable_output, sizeof(disable_output));
current_band = 0;
}
void si5351_enable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, ~(SI5351_CLK0_EN|SI5351_CLK1_EN|SI5351_CLK2_EN));
//si5351_reset_pll(SI5351_PLL_RESET_A | SI5351_PLL_RESET_B);
current_freq = 0;
current_band = 0;
}
// Set PLL freq = XTALFREQ * (mult + num/denom)
static void si5351_setupPLL(uint8_t pllSource, /* SI5351_REG_PLL_A or SI5351_REG_PLL_B */
uint32_t mult,
uint32_t num,
uint32_t denom)
2016-09-05 00:27:44 +02:00
{
/* Feedback Multisynth Divider Equation
* where: a = mult, b = num and c = denom
* P1 register is an 18-bit value using following formula:
2020-03-21 00:03:09 +01:00
* P1[17:0] = 128 * mult + int((128*num)/denom) - 512
2016-09-05 00:27:44 +02:00
* P2 register is a 20-bit value using the following formula:
2020-03-21 00:03:09 +01:00
* P2[19:0] = (128 * num) % denom
2016-09-05 00:27:44 +02:00
* P3 register is a 20-bit value using the following formula:
2020-03-21 00:03:09 +01:00
* P3[19:0] = denom
2016-09-05 00:27:44 +02:00
*/
/* Set the main PLL config registers */
2020-03-21 00:03:09 +01:00
mult <<= 7;
num <<= 7;
uint32_t P1 = mult - 512; // Integer mode
uint32_t P2 = 0;
uint32_t P3 = 1;
2020-03-21 00:03:09 +01:00
if (num) { // Fractional mode
P1+= num / denom;
P2 = num % denom;
2016-09-05 00:27:44 +02:00
P3 = denom;
}
// Pll MSN(A|B) registers Datasheet
uint8_t reg[9];
2020-03-21 00:03:09 +01:00
reg[0] = pllSource; // SI5351_REG_PLL_A or SI5351_REG_PLL_B
reg[1] = (P3 & 0x0FF00) >> 8; // MSN_P3[15: 8]
reg[2] = (P3 & 0x000FF); // MSN_P3[ 7: 0]
reg[3] = (P1 & 0x30000) >> 16; // MSN_P1[17:16]
reg[4] = (P1 & 0x0FF00) >> 8; // MSN_P1[15: 8]
reg[5] = (P1 & 0x000FF); // MSN_P1[ 7: 0]
reg[6] = ((P3 & 0xF0000) >> 12) | ((P2 & 0xF0000) >> 16); // MSN_P3[19:16] | MSN_P2[19:16]
reg[7] = (P2 & 0x0FF00) >> 8; // MSN_P2[15: 8]
reg[8] = (P2 & 0x000FF); // MSN_P2[ 7: 0]
si5351_bulk_write(reg, 9);
2016-09-05 00:27:44 +02:00
}
// Set Multisynth divider = (div + num/denom) * rdiv
static void
si5351_setupMultisynth(uint8_t channel,
uint32_t div, // 4,6,8, 8+ ~ 900
uint32_t num,
uint32_t denom,
uint32_t rdiv, // SI5351_R_DIV_1~128
uint8_t chctrl) // SI5351_REG_16_CLKX_CONTROL settings
2016-09-05 00:27:44 +02:00
{
/* Output Multisynth Divider Equations
* where: a = div, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * a + int((128*b)/c) - 512
2016-09-05 00:27:44 +02:00
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = (128 * b) % c
2016-09-05 00:27:44 +02:00
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = c
2016-09-05 00:27:44 +02:00
*/
/* Set the main PLL config registers */
uint32_t P1 = 0;
uint32_t P2 = 0;
uint32_t P3 = 1;
if (div == 4)
rdiv|= SI5351_DIVBY4;
else {
num<<=7;
div<<=7;
P1 = div - 512; // Integer mode
2020-03-21 00:03:09 +01:00
if (num) { // Fractional mode
P1+= num / denom;
P2 = num % denom;
P3 = denom;
}
2016-09-05 00:27:44 +02:00
}
/* Set the MSx config registers */
uint8_t reg[9];
2020-03-21 00:03:09 +01:00
reg[0] = msreg_base[channel]; // SI5351_REG_42_MULTISYNTH0, SI5351_REG_50_MULTISYNTH1, SI5351_REG_58_MULTISYNTH2
reg[1] = (P3 & 0x0FF00)>>8; // MSx_P3[15: 8]
reg[2] = (P3 & 0x000FF); // MSx_P3[ 7: 0]
reg[3] = ((P1 & 0x30000)>>16)| rdiv; // Rx_DIV[2:0] | MSx_DIVBY4[1:0] | MSx_P1[17:16]
reg[4] = (P1 & 0x0FF00)>> 8; // MSx_P1[15: 8]
