mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-12-06 07:12:10 +01:00
367 lines
13 KiB
Python
367 lines
13 KiB
Python
import platform
|
|
import traceback
|
|
from pathlib import Path
|
|
|
|
import modules.shared as shared
|
|
from modules.logging_colors import logger
|
|
|
|
|
|
def is_apple_silicon():
|
|
"""Check if running on Apple Silicon"""
|
|
return platform.system() == "Darwin" and platform.machine() == "arm64"
|
|
|
|
|
|
class MLXModel:
|
|
def __init__(self):
|
|
self.model = None
|
|
self.tokenizer = None
|
|
self.model_name = None
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_name):
|
|
"""Load MLX model from path or HuggingFace repository"""
|
|
|
|
if not is_apple_silicon():
|
|
logger.warning("MLX backend is only supported on Apple Silicon. Falling back to Transformers.")
|
|
return None
|
|
|
|
try:
|
|
from mlx_lm import load
|
|
except ImportError:
|
|
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
|
|
return None
|
|
|
|
instance = cls()
|
|
instance.model_name = model_name
|
|
|
|
try:
|
|
# Determine the model path/name
|
|
model_path = cls._resolve_model_path(model_name)
|
|
|
|
logger.info(f"Loading MLX model: {model_path}")
|
|
tokenizer_config = {"trust_remote_code": True}
|
|
model, tokenizer = load(model_path, tokenizer_config=tokenizer_config)
|
|
|
|
instance.model = model
|
|
instance.tokenizer = tokenizer
|
|
|
|
logger.info(f"Successfully loaded MLX model: {model_name}")
|
|
return instance, instance # Return model, tokenizer tuple for compatibility
|
|
|
|
except Exception as e:
|
|
error_msg = str(e)
|
|
if "not supported" in error_msg.lower():
|
|
logger.error(f"MLX model {model_name} uses an unsupported model type: {error_msg}")
|
|
logger.error("Consider using a different loader or updating mlx-lm to a newer version")
|
|
else:
|
|
logger.error(f"Failed to load MLX model {model_name}: {error_msg}")
|
|
traceback.print_exc()
|
|
return None
|
|
|
|
@staticmethod
|
|
def _resolve_model_path(model_name):
|
|
"""Resolve model path - either local path or HuggingFace repo"""
|
|
model_path = Path(f'{shared.args.model_dir}/{model_name}')
|
|
|
|
if model_path.exists():
|
|
# Local model path
|
|
return str(model_path)
|
|
elif '/' in model_name:
|
|
# Already has repo/model format
|
|
return model_name
|
|
elif '_' in model_name and not model_name.startswith('_'):
|
|
# Handle repo_name format - convert first underscore to slash
|
|
# e.g., "mlx-community_model-name" -> "mlx-community/model-name"
|
|
parts = model_name.split('_', 1)
|
|
if len(parts) == 2:
|
|
return f"{parts[0]}/{parts[1]}"
|
|
return model_name
|
|
else:
|
|
# Default to mlx-community for standalone model names
|
|
return f"mlx-community/{model_name}"
|
|
|
|
def _create_mlx_sampler(self, state):
|
|
"""Create MLX sampler with webui parameters"""
|
|
try:
|
|
from mlx_lm.sample_utils import make_sampler
|
|
|
|
# Extract sampling parameters from state
|
|
temperature = state.get('temperature', 1.0)
|
|
top_p = state.get('top_p', 1.0)
|
|
top_k = state.get('top_k', 0) # 0 means no top_k limit
|
|
min_p = state.get('min_p', 0.0)
|
|
|
|
# Handle dynamic temperature
|
|
if state.get('dynamic_temperature', False):
|
|
temp_low = state.get('dynatemp_low', 1.0)
|
|
temp_high = state.get('dynatemp_high', 1.0)
|
|
temperature = (temp_low + temp_high) / 2 # Simple average for now
|
|
|
|
# XTC sampling parameters
|
|
xtc_probability = state.get('xtc_probability', 0.0)
|
|
xtc_threshold = state.get('xtc_threshold', 0.1)
|
|
|
|
# Ensure temperature is not zero (causes issues with MLX)
|
|
if temperature <= 0.0:
|
|
temperature = 0.01
|
|
|
|
# Log sampling parameters for debugging
|
|
if shared.args.verbose:
|
|
logger.info(f"MLX Sampler - temp: {temperature}, top_p: {top_p}, top_k: {top_k}, min_p: {min_p}")
|
|
|
|
# Create the sampler
|
|
sampler = make_sampler(
|
|
temp=temperature,
|
|
top_p=top_p if top_p < 1.0 else 0.0, # MLX expects 0.0 to disable
|
|
top_k=int(top_k) if top_k > 0 else 0,
|
|
min_p=min_p,
|
|
min_tokens_to_keep=1, # Always keep at least one token
|
|
xtc_probability=xtc_probability,
|
|
xtc_threshold=xtc_threshold,
|
|
xtc_special_tokens=[] # Could be customized later
|
|
)
|
|
|
|
return sampler
|
|
|
|
except ImportError:
|
|
logger.warning("MLX sampling utilities not available, using default sampler")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Failed to create MLX sampler: {e}")
|
|
return None
|
|
|
|
def _create_logits_processors(self, state):
|
|
"""Create logits processors for repetition penalty, etc."""
