/* * Copyright (c) 2002-2004 LWJGL Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'LWJGL' nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.lwjgl.util.vector; import java.io.Serializable; import java.nio.FloatBuffer; /** * Holds a 4x4 float matrix. * * @author foo */ public class Matrix4f extends Matrix implements Serializable { public float m00 = 1.0f, m01, m02, m03, m10, m11 = 1.0f, m12, m13, m20, m21, m22 = 1.0f, m23, m30, m31, m32, m33 = 1.0f; /** * Construct a Matrix4f */ public Matrix4f() { super(); } /** * Returns a string representation of this matrix */ public String toString() { StringBuffer buf = new StringBuffer(); buf.append(m00).append(' ').append(m10).append(' ').append(m20).append(' ').append(m30).append('\n'); buf.append(m01).append(' ').append(m11).append(' ').append(m21).append(' ').append(m31).append('\n'); buf.append(m02).append(' ').append(m12).append(' ').append(m22).append(' ').append(m32).append('\n'); buf.append(m03).append(' ').append(m13).append(' ').append(m23).append(' ').append(m33).append('\n'); return buf.toString(); } /** * Set this matrix to be the identity matrix. * @return this */ public Matrix setIdentity() { m00 = 1.0f; m01 = 0.0f; m02 = 0.0f; m03 = 0.0f; m10 = 0.0f; m11 = 1.0f; m12 = 0.0f; m13 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 1.0f; m23 = 0.0f; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; m33 = 1.0f; return this; } /** * Set this matrix to 0. * @return this */ public Matrix setZero() { m00 = 0.0f; m01 = 0.0f; m02 = 0.0f; m03 = 0.0f; m10 = 0.0f; m11 = 0.0f; m12 = 0.0f; m13 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 0.0f; m23 = 0.0f; m30 = 0.0f; m31 = 0.0f; m32 = 0.0f; m33 = 0.0f; return this; } /** * Load from another matrix4f * @param src The source matrix * @return this */ public Matrix4f load(Matrix4f src) { m00 = src.m00; m01 = src.m01; m02 = src.m02; m03 = src.m03; m10 = src.m10; m11 = src.m11; m12 = src.m12; m13 = src.m13; m20 = src.m20; m21 = src.m21; m22 = src.m22; m23 = src.m23; m30 = src.m30; m31 = src.m31; m32 = src.m32; m33 = src.m33; return this; } /** * Load from a float buffer. The buffer stores the matrix in column major * (OpenGL) order. * * @param buf A float buffer to read from * @return this */ public Matrix load(FloatBuffer buf) { m00 = buf.get(); m01 = buf.get(); m02 = buf.get(); m03 = buf.get(); m10 = buf.get(); m11 = buf.get(); m12 = buf.get(); m13 = buf.get(); m20 = buf.get(); m21 = buf.get(); m22 = buf.get(); m23 = buf.get(); m30 = buf.get(); m31 = buf.get(); m32 = buf.get(); m33 = buf.get(); return this; } /** * Load from a float buffer. The buffer stores the matrix in row major * (maths) order. * * @param buf A float buffer to read from * @return this */ public Matrix loadTranspose(FloatBuffer buf) { m00 = buf.get(); m10 = buf.get(); m20 = buf.get(); m30 = buf.get(); m01 = buf.get(); m11 = buf.get(); m21 = buf.get(); m31 = buf.get(); m02 = buf.get(); m12 = buf.get(); m22 = buf.get(); m32 = buf.get(); m03 = buf.get(); m13 = buf.get(); m23 = buf.get(); m33 = buf.get(); return this; } /** * Store this matrix in a float buffer. The matrix is stored in column * major (openGL) order. * @param buf The buffer to store this matrix in */ public Matrix store(FloatBuffer buf) { buf.put(m00); buf.put(m01); buf.put(m02); buf.put(m03); buf.put(m10); buf.put(m11); buf.put(m12); buf.put(m13); buf.put(m20); buf.put(m21); buf.put(m22); buf.put(m23); buf.put(m30); buf.put(m31); buf.put(m32); buf.put(m33); return this; } /** * Store this matrix in a float buffer. The matrix is stored in row * major (maths) order. * @param buf The buffer to store this matrix in */ public Matrix storeTranspose(FloatBuffer