reg[5] = (P1 & 0x000FF); // MSx_P1[ 7: 0]
reg[6] = ((P3 & 0xF0000)>>12)|((P2 & 0xF0000)>>16); // MSx_P3[19:16] | MSx_P2[19:16]
reg[7] = (P2 & 0x0FF00)>>8; // MSx_P2[15: 8]
reg[8] = (P2 & 0x000FF); // MSx_P2[ 7: 0]
si5351_bulk_write(reg, 9);
2016-09-05 00:27:44 +02:00
/* Configure the clk control and enable the output */
uint8_t dat = chctrl | SI5351_CLK_INPUT_MULTISYNTH_N;
2016-09-05 00:27:44 +02:00
if (num == 0)
dat |= SI5351_CLK_INTEGER_MODE;
2020-03-21 00:03:09 +01:00
if (clk_cache[channel]!=dat) {
si5351_write(SI5351_REG_16_CLK0_CONTROL+channel, dat);
clk_cache[channel]=dat;
}
}
2019-12-09 00:05:59 +01:00
// Find better approximate values for n/d
#define MAX_DENOMINATOR ((1 << 20) - 1)
2020-03-21 00:03:09 +01:00
static inline void approximate_fraction(uint32_t *n, uint32_t *d)
{
// cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227
uint32_t denom = *d;
if (denom > MAX_DENOMINATOR) {
uint32_t num = *n;
uint32_t p0 = 0, q0 = 1, p1 = 1, q1 = 0;
while (denom != 0) {
uint32_t a = num / denom;
uint32_t b = num % denom;
uint32_t q2 = q0 + a*q1;
if (q2 > MAX_DENOMINATOR)
break;
uint32_t p2 = p0 + a*p1;
p0 = p1; q0 = q1; p1 = p2; q1 = q2;
num = denom; denom = b;
}
*n = p1;
*d = q1;
}
}
// Setup Multisynth divider for get correct output freq if fixed PLL = pllfreq
static void
si5351_set_frequency_fixedpll(uint8_t channel, uint64_t pllfreq, uint32_t freq, uint32_t rdiv, uint8_t chctrl)
{
uint32_t denom = freq;
uint32_t div = pllfreq / denom; // range: 8 ~ 1800
uint32_t num = pllfreq % denom;
2020-03-21 00:03:09 +01:00
approximate_fraction(&num, &denom);
si5351_setupMultisynth(channel, div, num, denom, rdiv, chctrl);
}
// Setup PLL freq if Multisynth divider fixed = div (need get output = freq/mul)
static void
2020-03-21 00:03:09 +01:00
si5351_setupPLL_freq(uint32_t pllSource, uint32_t freq, uint32_t div, uint32_t mul)
{
uint32_t denom = XTALFREQ * mul;
uint64_t pllfreq = (uint64_t)freq * div;
uint32_t multi = pllfreq / denom;
uint32_t num = pllfreq % denom;
2020-03-21 00:03:09 +01:00
approximate_fraction(&num, &denom);
si5351_setupPLL(pllSource, multi, num, denom);
2016-09-05 00:27:44 +02:00
}
#if 0
static void
si5351_set_frequency_fixeddiv(uint8_t channel, uint32_t pll, uint32_t freq, uint32_t div,
uint8_t chctrl, uint32_t mul)
2016-09-05 01:33:05 +02:00
{
si5351_setupPLL_freq(pll, freq, div, mul);
si5351_setupMultisynth(channel, div, 0, 1, SI5351_R_DIV_1, chctrl);
2016-09-05 01:33:05 +02:00
}
2016-09-05 00:27:44 +02:00
2016-09-05 01:33:05 +02:00
void
2020-03-21 00:03:09 +01:00
si5351_set_frequency(int channel, uint32_t freq, uint8_t drive_strength)
{
2016-09-05 01:33:05 +02:00
if (freq <= 100000000) {
2017-02-01 21:40:39 +01:00
si5351_setupPLL(SI5351_PLL_B, 32, 0, 1);
2019-12-09 00:05:59 +01:00
si5351_set_frequency_fixedpll(channel, SI5351_PLL_B, PLLFREQ, freq, SI5351_R_DIV_1, drive_strength, 1);
} else if (freq < 150000000) {
2019-12-09 00:05:59 +01:00
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 6, drive_strength, 1);
} else {
2019-12-09 00:05:59 +01:00
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 4, drive_strength, 1);
}
}
#endif
2016-09-24 03:25:13 +02:00
/*
* Frequency generation divide on band
* Band 1
* 800~10kHz fixed PLL = XTALFREQ * PLL_N_1, fractional divider
* Band 2
