/* * Copyright (c) 2002 Lightweight Java Game Library Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'Lightweight Java Game Library' nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.lwjgl.vector; import java.io.Serializable; import java.nio.FloatBuffer; /** * $Id$ * * Holds a 3x3 matrix. * * @author cix_foo * @version $Revision$ */ public class Matrix3f extends Matrix implements Serializable { public float m00 = 1.0f, m01, m02, m10, m11 = 1.0f, m12, m20, m21, m22 = 1.0f; /** * Constructor for Matrix3f. */ public Matrix3f() { super(); } /** * Load from another matrix3f * @param src The source matrix * @return this */ public Matrix3f load(Matrix3f src) { m00 = src.m00; m10 = src.m10; m20 = src.m20; m01 = src.m01; m11 = src.m11; m21 = src.m21; m02 = src.m02; m12 = src.m12; m22 = src.m22; return this; } /** * Load from a float buffer. The buffer stores the matrix in column major * (OpenGL) order. * * @param buf A float buffer to read from * @return this */ public Matrix load(FloatBuffer buf) { m00 = buf.get(); m01 = buf.get(); m02 = buf.get(); m10 = buf.get(); m11 = buf.get(); m12 = buf.get(); m20 = buf.get(); m21 = buf.get(); m22 = buf.get(); return this; } /** * Load from a float buffer. The buffer stores the matrix in row major * (maths) order. * * @param buf A float buffer to read from * @return this */ public Matrix loadTranspose(FloatBuffer buf) { m00 = buf.get(); m10 = buf.get(); m20 = buf.get(); m01 = buf.get(); m11 = buf.get(); m21 = buf.get(); m02 = buf.get(); m12 = buf.get(); m22 = buf.get(); return this; } /** * Store this matrix in a float buffer. The matrix is stored in column * major (openGL) order. * @param buf The buffer to store this matrix in */ public Matrix store(FloatBuffer buf) { buf.put(m00); buf.put(m01); buf.put(m02); buf.put(m10); buf.put(m11); buf.put(m12); buf.put(m20); buf.put(m21); buf.put(m22); return this; } /** * Store this matrix in a float buffer. The matrix is stored in row * major (maths) order. * @param buf The buffer to store this matrix in */ public Matrix storeTranspose(FloatBuffer buf) { buf.put(m00); buf.put(m10); buf.put(m20); buf.put(m01); buf.put(m11); buf.put(m21); buf.put(m02); buf.put(m12); buf.put(m22); return this; } /** * Add two matrices together and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix3f add(Matrix3f left, Matrix3f right, Matrix3f dest) { Matrix3f temp = null; if (dest == null) dest = new Matrix3f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix3f(); } dest.m00 = left.m00 + right.m00; dest.m01 = left.m01 + right.m01; dest.m02 = left.m02 + right.m02; dest.m10 = left.m10 + right.m10; dest.m11 = left.m11 + right.m11; dest.m12 = left.m12 + right.m12; dest.m20 = left.m20 + right.m20; dest.m21 = left.m21 + right.m21; dest.m22 = left.m22 + right.m22; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Subtract the right matrix from the left and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix3f sub(Matrix3f left, Matrix3f right, Matrix3f dest) { Matrix3f temp = null; if (dest == null) dest = new Matrix3f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix3f(); } dest.m00 = left.m00 - right.m00; dest.m01 = left.m01 - right.m01; dest.m02 = left.m02 - right.m02; dest.m10 = left.m10 - right.m10; dest.m11 = left.m11 - right.m11; dest.m12 = left.m12 - right.m12; dest.m20 = left.m20 - right.m20; dest.m21 = left.m21 - right.m21; dest.m22 = left.m22 - right.m22; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Multiply the right matrix by the left and place the result in a third matrix. * @param left The left source matrix * @param right The right source matrix * @param dest The destination matrix, or null if a new one is to be created * @return the destination matrix */ public static Matrix3f mul(Matrix3f left, Matrix3f right, Matrix3f dest) { Matrix3f temp = null; if (dest == null) dest = new Matrix3f(); else if (dest == left || dest == right) { temp = dest; dest = new Matrix3f(); } dest.m00 = left.m00 * right.m00 + left.m10 * right.m01 + left.m20 * right.m02; dest.m01 = left.m01 * right.m00 + left.m11 * right.m01 + left.m21 * right.m02; dest.m02 = left.m02 * right.m00 + left.m12 * right.m01 + left.m22 * right.m02; dest.m10 = left.m00 * right.m10 + left.m10 * right.m11 + left.m20 * right.m12; dest.m11 = left.m01 * right.m10 + left.m11 * right.m11 + left.m21 * right.m12; dest.m12 = left.m02 * right.m10 + left.m12 * right.m11 + left.m22 * right.m12; dest.m20 = left.m00 * right.m20 + left.m10 * right.m21 + left.m20 * right.m22; dest.m21 = left.m01 * right.m20 + left.m11 * right.m21 + left.m21 * right.m22; dest.m22 = left.m02 * right.m20 + left.m12 * right.m21 + left.m22 * right.m22; if (temp != null) { temp.load(dest); return temp; } else return dest; } /** * Transform a Vector by a matrix and return the result in a destination * vector. * @param left The left matrix * @param right The right vector * @param dest The destination vector, or null if a new one is to be created * @return the destination vector */ public static Vector3f transform(Matrix3f left, Vector3f right, Vector3f dest) { Vector3f temp = null; if (dest == null) dest = new Vector3f(); else if (dest == right) { temp = dest; dest = new Vector3f(); } dest.x = left.m00 * right.x + left.m10 * right.y + left.m20 * right.z; dest.y = left.m01 * right.x + left.m11 * right.y + left.m21 * right.z; dest.z = left.m02 * right.x + left.m12 * right.y + left.m22 * right.z; if (temp != null) { temp.set(dest); return temp; } else return dest; } /** * Transpose this matrix * @return this */ public Matrix transpose() { float f = m10; m10 = m01; m01 = f; f = m20; m20 = m02; m02 = f; f = m21; m21 = m12; m12 = f; return this; } /** * Transpose this matrix and place the result in another matrix * @param dest The destination matrix or null if a new matrix is to be created * @return the transposed matrix */ public Matrix3f transpose(Matrix3f dest) { if (dest == null) { dest = new Matrix3f(); dest.m00 = m00; dest.m01 = m10; dest.m02 = m20; dest.m10 = m01; dest.m11 = m11; dest.m12 = m21; dest.m20 = m02; dest.m21 = m12; dest.m22 = m22; return dest; } else { transpose(); return this; } } /** * @return the determinant of the matrix */ public float determinant() { float f = m00 * (m11 * m22 - m12 * m21) + m01 * (m12 * m20 - m10 * m22) + m02 * (m10 * m21 - m11 * m20); return f; } /** * Returns a string representation of this matrix */ public String toString() { StringBuffer buf = new StringBuffer(); buf.append(m00).append(' ').append(m10).append(' ').append(m20).append(' ').append('\n'); buf.append(m01).append(' ').append(m11).append(' ').append(m21).append(' ').append('\n'); buf.append(m02).append(' ').append(m12).append(' ').append(m22).append(' ').append('\n'); return buf.toString(); } /** * Invert this matrix * @return this if successful, null otherwise */ public Matrix invert() { float determinant = determinant(); if (determinant != 0) { /* do it the ordinary way * * inv(A) = 1/det(A) * adj(T), where adj(T) = transpose(Conjugate Matrix) * * m00 m01 m02 * m10 m11 m12 * m20 m21 m22 */ float determinant_inv = 1f/determinant; // get the conjugate matrix float t00 = m11 * m22 - m12* m21; float t01 = - m10 * m22 + m12 *m20; float t02 = m10 * m21 - m11 * m20; float t10 = - m01 * m22 + m02 * m21; float t11 = m00 * m22 - m02 * m20; float t12 = - m00 * m21 + m01 * m20; float t20 = m01 * m12 - m02 * m11; float t21 = -m00 * m12 + m02 * m10; float t22 = m00 * m11 - m01 * m10; m00 = t00*determinant_inv; m11 = t11*determinant_inv; m22 = t22*determinant_inv; m01 = t10*determinant_inv; m10 = t01*determinant_inv; m20 = t02*determinant_inv; m02 = t20*determinant_inv; m12 = t21*determinant_inv; m21 = t12*determinant_inv; return this; } else return null; } /** * Negate this matrix * @return this */ public Matrix negate() { m00 = -m00; m01 = -m02; m02 = -m01; m10 = -m10; m11 = -m12; m12 = -m11; m20 = -m20; m21 = -m22; m22 = -m21; return this; } /** * Negate this matrix and place the result in a destination matrix. * @param dest The destination matrix, or null if a new matrix is to be created * @return the negated matrix */ public Matrix3f negate(Matrix3f dest) { if (dest == null) dest = new Matrix3f(); dest.m00 = -m00; dest.m01 = -m02; dest.m02 = -m01; dest.m10 = -m10; dest.m11 = -m12; dest.m12 = -m11; dest.m20 = -m20; dest.m21 = -m22; dest.m22 = -m21; return dest; } /** * Set this matrix to be the identity matrix. * @return this */ public Matrix setIdentity() { m00 = 1.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = 1.0f; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 1.0f; return this; } /** * Set this matrix to 0. * @return this */ public Matrix setZero() { m00 = 0.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = 0.0f; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 0.0f; return this; } }