buf) { buf.put(m00); buf.put(m10); buf.put(m20); buf.put(m30); buf.put(m01); buf.put(m11); buf.put(m21); buf.put(m31); buf.put(m02); buf.put(m12); buf.put(m22); buf.put(m32); buf.put(m03); buf.put(m13); buf.put(m23); buf.put(m33); return this; } /** * Add two matrices together and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix4f add(Matrix4f left, Matrix4f right, Matrix4f dest) { Matrix4f temp = null; if (dest == null) dest = new Matrix4f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix4f(); } dest.m00 = left.m00 + right.m00; dest.m01 = left.m01 + right.m01; dest.m02 = left.m02 + right.m02; dest.m03 = left.m03 + right.m03; dest.m10 = left.m10 + right.m10; dest.m11 = left.m11 + right.m11; dest.m12 = left.m12 + right.m12; dest.m13 = left.m13 + right.m13; dest.m20 = left.m20 + right.m20; dest.m21 = left.m21 + right.m21; dest.m22 = left.m22 + right.m22; dest.m23 = left.m23 + right.m23; dest.m30 = left.m30 + right.m30; dest.m31 = left.m31 + right.m31; dest.m32 = left.m32 + right.m32; dest.m33 = left.m33 + right.m33; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Subtract the right matrix from the left and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix4f sub(Matrix4f left, Matrix4f right, Matrix4f dest) { Matrix4f temp = null; if (dest == null) dest = new Matrix4f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix4f(); } dest.m00 = left.m00 - right.m00; dest.m01 = left.m01 - right.m01; dest.m02 = left.m02 - right.m02; dest.m03 = left.m03 - right.m03; dest.m10 = left.m10 - right.m10; dest.m11 = left.m11 - right.m11; dest.m12 = left.m12 - right.m12; dest.m13 = left.m13 - right.m13; dest.m20 = left.m20 - right.m20; dest.m21 = left.m21 - right.m21; dest.m22 = left.m22 - right.m22; dest.m23 = left.m23 - right.m23; dest.m30 = left.m30 - right.m30; dest.m31 = left.m31 - right.m31; dest.m32 = left.m32 - right.m32; dest.m33 = left.m33 - right.m33; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Multiply the right matrix by the left and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix4f mul(Matrix4f left, Matrix4f right, Matrix4f dest) { Matrix4f temp = null; if (dest == null) dest = new Matrix4f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix4f(); } dest.m00 = left.m00 * right.m00 + left.m10 * right.m01 + left.m20 * right.m02 + left.m30 * right.m03; dest.m01 = left.m01 * right.m00 + left.m11 * right.m01 + left.m21 * right.m02 + left.m31 * right.m03; dest.m02 = left.m02 * right.m00 + left.m12 * right.m01 + left.m22 * right.m02 + left.m32 * right.m03; dest.m03 = left.m03 * right.m00 + left.m13 * right.m01 + left.m23 * right.m02 + left.m33 * right.m03; dest.m10 = left.m00 * right.m10 + left.m10 * right.m11 + left.m20 * right.m12 + left.m30 * right.m13; dest.m11 = left.m01 * right.m10 + left.m11 * right.m11 + left.m21 * right.m12 + left.m31 * right.m13; dest.m12 = left.m02 * right.m10 + left.m12 * right.m11 + left.m22 * right.m12 + left.m32 * right.m13; dest.m13 = left.m03 * right.m10 + left.m13 * right.m11 + left.m23 * right.m12 + left.m33 * right.m13; dest.m20 = left.m00 * right.m20 + left.m10 * right.m21 + left.m20 * right.m22 + left.m30 * right.m23; dest.m21 = left.m01 * right.m20 + left.m11 * right.m21 + left.m21 * right.m22 + left.m31 * right.m23; dest.m22 = left.m02 * right.m20 + left.m12 * right.m21 + left.m22 * right.m22 + left.m32 * right.m23; dest.m23 = left.m03 * right.m20 + left.m13 * right.m21 + left.m23 * right.m22 + left.m33 * right.m23; dest.m30 = left.m00 * right.m30 + left.m10 * right.m31 + left.m20 * right.m32 + left.m30 * right.m33; dest.m31 = left.m01 * right.m30 + left.m11 * right.m31 + left.m21 * right.m32 + left.m31 * right.m33; dest.m32 = left.m02 * right.m30 + left.m12 * right.m31 + left.m22 * right.m32 + left.m32 * right.m33; dest.m33 = left.m03 * right.m30 + left.m13 * right.m31 + left.m23 * right.m32 + left.m33 * right.m33; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Transform a Vector by a matrix and return the result in a destination * vector. * @param left The left matrix * @param right The right vector * @param dest The destination vector, or null if a new one is to be created * @return the destination vector */ public static Vector4f transform(Matrix4f left, Vector4f right, Vector4f dest) { Vector4f temp = null; if (dest == null) dest = new Vector4f(); else if (dest == right) { temp = dest; dest = new Vector4f(); } dest.x = left.m00 * right.x + left.m10 * right.y + left.m20 * right.z + left.m30 * right.w; dest.y = left.m01 * right.x + left.m11 * right.y + left.m21 * right.z + left.m31 * right.w; dest.z = left.m02 * right.x + left.m12 * right.y + left.m22 * right.z + left.m32 * right.w; dest.w = left.m03 * right.x + left.m13 * right.y + left.m23 * right.z + left.m33 * right.w; if (temp != null) { temp.set(dest); return temp; } else return dest; } /** * Transpose this matrix * @return this */ public Matrix transpose() { float f = m10; m10 = m01; m01 = f; f = m20; m20 = m02; m02 = f; f = m30; m30 = m03; m03 = f; f = m21; m21 = m12; m12 = f; f = m31; m31 = m13; m13 = f; f = m32; m32 = m23; m23 = f; return this; } /** * Translate this matrix * @param vec The vector to translate by * @return this */ public Matrix4f translate(Vector2f vec) { m30 += m00 * vec.x + m10 * vec.y; m31 += m01 * vec.x + m11 * vec.y; m32 += m02 * vec.x + m12 * vec.y; m33 += m03 * vec.x + m13 * vec.y; return this; } /** * Translate this matrix * @param vec The vector to translate by * @return this */ public Matrix4f translate(Vector3f vec) { m30 += m00 * vec.x + m10 * vec.y + m20 * vec.z; m31 += m01 * vec.x + m11 * vec.y + m21 * vec.z; m32 += m02 * vec.x + m12 * vec.y + m22 * vec.z; m33 += m03 * vec.x + m13 * vec.y + m23 * vec.z; return this; } /** * Scales this matrix * @param vec The vector to scale by * @return this */ public Matrix4f scale(Vector3f vec) { m00 *= vec.x; m01 *= vec.x; m02 *= vec.x; m03 *= vec.x; m10 *= vec.y; m11 *= vec.y; m12 *= vec.y; m13 *= vec.y; m20 *= vec.z; m21 *= vec.z; m22 *= vec.z; m23 *= vec.z; return this; } /** * Rotates the matrix around the given axis the specified angle * @param angle the angle, in degrees. * @param axis The vector representing the rotation axis. Must be normalized. * @return this */ public Matrix4f rotate(float angle, Vector3f axis) { float c = (float) Math.cos(angle); float s = (float) Math.sin(angle); float oneminusc = 1.0f - c; float xy = axis.x*axis.y; float yz = axis.y*axis.z; float xz = axis.x*axis.z; float xs = axis.x*s; float ys = axis.y*s; float zs = axis.z*s; float f00 = axis.x*axis.x*oneminusc+c; float f01 = xy*oneminusc+zs; float f02 = xz*oneminusc-ys; // n[3] not used float f10 = xy*oneminusc-zs; float f11 = axis.y*axis.y*oneminusc+c; float f12 = yz*oneminusc+xs; // n[7] not used float f20 = xz*oneminusc+ys; float f21 = yz*oneminusc-xs; float f22 = axis.z*axis.z*oneminusc+c; float t00 = m00 * f00 + m10 * f01 + m20 * f02; float t01 = m01 * f00 + m11 * f01 + m21 * f02; float t02 = m02 * f00 + m12 * f01 + m22 * f02; float t03 = m03 * f00 + m13 * f01 + m23 * f02; float t10 = m00 * f10 + m10 * f11 + m20 * f12; float t11 = m01 * f10 + m11 * f11 + m21 * f12; float t12 = m02 * f10 + m12 * f11 + m22 * f12; float t13 = m03 * f10 + m13 * f11 + m23 * f12; m20 = m00 * f20 + m10 * f21 + m20 * f22; m21 = m01 * f20 + m11 * f21 + m21 * f22; m22 = m02 * f20 + m12 * f21 + m22 * f22; m23 = m03 * f20 + m13 * f21 + m23 * f22; m00 = t00; m01 = t01; m02 = t02; m03 = t03; m10 = t10; m11 = t11; m12 = t12; m13 = t13; return this; } /** * Rotates