* 10kHz~100MHz fixed PLL = XTALFREQ * PLL_N_2, fractional divider
* Band 3
* 100~130MHz fractional PLL = 800-1040MHz, fixed divider 'fdiv = 8'
* Band 4
* 130~170MHz fractional PLL = 780-1080MHz, fixed divider 'fdiv = 6'
* Band 5
* 680~300MHz fractional PLL = 680-1200MHz, fixed divider 'fdiv = 4'
*
* For FREQ_HARMONICS = 300MHz - band range is:
* +-----------------------------------------------------------------------------------------------------------------------------------------------+
* | Band 2 | Band 3 | Band 4 | Band 5 | Band 3 | Band 4 | Band 5 |
* +-----------------------------------------------------------------------------------------------------------------------------------------------+
* | Direct mode x1 : x1 | x3 : x5 | x5-x7 | x7-x9 | x9-x11 |
* +-----------------------------------------------------------------------------------------------------------------------------------------------+
* |10kHz - 100MHz | 100 - 130MHz | 130 - 170MHz | 170 - 300MHz | 300-390MHz | 390-510MHz | 510-900MHz | 900-1500MHz | 1500-2100MHz | 2100-2700MHz |
* +-----------------------------------------------------------------------------------------------------------------------------------------------+
* | f = 50kHz-300MHz | f=100-130 | f=130-170 | f=170-300 | f=180-300 | f=214-300 | f=233-300 |
* | of = 50kHz-300MHz |of= 60- 78 |of= 78-102 |of=102-180 |of=128-215 |of=166-234 |of=190-246 |
* +-----------------------------------------------------------------------------------------------------------------------------------------------+
*/
2020-03-21 00:03:09 +01:00
static inline uint8_t
si5351_get_band(uint32_t freq)
{
// not correct use like this, freq multiplied before if freq < 4MHz
// if (freq < 10000U) return 1;
if (freq < 100000000U) return 2;
if (freq < 130000000U) return 3;
if (freq < 170000000U) return 4;
return 5;
}
#define MAX_HARMONIC 5
uint32_t
si5351_get_harmonic_lvl(uint32_t f){
uint32_t h = config.harmonic_freq_threshold;
if (f < h) return 0;
f-=h;
h<<=1;
uint32_t lvl = 1 + f/h;
return lvl < MAX_HARMONIC ? lvl : (MAX_HARMONIC-1);
}
static const uint8_t h_mult[][2] ={
{1, 1}, // f < threshold ( f < 300MHz)
{3, 5}, // f < threshold ( 300MHz <= f < 900MHz)
{5, 7}, // f < threshold ( 900MHz <= f < 1500MHz)
{7, 9}, // f < threshold (1500MHz <= f < 2100MHz)
{9,11} // f < threshold (2100MHz <= f < 2700MHz)
};
/*
* Maximum supported frequency = FREQ_HARMONICS * 9U
* configure output as follows:
* CLK0: frequency + offset
* CLK1: frequency
* CLK2: fixed 8MHz
*/
2016-09-24 03:25:13 +02:00
int
2020-03-21 00:03:09 +01:00
si5351_set_frequency(uint32_t freq, uint8_t drive_strength)
{
uint8_t band;
if (freq == current_freq)
return DELAY_NORMAL;
int delay;
uint32_t ofreq = freq + current_offset;
2017-02-01 21:40:39 +01:00
uint32_t rdiv = SI5351_R_DIV_1;
uint32_t fdiv, pll_n;
// Fix possible incorrect input
drive_strength&=SI5351_CLK_DRIVE_STRENGTH_MASK;
// Harmonic mode prepare
#if 1
uint32_t harmonic = si5351_get_harmonic_lvl(freq);
uint32_t mul = h_mult[harmonic][0];
uint32_t omul = h_mult[harmonic][1];
#else
uint32_t mul = 1, omul = 1;
if (freq >= config.harmonic_freq_threshold * 7U) {
mul = 9;
omul = 11;
} else if (freq >= config.harmonic_freq_threshold * 5U) {
mul = 7;
omul = 9;
} else if (freq >= config.harmonic_freq_threshold * 3U) {
mul = 5;
