mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-12-06 07:12:10 +01:00
437 lines
20 KiB
Python
437 lines
20 KiB
Python
import time
|
|
|
|
import html
|
|
import functools
|
|
import re
|
|
|
|
import gradio
|
|
import numpy as np
|
|
import torch
|
|
from transformers import LogitsProcessor
|
|
import colorsys
|
|
|
|
from modules import html_generator, shared
|
|
|
|
params = {
|
|
'active': True,
|
|
'color_by_perplexity': False,
|
|
'color_by_probability': False,
|
|
'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
|
|
'probability_dropdown': False,
|
|
'verbose': False # For debugging mostly
|
|
}
|
|
|
|
|
|
class PerplexityLogits(LogitsProcessor):
|
|
def __init__(self, verbose=False):
|
|
self.generated_token_ids = []
|
|
self.selected_probs = []
|
|
self.top_token_ids_list = []
|
|
self.top_probs_list = []
|
|
self.perplexities_list = []
|
|
self.last_probs = None
|
|
self.verbose = verbose
|
|
|
|
def __call__(self, input_ids, scores):
|
|
#t0 = time.time()
|
|
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
|
|
log_probs = torch.nan_to_num(torch.log(probs)) # Note: This is to convert log(0) nan to 0, but probs*log_probs makes this 0 not affect the perplexity.
|
|
entropy = -torch.sum(probs * log_probs)
|
|
entropy = entropy.cpu().numpy()
|
|
perplexity = round(float(np.exp(entropy)), 4)
|
|
self.perplexities_list.append(perplexity)
|
|
last_token_id = int(input_ids[0][-1].cpu().numpy().item())
|
|
# Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
|
|
self.generated_token_ids.append(last_token_id)
|
|
# Get last probability, and add to the list if it wasn't there
|
|
if len(self.selected_probs) > 0:
|
|
# Is the selected token in the top tokens?
|
|
if self.verbose:
|
|
print(shared.tokenizer.decode(last_token_id), [shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1][0]],
|
|
[round(float(prob), 4) for prob in self.top_probs_list[-1][0]])
|
|
if last_token_id in self.top_token_ids_list[-1][0]:
|
|
idx = self.top_token_ids_list[-1][0].index(last_token_id)
|
|
self.selected_probs.append(self.top_probs_list[-1][0][idx])
|
|
else:
|
|
self.top_token_ids_list[-1][0].append(last_token_id)
|
|
last_prob = round(float(self.last_probs[last_token_id]), 4)
|
|
self.top_probs_list[-1][0].append(last_prob)
|
|
self.selected_probs.append(last_prob)
|
|
else:
|
|
self.selected_probs.append(1.0) # Placeholder for the last token of the prompt
|
|
|
|
if self.verbose:
|
|
pplbar = "-"
|
|
if not np.isnan(perplexity):
|
|
pplbar = "*" * round(perplexity)
|
|
print(f"PPL for token after {shared.tokenizer.decode(last_token_id)}: {perplexity:.2f} {pplbar}")
|
|
|
|
# Get top 5 probabilities
|
|
top_tokens_and_probs = torch.topk(probs, 5)
|
|
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
|
|
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()
|
|
|
|
self.top_token_ids_list.append(top_token_ids)
|
|
self.top_probs_list.append(top_probs)
|
|
|
|
probs = probs.cpu().numpy().flatten()
|
|
self.last_probs = probs # Need to keep this as a reference for top probs
|
|
|
|
#t1 = time.time()
|
|
#print(f"PPL Processor: {(t1-t0):.3f} s")