the matrix around the given axis the specified angle, and stores it in the specified destination * @param angle the angle, in degrees. * @param axis The vector representing the rotation axis. Must be normalized. * @param dest The destination matrix or null if a new matrix is to be created * @return The rotated matrix */ public Matrix4f rotate(float angle, Vector3f axis, Matrix4f dest) { if (dest == null) dest = new Matrix4f(); else if (dest == this) return rotate(angle, axis); float c = (float) Math.cos(angle); float s = (float) Math.sin(angle); float oneminusc = 1.0f - c; float xy = axis.x*axis.y; float yz = axis.y*axis.z; float xz = axis.x*axis.z; float xs = axis.x*s; float ys = axis.y*s; float zs = axis.z*s; float f0 = axis.x*axis.x*oneminusc+c; float f1 = xy*oneminusc+zs; float f2 = xz*oneminusc-ys; // n[3] not used float f4 = xy*oneminusc-zs; float f5 = axis.y*axis.y*oneminusc+c; float f6 = yz*oneminusc+xs; // n[7] not used float f8 = xz*oneminusc+ys; float f9 = yz*oneminusc-xs; float f10 = axis.z*axis.z*oneminusc+c; /* m[12] to m[15] are not changed by a rotate */ dest.m00 = m00 * f0 + m10 * f1 + m20 * f2; dest.m01 = m01 * f0 + m11 * f1 + m21 * f2; dest.m02 = m02 * f0 + m12 * f1 + m22 * f2; dest.m03 = m03 * f0 + m13 * f1 + m23 * f2; dest.m10 = m00 * f4 + m10 * f5 + m20 * f6; dest.m11 = m01 * f4 + m11 * f5 + m21 * f6; dest.m12 = m02 * f4 + m12 * f5 + m22 * f6; dest.m13 = m03 * f4 + m13 * f5 + m23 * f6; dest.m20 = m00 * f8 + m10 * f9 + m20 * f10; dest.m21 = m01 * f8 + m11 * f9 + m21 * f10; dest.m22 = m02 * f8 + m12 * f9 + m22 * f10; dest.m23 = m03 * f8 + m13 * f9 + m23 * f10; return dest; } /** * Translate this matrix and stash the result in another matrix * @param vec The vector to translate by * @param dest The destination matrix or null if a new matrix is to be created * @return the translated matrix */ public Matrix4f translate(Vector3f vec, Matrix4f dest) { if (dest == null) dest = new Matrix4f(); else if (dest == this) return translate(vec); dest.m30 += m00 * vec.x + m10 * vec.y + m20 * vec.z; dest.m31 += m01 * vec.x + m11 * vec.y + m21 * vec.z; dest.m32 += m02 * vec.x + m12 * vec.y + m22 * vec.z; dest.m33 += m03 * vec.x + m13 * vec.y + m23 * vec.z; return dest; } /** * Translate this matrix and stash the result in another matrix * @param vec The vector to translate by * @param dest The destination matrix or null if a new matrix is to be created * @return the translated matrix */ public Matrix4f translate(Vector2f vec, Matrix4f dest) { if (dest == null) dest = new Matrix4f(); else if (dest == this) return translate(vec); dest.m30 += m00 * vec.x + m10 * vec.y; dest.m31 += m01 * vec.x + m11 * vec.y; dest.m32 += m02 * vec.x + m12 * vec.y; dest.m33 += m03 * vec.x + m13 * vec.y; return dest; } /** * Transpose this matrix and place the result in another matrix * @param dest The destination matrix or null if a new matrix is to be created * @return the transposed matrix */ public Matrix4f transpose(Matrix4f dest) { if (dest == null) { // New matrix needed to store transpose dest = new Matrix4f(); } if (this == dest) { // Destination and source are the same! Run the in-place // transpose instead as the copy transpose will be destructive. transpose(); } else { // Destination differs from source. Perform copy transpose dest.m00 = m00; dest.m01 = m10; dest.m02 = m20; dest.m03 = m30; dest.m10 = m01; dest.m11 = m11; dest.m12 = m21; dest.m13 = m31; dest.m20 = m02; dest.m21 = m12; dest.m22 = m22; dest.m23 = m32; dest.m30 = m03; dest.m31 = m13; dest.m32 = m23; dest.m33 = m33; } return dest; } /** * @return the determinant of the matrix */ public float determinant() { float f = m00 * ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32) - m13 * m22 * m31 - m11 * m23 * m32 - m12 * m21 * m33); f -= m01 * ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32) - m13 * m22 * m30 - m10 * m23 * m32 - m12 * m20 * m33); f += m02 * ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31) - m13 * m21 * m30 - m10 * m23 * m31 - m11 * m20 * m33); f -= m03 * ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31) - m12 * m21 * m30 - m10 * m22 * m31 - m11 * m20 * m32); return f; } /** * Calculate the determinant of a 3x3 matrix * @return result */ private float determinant3x3(float t00, float t01, float t02, float t10, float t11, float t12, float t20, float t21, float t22) { return t00 * (t11 * t22 - t12 * t21) + t01 * (t12 * t20 - t10 * t22) + t02 * (t10 * t21 - t11 * t20); } /** * Invert this matrix * @return this if successful, null otherwise */ public Matrix invert() { float determinant = determinant(); if (determinant != 0) { /* * m00 m01 m02 m03 * m10 m11 m12 m13 * m20 m21 m22 m23 * m30 m31 m32 m33 */ float determinant_inv = 1f/determinant; // first row float t00 = determinant3x3(m11, m12, m13, m21, m22, m23, m31, m32, m33); float t01 = -determinant3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33); float t02 = determinant3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33); float t03 = -determinant3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32); // second row float t10 = -determinant3x3(m01, m02, m03, m21, m22, m23, m31, m32, m33); float t11 = determinant3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33); float t12 = -determinant3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33); float t13 = determinant3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32); // third row float t20 = determinant3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33); float t21 = -determinant3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33); float t22 = determinant3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33); float t23 = -determinant3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32); // fourth row float t30 = -determinant3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23); float t31 = determinant3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23); float t32 = -determinant3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23); float t33 = determinant3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22); // transpose and divide by the determinant m00 = t00*determinant_inv; m11 = t11*determinant_inv; m22 = t22*determinant_inv; m33 = t33*determinant_inv; m01 = t10*determinant_inv; m10 = t01*determinant_inv; m20 = t02*determinant_inv; m02 = t20*determinant_inv; m12 = t21*determinant_inv; m21 = t12*determinant_inv; m03 = t30*determinant_inv; m30 = t03*determinant_inv; m13 = t31*determinant_inv; m31 = t13*determinant_inv; m32 = t23*determinant_inv; m23 = t32*determinant_inv; return this; } else return null; } /** * Negate this matrix * @return this */ public Matrix negate() { m00 = -m00; m01 = -m01; m02 = -m02; m03 = -m03; m10 = -m10; m11 = -m11; m12 = -m12; m13 = -m13; m20 = -m20; m21 = -m21; m22 = -m22; m23 = -m23; m30 = -m30; m31 = -m31; m32 = -m32; m33 = -m33; return this; } /** * Negate this matrix and place the result in a destination matrix. * @param dest The destination matrix, or null if a new matrix is to be created * @return the negated matrix */ public Matrix4f negate(Matrix4f dest) { if (dest == null) dest = new Matrix4f(); dest.m00 = -m00; dest.m01 = -m01; dest.m02 = -m02; dest.m03 = -m03; dest.m10 = -m10; dest.m11 = -m11; dest.m12 = -m12; dest.m13 = -m13; dest.m20 = -m20; dest.m21 = -m21; dest.m22 = -m22; dest.m23 = -m23; dest.m30 = -m30; dest.m31 = -m31; dest.m32 = -m32; dest.m33 = -m33; return dest; } }