2019-12-09 00:05:59 +01:00
omul = 7;
} else if (freq >= config.harmonic_freq_threshold) {
mul = 3;
2019-12-09 00:05:59 +01:00
omul = 5;
}
#endif
// Select optimal band for prepared freq
if (freq < 10000U) {
rdiv = SI5351_R_DIV_128;
freq<<= 7;
ofreq<<= 7;
band = 1;
2020-03-21 00:03:09 +01:00
} else if (freq <= 500000U) {
2017-02-01 21:40:39 +01:00
rdiv = SI5351_R_DIV_64;
freq<<= 6;
ofreq<<= 6;
band = 2;
} else if (freq <= 4000000U) {
2017-02-01 21:40:39 +01:00
rdiv = SI5351_R_DIV_8;
freq<<= 3;
ofreq<<= 3;
band = 2;
}
else
band = si5351_get_band(freq / mul);
if (current_band != band) {
si5351_reset_pll(SI5351_PLL_RESET_A | SI5351_PLL_RESET_B);
// Possibly not need add delay now
chThdSleepMicroseconds(DELAY_RESET_PLL_BEFORE);
2017-02-01 21:40:39 +01:00
}
static const uint8_t band_setting[] = {1, PLL_N_1, PLL_N_2, 8, 6, 4};
2016-09-24 03:25:13 +02:00
switch (band) {
case 1: // 800Hz to 10kHz PLLN = 8
case 2: // 10kHz to 100MHz PLLN = 32
pll_n = band_setting[band];
// Setup CH0 and CH1 constant PLLA freq at band change, and set CH2 freq = CLK2_FREQUENCY
if (current_band != band) {
si5351_setupPLL(SI5351_REG_PLL_A, pll_n, 0, 1);
si5351_setupPLL(SI5351_REG_PLL_B, PLL_N_2, 0, 1);
2020-03-21 00:03:09 +01:00
si5351_set_frequency_fixedpll(
2, XTALFREQ * PLL_N_2, CLK2_FREQUENCY, SI5351_R_DIV_1,
SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_PLL_SELECT_B);
delay = DELAY_BANDCHANGE_1_2;
2020-03-21 00:03:09 +01:00
} else {
delay = DELAY_BAND_1_2;
2020-03-21 00:03:09 +01:00
}
// Calculate and set CH0 and CH1 divider
si5351_set_frequency_fixedpll(0, (uint64_t)omul * XTALFREQ * pll_n, ofreq, rdiv,
2020-03-21 00:03:09 +01:00
drive_strength | SI5351_CLK_PLL_SELECT_A);
si5351_set_frequency_fixedpll(1, (uint64_t)mul * XTALFREQ * pll_n, freq, rdiv,
2020-03-21 00:03:09 +01:00
drive_strength | SI5351_CLK_PLL_SELECT_A);
break;
case 3: // fdiv = 8, f 100-130 PLL 800-1040
case 4: // fdiv = 6, f 130-170 PLL 780-1050
case 5: // fdiv = 4, f 170-300 PLL 680-1200
fdiv = band_setting[band];
2020-03-21 00:03:09 +01:00
// Setup CH0 and CH1 constant fdiv divider at change
if (current_band != band) {
si5351_setupMultisynth(0, fdiv, 0, 1, SI5351_R_DIV_1,
drive_strength | SI5351_CLK_PLL_SELECT_A);
si5351_setupMultisynth(1, fdiv, 0, 1, SI5351_R_DIV_1,
drive_strength | SI5351_CLK_PLL_SELECT_B);
delay= DELAY_BANDCHANGE_3_4;
2020-03-21 00:03:09 +01:00
} else {
delay= DELAY_BAND_3_4;
2020-03-21 00:03:09 +01:00
}
// Calculate and set CH0 and CH1 PLL freq
si5351_setupPLL_freq(SI5351_REG_PLL_A, ofreq, fdiv,
omul); // set PLLA freq = (ofreq/omul)*fdiv
si5351_setupPLL_freq(SI5351_REG_PLL_B, freq, fdiv,
mul); // set PLLB freq = ( freq/ mul)*fdiv
// Calculate CH2 freq = CLK2_FREQUENCY, depend from calculated before CH1 PLLB = (freq/mul)*fdiv
si5351_set_frequency_fixedpll(
2, (uint64_t)freq * fdiv, CLK2_FREQUENCY * mul, SI5351_R_DIV_1,
SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_PLL_SELECT_B);
break;
2016-09-24 03:25:13 +02:00
}
2016-09-24 03:25:13 +02:00
if (current_band != band) {
// Possibly not need add delay now
chThdSleepMicroseconds(DELAY_RESET_PLL_AFTER);
si5351_reset_pll(SI5351_PLL_RESET_A|SI5351_PLL_RESET_B);
current_band = band;
2016-10-13 13:25:31 +02:00
}
current_freq = freq;
2016-09-24 03:25:13 +02:00
return delay;
2016-09-05 01:33:05 +02:00
}