|
|
# About 1 ms, though occasionally up to around 100 ms, not sure why...
|
|
# Doesn't actually modify the logits!
|
|
return scores
|
|
|
|
|
|
# Stores the perplexity and top probabilities
|
|
# global ppl_logits_processor
|
|
ppl_logits_processor = None
|
|
|
|
|
|
def logits_processor_modifier(logits_processor_list, input_ids):
|
|
global ppl_logits_processor
|
|
if params['active']:
|
|
ppl_logits_processor = PerplexityLogits(verbose=params['verbose'])
|
|
logits_processor_list.append(ppl_logits_processor)
|
|
|
|
|
|
def output_modifier(text):
|
|
global ppl_logits_processor
|
|
#t0 = time.time()
|
|
|
|
if not params['active'] or ppl_logits_processor is None:
|
|
return text
|
|
|
|
# TODO: It's probably more efficient to do this above rather than modifying all these lists
|
|
# Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
|
|
perplexities = ppl_logits_processor.perplexities_list[:-1]
|
|
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
|
|
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids[0]] for top_token_ids in top_token_ids_list]
|
|
top_probs_list = ppl_logits_processor.top_probs_list[:-1]
|
|
# Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
|
|
gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
|
|
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
|
|
sel_probs = ppl_logits_processor.selected_probs[1:]
|
|
|
|
end_part = '</div></div>' if params['probability_dropdown'] else '</span>' # Helps with finding the index after replacing part of the text.
|
|
|
|
# Initial space added to deal with some tokenizers...
|
|
# Used to find where the message started generating, for working with "continue" generations
|
|
# Doesn't work for longer messages... Not sure how I should handle this
|
|
full_msg = shared.tokenizer.decode([token_id for token_id in gen_token_ids[:-1]]).strip()
|
|
# Space at the beginning to account for tokenization spaces...
|
|
text = ' ' + html.unescape(text)
|
|
# There was an issue with tab lengths being off by one...
|
|
# Seems like it might be model-dependent...
|
|
#text = re.sub(r'( {3,})', r'\1 ', text)
|
|
# Subtracting 2 to hopefully help with the tokenization spaces and continue issues,
|
|
# Though it's possible it could overwrite the previous token if it's the same in the last 2 chars
|
|
i = text.find(full_msg) - 2
|
|
if i < 0:
|
|
# Backup, try removing the extra whitespace (needed for continue)
|
|
i = text.find(full_msg.strip()) - 2
|
|
if i < 0:
|
|
i = 0
|
|
|
|
#i = 0
|
|
# Add token index for ability to regenerate from there
|
|
nonwhitespace_token_found = False
|
|
for index, token, prob, ppl, top_tokens, top_probs in zip(range(len(gen_tokens)), gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
|
|
# Somehow this works without issues, but not sure how...
|
|
if not nonwhitespace_token_found and token.strip() == '':
|
|
#print('Ignoring initial whitespace token...')
|
|
continue
|
|
nonwhitespace_token_found = True
|
|
max_prob = top_probs[0][0]
|
|
color = 'ffffff'
|
|
if params['color_by_probability'] and params['color_by_perplexity']:
|
|
color = probability_perplexity_color_scale(prob, max_prob, ppl)
|
|
elif params['color_by_perplexity']:
|
|
color = perplexity_color_scale(ppl)
|
|
elif params['color_by_probability']:
|
|
color = probability_color_scale(prob)
|
|
if token.strip() in text[i:]:
|
|
if params['probability_dropdown']:
|
|
text = text[:i] + text[i:].replace(token.replace('\n', ''), add_dropdown_html(token, index, color, top_tokens, top_probs[0], ppl), 1)
|
|
else:
|
|
text = text[:i] + text[i:].replace(token.replace('\n', ''), add_color_html(token, color), 1)
|
|
|
|
# This might be slightly inefficient
|
|
i += text[i:].find(end_part) + len(end_part)
|
|
else:
|
|
print('Missing token:', token, '...', text[i:i+20])
|
|
|
|
# Use full perplexity list for calculating the average here.
|
|
# Fix issue with mean of empty slice
|
|
if len(ppl_logits_processor.perplexities_list) > 1:
|
|
print('Average perplexity:', round(np.mean(ppl_logits_processor.perplexities_list[:-1]), 4))
|
|
#t1 = time.time()
|
|
#print(f"Output modifier: {(t1-t0):.3f} s")
|
|
# About 50 ms
|
|
return text.strip() # Remove extra beginning whitespace that some tokenizers add
|
|
|
|
|
|
def probability_color_scale(prob):
|
|
'''
|
|
Green-yellow-red color scale
|
|
'''