|
|
processors = []
|
|
|
|
try:
|
|
from mlx_lm.sample_utils import make_repetition_penalty
|
|
|
|
# Repetition penalty
|
|
repetition_penalty = state.get('repetition_penalty', 1.0)
|
|
if repetition_penalty != 1.0:
|
|
context_size = state.get('repetition_penalty_range', 1024)
|
|
rep_processor = make_repetition_penalty(
|
|
penalty=repetition_penalty,
|
|
context_size=context_size
|
|
)
|
|
processors.append(rep_processor)
|
|
|
|
except ImportError:
|
|
logger.warning("MLX repetition penalty not available")
|
|
except Exception as e:
|
|
logger.error(f"Failed to create repetition penalty processor: {e}")
|
|
|
|
return processors if processors else None
|
|
|
|
def _map_parameters(self, state):
|
|
"""Map text-generation-webui parameters to MLX parameters"""
|
|
mlx_params = {}
|
|
|
|
# Max tokens
|
|
if 'max_new_tokens' in state and state['max_new_tokens'] > 0:
|
|
mlx_params['max_tokens'] = state['max_new_tokens']
|
|
else:
|
|
mlx_params['max_tokens'] = 512 # Default
|
|
|
|
# Create custom sampler with advanced parameters
|
|
sampler = self._create_mlx_sampler(state)
|
|
if sampler:
|
|
mlx_params['sampler'] = sampler
|
|
|
|
# Create logits processors
|
|
logits_processors = self._create_logits_processors(state)
|
|
if logits_processors:
|
|
mlx_params['logits_processors'] = logits_processors
|
|
|
|
# Seed handling
|
|
seed = state.get('seed', -1)
|
|
if seed != -1:
|
|
try:
|
|
import mlx.core as mx
|
|
mx.random.seed(seed)
|
|
except Exception as e:
|
|
logger.warning(f"Failed to set MLX random seed: {e}")
|
|
|
|
return mlx_params
|
|
|
|
def _prepare_prompt(self, prompt):
|
|
"""Prepare prompt with chat template if available"""
|
|
if self.tokenizer.chat_template is not None:
|
|
messages = [{"role": "user", "content": prompt}]
|
|
formatted_prompt = self.tokenizer.apply_chat_template(
|
|
messages, add_generation_prompt=True, tokenize=False
|
|
)
|
|
return formatted_prompt
|
|
return prompt
|
|
|
|
def generate(self, prompt, state):
|
|
"""Non-streaming generation with advanced sampling"""
|
|
try:
|
|
from mlx_lm.generate import generate_step
|
|
import mlx.core as mx
|
|
except ImportError:
|
|
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
|
|
return ""
|
|
|
|
if self.model is None or self.tokenizer is None:
|
|
logger.error("MLX model not loaded")
|
|
return ""
|
|
|
|
try:
|
|
# Prepare the prompt
|
|
formatted_prompt = self._prepare_prompt(prompt)
|
|
|
|
# Tokenize the prompt
|
|
prompt_tokens = self.tokenizer.encode(formatted_prompt)
|
|
prompt_array = mx.array(prompt_tokens)
|
|
|
|
# Map parameters for MLX
|
|
mlx_params = self._map_parameters(state)
|
|
|
|
# Remove max_tokens from params for generate_step
|
|
max_tokens = mlx_params.pop('max_tokens', 512)
|
|
|
|
# Generate all tokens at once
|
|
generated_tokens = []
|
|
|
|
for token, logprobs in generate_step(
|
|
prompt_array,
|
|
self.model,
|
|
max_tokens=max_tokens,
|
|
**mlx_params
|
|
):
|
|
# Handle both MLX arrays and direct integers
|
|
if hasattr(token, 'item'):
|
|
token_id = int(token.item())
|
|
else:
|
|
token_id = int(token)
|
|
generated_tokens.append(token_id)
|
|
|
|
# Check for stop conditions
|
|
if shared.stop_everything:
|
|
break
|
|
|
|
# Decode all generated tokens
|
|
if generated_tokens:
|
|