|
|
# hue (0.0 = red, 0.33 = green)
|
|
# saturation (0.0 = gray / white, 1.0 = normal, just leave at 1.0)
|
|
# brightness (0.0 = black, 1.0 = brightest, use something in between for better readability if you want...)
|
|
hue = prob * 0.33
|
|
rv, gv, bv = colorsys.hsv_to_rgb(hue, 1.0, 1.0)
|
|
# to hex
|
|
hex_col = f"{int(rv*255):02x}{int(gv*255):02x}{int(bv*255):02x}"
|
|
|
|
return hex_col
|
|
|
|
|
|
def perplexity_color_scale(ppl):
|
|
'''
|
|
Red component only, white for 0 perplexity (sorry if you're not in dark mode)
|
|
'''
|
|
# hue (0.0 = red)
|
|
# saturation (1.0 = red)
|
|
# brightness (0.0 = black, 1.0 = red)
|
|
# scale saturation from white to red the higher the perplexity
|
|
|
|
ppl = min(ppl, params['ppl_scale']) # clip ppl to 0-params['ppl_scale'] for color scaling. 15 should be fine for clipping and scaling
|
|
sat = ppl / params['ppl_scale']
|
|
rv, gv, bv = colorsys.hsv_to_rgb(0.0, sat, 1.0)
|
|
|
|
# to hex
|
|
hex_col = f"{int(rv*255):02x}{int(gv*255):02x}{int(bv*255):02x}"
|
|
|
|
return hex_col
|
|
|
|
|
|
def probability_perplexity_color_scale(prob, max_prob, ppl):
|
|
'''
|
|
Green-yellow-red for relative probability compared to maximum for the current token, and blue component for perplexity
|
|
'''
|
|
hue = prob/max_prob * 0.33
|
|
rv, gv, _ = colorsys.hsv_to_rgb(hue, 1.0, 1.0)
|
|
|
|
ppl = min(ppl, params['ppl_scale']) # clip ppl to 0-params['ppl_scale'] for color scaling. 15 should be fine for clipping and scaling
|
|
bv = ppl / params['ppl_scale']
|
|
|
|
# to hex
|
|
hex_col = f"{int(rv*255):02x}{int(gv*255):02x}{int(bv*255):02x}"
|
|
|
|
return hex_col
|
|
|
|
|
|
def add_color_html(token, color):
|
|
output = ''
|
|
output += f'<span style="color: #{color}">{html.escape(repr(token)[1:-1])}</span>'
|
|
#if '\n' in token or '\r' in token: #token.isspace():
|
|
# output += '<br>'
|
|
return output
|
|
|
|
|
|
# TODO: Might also need message index for the click-to-regenerate feature to work... For now it only works in the last message, which I think is fine.
|
|
|
|
# TODO: Major issue: Applying this to too many tokens will cause a permanent slowdown in generation speed until the messages are removed from the history. The slowdown seems to be mostly resolved in the current version though
|
|
# I think the issue is from HTML elements taking up space in the visible history, and things like history deepcopy add latency proportional to the size of the history.
|
|
# Potential solution is maybe to modify the main generation code to send just the internal text and not the visible history, to avoid moving too much around.
|
|
# I wonder if we can also avoid using deepcopy here.
|
|
def add_dropdown_html(token, index, color, top_tokens, top_probs, perplexity=0):
|
|
#print("Token:", token, token.isspace(), '\n' in token or '\r' in token)
|
|
output = ''
|
|
# Use the repr to get characters like \n visible. Exclude the quotes around it
|
|
output += f'<div class="hoverable" id="tok_{index}"><span style="color: #{color}">{html.escape(repr(token)[1:-1])}</span><div class="dropdown"><table class="dropdown-content"><tbody>'
|
|
for i, token_option, prob in zip(range(len(top_tokens)), top_tokens, top_probs):