response = self.tokenizer.decode(generated_tokens)
|
|
return response
|
|
else:
|
|
return ""
|
|
|
|
except Exception as e:
|
|
logger.error(f"MLX generation failed: {str(e)}")
|
|
traceback.print_exc()
|
|
return ""
|
|
|
|
def generate_with_streaming(self, prompt, state):
|
|
"""True streaming generation using MLX generate_step"""
|
|
try:
|
|
from mlx_lm.generate import generate_step
|
|
import mlx.core as mx
|
|
except ImportError:
|
|
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
|
|
yield ""
|
|
return
|
|
|
|
if self.model is None or self.tokenizer is None:
|
|
logger.error("MLX model not loaded")
|
|
yield ""
|
|
return
|
|
|
|
try:
|
|
# Prepare the prompt
|
|
formatted_prompt = self._prepare_prompt(prompt)
|
|
|
|
# Tokenize the prompt
|
|
prompt_tokens = self.tokenizer.encode(formatted_prompt)
|
|
prompt_array = mx.array(prompt_tokens)
|
|
|
|
# Map parameters for MLX
|
|
mlx_params = self._map_parameters(state)
|
|
|
|
# Remove max_tokens from params for generate_step (use different name)
|
|
max_tokens = mlx_params.pop('max_tokens', 512)
|
|
|
|
# Initialize streaming generation
|
|
generated_tokens = []
|
|
generated_text = ""
|
|
|
|
# Use generate_step for true streaming
|
|
for token, logprobs in generate_step(
|
|
prompt_array,
|
|
self.model,
|
|
max_tokens=max_tokens,
|
|
**mlx_params
|
|
):
|
|
# Handle both MLX arrays and direct integers
|
|
if hasattr(token, 'item'):
|
|
token_id = int(token.item())
|
|
else:
|
|
token_id = int(token)
|
|
generated_tokens.append(token_id)
|
|
|
|
# Decode the new token
|
|
try:
|
|
# Decode just the new token
|
|
new_text = self.tokenizer.decode([token_id])
|
|
generated_text += new_text
|
|
|
|
# Yield the accumulated text so far
|
|
yield generated_text
|
|
|
|
except Exception as decode_error:
|
|
logger.warning(f"Failed to decode token {token_id}: {decode_error}")
|
|
continue
|
|
|
|
# Check for stop conditions
|
|
if shared.stop_everything:
|
|
break
|
|
|
|
# Final yield with complete text
|
|
if generated_text:
|
|
yield generated_text
|
|
|
|
except Exception as e:
|
|
logger.error(f"MLX streaming generation failed: {str(e)}")
|
|
traceback.print_exc()
|
|
yield ""
|
|
|
|
def encode(self, text, add_bos_token=False, **kwargs):
|
|
"""Encode text to tokens"""
|
|
if self.tokenizer is None:
|
|
import torch
|
|
return torch.tensor([[]], dtype=torch.long)
|
|
|
|
try:
|
|
# MLX tokenizer encode method
|
|
tokens = self.tokenizer.encode(text)
|
|
|
|
# Convert to tensor format expected by webui
|
|
import torch
|
|
tokens_tensor = torch.tensor([tokens], dtype=torch.long)
|
|
return tokens_tensor
|
|
except Exception as e:
|
|
logger.error(f"MLX tokenization failed: {str(e)}")
|
|
# Return empty tensor on failure
|
|
import torch
|
|
return torch.tensor([[]], dtype=torch.long)
|
|
|
|
def decode(self, token_ids, **kwargs):
|
|
"""Decode tokens to text"""
|
|
if self.tokenizer is None:
|
|
return ""
|
|
|
|
try:
|
|
# MLX tokenizer decode method
|
|
text = self.tokenizer.decode(token_ids)
|
|
return text
|
|
except Exception as e:
|
|
logger.error(f"MLX detokenization failed: {str(e)}")
|
|
return ""
|
|
|
|
def unload(self):
|
|
"""Unload the model to free memory"""
|
|
self.model = None
|
|
self.tokenizer = None
|
|
logger.info("MLX model unloaded") |