|
|
# TODO: Bold for selected token?
|
|
# Using divs prevented the problem of divs inside spans causing issues.
|
|
# Now the problem is that divs show the same whitespace of one space between every token.
|
|
# There is probably some way to fix this in CSS that I don't know about.
|
|
row_color = probability_color_scale(prob)
|
|
row_class = ' class="selected"' if token_option == token else ''
|
|
# This time we want to include the quotes around it so that we can see where the spaces are.
|
|
output += f'<tr{row_class}><td id="opt_{index}_{i}" style="color: #{row_color}">{html.escape(repr(token_option))}</td><td style="color: #{row_color}">{prob:.4f}</td></tr>'
|
|
if perplexity != 0:
|
|
ppl_color = perplexity_color_scale(perplexity)
|
|
output += f'<tr><td>Perplexity:</td><td style="color: #{ppl_color}">{perplexity:.4f}</td></tr>'
|
|
output += '</tbody></table></div></div>'
|
|
#if '\n' in token or '\r' in token: #token.isspace():
|
|
# output += '<br>' # I imagine this will cause problems sometimes
|
|
return output # About 750 characters per token...
|
|
|
|
|
|
def custom_css():
|
|
return """
|
|
.dropdown {
|
|
display: none;
|
|
position: absolute;
|
|
z-index: 50;
|
|
background-color: var(--background-fill-secondary);
|
|
box-shadow: 0px 8px 16px 0px rgba(0,0,0,1.0);
|
|
width: max-content;
|
|
overflow: visible;
|
|
padding: 5px;
|
|
border-radius: 10px;
|
|
border: 1px solid var(--border-color-primary);
|
|
}
|
|
|
|
.dropdown-content {
|
|
border: none;
|
|
z-index: 50;
|
|
}
|
|
|
|
.dropdown-content tr.selected {
|
|
background-color: var(--background-fill-primary);
|
|
}
|
|
|
|
.dropdown-content td {
|
|
color: var(--body-text-color);
|
|
}
|
|
|
|
.hoverable {
|
|
color: var(--body-text-color);
|
|
position: relative;
|
|
display: inline-block;
|
|
overflow: visible;
|
|
font-size: 15px;
|
|
line-height: 1.75;
|
|
margin: 0;
|
|
padding: 0;
|
|
}
|
|
|
|
.hoverable:hover .dropdown {
|
|
display: block;
|
|
}
|
|
|
|
pre {
|
|
white-space: pre-wrap;
|
|
}
|
|
|
|
# TODO: This makes the hover menus extend outside the bounds of the chat area, which is good.
|
|
# However, it also makes the scrollbar disappear, which is bad.
|
|
# The scroll bar needs to still be present. So for now, we can't see dropdowns that extend past the edge of the chat area.
|
|
.chat {
|
|
overflow-y: auto;
|
|
}
|
|
"""
|
|
|
|
def custom_js():
|
|
return """
|
|
|
|
function sleep(ms) {
|
|
return new Promise(resolve => setTimeout(resolve, ms));
|
|
}
|
|
|
|
// Note that this will only work as intended on the last agent message
|
|
document.addEventListener("click", async function(event) {
|
|
//console.log(event.target);
|
|
const id = event.target.id;
|
|
if (id.includes("opt_")) {
|
|
const id_parts = id.split("_");
|
|
const token_index = id_parts[1];
|
|
const option_index = id_parts[2];
|
|
// Exclude the quotes and convert newlines... Not sure about the newlines though
|
|
// TODO: Seems like continuing generation from a newline causes problems whether you add it or not!
|
|
const token_string = event.target.innerHTML.substring(1, event.target.innerHTML.length-1).replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"r", "g"), '').replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"n", "g"), '');
|
|
//console.log(token_index + ", " + option_index + ", " + token_string);
|
|
// Get all the previous text (I'm sure there is a more efficient way to do this)
|
|
var msg_text = ""
|
|
const msg_html = event.target.parentElement.parentElement.parentElement.parentElement.parentElement.parentElement;
|
|
var msg_parts = msg_html.childNodes;
|
|
for (var i = 0; i < msg_parts.length; i++) {
|
|
var msg_part = msg_parts[i];
|
|
if (msg_part.nodeType === Node.ELEMENT_NODE) {
|
|
if (msg_part.nodeName == "DIV") {
|
|
var current_token_index = msg_part.id.split("_")[1];
|
|
if (current_token_index == token_index) {
|
|
// Use the replacement token
|
|
// TODO: Don't have access to the tokenizer here, and sometimes there needs to be a space added before this token
|
|
msg_text += token_string //.replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"r", "g"), '').replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"n", "g"), '');
|
|
break;
|
|
}
|
|
else {
|
|
// Replace here or at the end?
|
|
var text = msg_part.firstChild.innerHTML.replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"r", "g"), '').replace(new RegExp(String.fromCharCode(92)+String.fromCharCode(92)+"n", "g"), '')
|
|
msg_text += text;
|
|
}
|
|
}
|
|
else {
|
|
// Break tag (hacky workaround because the newline literal can't be parsed here)
|
|
//msg_text += String.fromCharCode(10);
|
|
// Do nothing???
|
|
}
|
|
}
|
|
else if (msg_part.nodeType === Node.TEXT_NODE) {
|
|
msg_text += msg_part.textContent;
|
|
}
|
|
}
|
|
var textbox = document.querySelector("#chat-input textarea");
|
|
textbox.focus();
|
|
textbox.value = msg_text.trimStart() // Fix initial tokenization spaces
|
|
//console.log(textbox.value);
|
|
|
|
// Add some delays to make sure it's processed correctly. Without these, there's a chance the events don't go through correctly and it doesn't work
|
|
// It's unknown how long this will take, and probably depends on the size of the message...
|
|
// It would be better to somehow wait for gradio to update instead of waiting a fixed amount of time.
|
|
// Hopefully 1 second of delay before starting generation isn't unacceptable.
|
|
var inputEvent = new Event('input', {
|
|
bubbles: true,
|
|
cancelable: true,
|
|
});
|
|
textbox.dispatchEvent(inputEvent);
|
|
var changeEvent = new Event('change', {
|
|
bubbles: true,
|
|
cancelable: true,
|
|
});
|
|
textbox.dispatchEvent(changeEvent);
|
|
await sleep(250);
|
|
document.getElementById("Replace-last").click();
|
|
// This can take a while to execute
|
|
await sleep(750);
|
|
document.getElementById("Continue").click();
|
|
}
|
|
});
|
|
|
|
console.log("Custom JS for perplexity_colors loaded");
|
|
"""
|
|
|
|
# Monkeypatch applied to html_generator.py
|
|
# We simply don't render markdown into HTML. We wrap everything in <pre> tags to preserve whitespace
|
|
# formatting. If you're coloring tokens by perplexity or probability, or especially if you're using
|
|
# the probability dropdown, you probably care more about seeing the tokens the model actually outputted
|
|
# rather than rendering ```code blocks``` or *italics*.
|
|
@functools.lru_cache(maxsize=4096)
|
|
def convert_to_markdown(string):
|
|
return '<pre>' + string + '</pre>'
|
|
|
|
def convert_to_markdown_wrapped(string, use_cache=True):
|
|
if use_cache:
|
|
return convert_to_markdown(string)
|
|
return convert_to_markdown.__wrapped__(string)
|
|
|
|
# This is still necessary for formatting to work correctly
|
|
html_generator.convert_to_markdown = convert_to_markdown
|
|
|
|
|
|
def ui():
|
|
def update_active_check(x):
|
|
params.update({'active': x})
|
|
|
|
def update_color_by_ppl_check(x):
|
|
params.update({'color_by_perplexity': x})
|
|
|
|
def update_color_by_prob_check(x):
|
|
params.update({'color_by_probability': x})
|
|
|
|
def update_prob_dropdown_check(x):
|
|
params.update({'probability_dropdown': x})
|
|
|
|
active_check = gradio.Checkbox(value=True, label="Compute probabilities and perplexity scores", info="Activate this extension. Note that this extension currently does not work with llama.cpp, but it does work with ExLlamav2_HF and llamacpp_HF when set up correctly")
|
|
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
|
|
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
|
|
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown", info="Hover over a token to show a dropdown of top token probabilities. Currently slightly buggy with whitespace between tokens.")
|
|
|
|
active_check.change(update_active_check, active_check, None)
|
|
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)
|
|
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)
|
|
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)
|