import argparse import copy import os import shlex import sys from collections import OrderedDict from pathlib import Path import yaml from modules.logging_colors import logger from modules.presets import default_preset # Model variables model = None tokenizer = None model_name = 'None' is_seq2seq = False model_dirty_from_training = False lora_names = [] # Generation variables stop_everything = False generation_lock = None processing_message = '' # UI variables gradio = {} persistent_interface_state = {} need_restart = False # Parser copied from https://github.com/vladmandic/automatic parser = argparse.ArgumentParser(description="Text generation web UI", conflict_handler='resolve', add_help=True, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=55, indent_increment=2, width=200)) # Basic settings group = parser.add_argument_group('Basic settings') group.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.') group.add_argument('--model', type=str, help='Name of the model to load by default.') group.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.') group.add_argument('--model-dir', type=str, default='user_data/models', help='Path to directory with all the models.') group.add_argument('--lora-dir', type=str, default='user_data/loras', help='Path to directory with all the loras.') group.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.') group.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See user_data/settings-template.yaml for an example. If you create a file called user_data/settings.yaml, this file will be loaded by default without the need to use the --settings flag.') group.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.') group.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') group.add_argument('--idle-timeout', type=int, default=0, help='Unload model after this many minutes of inactivity. It will be automatically reloaded when you try to use it again.') # Model loader group = parser.add_argument_group('Model loader') group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, ExLlamav3_HF, ExLlamav2_HF, ExLlamav2, TensorRT-LLM.') # Transformers/Accelerate group = parser.add_argument_group('Transformers/Accelerate') group.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') group.add_argument('--cpu-memory', type=float, default=0, help='Maximum CPU memory in GiB. Use this for CPU offloading.') group.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') group.add_argument('--disk-cache-dir', type=str, default='user_data/cache', help='Directory to save the disk cache to. Defaults to "user_data/cache".') group.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).') group.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') group.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.') group.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.') group.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.') group.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.') group.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.') group.add_argument('--use_eager_attention', action='store_true', help='Set attn_implementation= eager while loading the model.') group.add_argument('--torch-compile', action='store_true', help='Compile the model with torch.compile for improved performance.') # bitsandbytes 4-bit group = parser.add_argument_group('bitsandbytes 4-bit') group.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).') group.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.') group.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.') group.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.') # llama.cpp group = parser.add_argument_group('llama.cpp') group.add_argument('--flash-attn', action='store_true', help='Use flash-attention.') group.add_argument('--threads', type=int, default=0, help='Number of threads to use.') group.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.') group.add_argument('--batch-size', type=int, default=256, help='Maximum number of prompt tokens to batch together when calling llama_eval.') group.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.') group.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.') group.add_argument('--gpu-layers', '--n-gpu-layers', type=int, default=256, metavar='N', help='Number of layers to offload to the GPU.') group.add_argument('--tensor-split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 60,40.') group.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.') group.add_argument('--no-kv-offload', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.') group.add_argument('--row-split', action='store_true', help='Split the model by rows across GPUs. This may improve multi-gpu performance.') group.add_argument('--extra-flags', type=str, default=None, help='Extra flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"') group.add_argument('--streaming-llm', action='store_true', help='Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.') # Cache group = parser.add_argument_group('Context and cache') group.add_argument('--ctx-size', '--n_ctx', '--max_seq_len', type=int, default=8192, metavar='N', help='Context size in tokens.') group.add_argument('--cache-type', '--cache_type', type=str, default='fp16', metavar='N', help='KV cache type; valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4; ExLlamaV3 - fp16, q2 to q8 (can specify k_bits and v_bits separately, e.g. q4_q8).') # Speculative decoding group = parser.add_argument_group('Speculative decoding') group.add_argument('--model-draft', type=str, default=None, help='Path to the draft model for speculative decoding.') group.add_argument('--draft-max', type=int, default=4, help='Number of tokens to draft for speculative decoding.') group.add_argument('--gpu-layers-draft', type=int, default=256, help='Number of layers to offload to the GPU for the draft model.') group.add_argument('--device-draft', type=str, default=None, help='Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1') group.add_argument('--ctx-size-draft', type=int, default=0, help='Size of the prompt context for the draft model. If 0, uses the same as the main model.') # ExLlamaV2 group = parser.add_argument_group('ExLlamaV2') group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.') group.add_argument('--autosplit', action='store_true', help='Autosplit the model tensors across the available GPUs. This causes --gpu-split to be ignored.') group.add_argument('--cfg-cache', action='store_true', help='ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader.') group.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.') group.add_argument('--no_xformers', action='store_true', help='Force xformers to not be used.') group.add_argument('--no_sdpa', action='store_true', help='Force Torch SDPA to not be used.') group.add_argument('--num_experts_per_token', type=int, default=2, metavar='N', help='Number of experts to use for generation. Applies to MoE models like Mixtral.') group.add_argument('--enable_tp', action='store_true', help='Enable Tensor Parallelism (TP) in ExLlamaV2.') # TensorRT-LLM group = parser.add_argument_group('TensorRT-LLM') group.add_argument('--cpp-runner', action='store_true', help='Use the ModelRunnerCpp runner, which is faster than the default ModelRunner but doesn\'t support streaming yet.') # DeepSpeed group = parser.add_argument_group('DeepSpeed') group.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.') group.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.') group.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.') # RoPE group = parser.add_argument_group('RoPE') group.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.') group.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).') group.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.") # Gradio group = parser.add_argument_group('Gradio') group.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.') group.add_argument('--listen-port', type=int, help='The listening port that the server will use.') group.add_argument('--listen-host', type=str, help='The hostname that the server will use.') group.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.') group.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.') group.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None) group.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None) group.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None) group.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None) group.add_argument('--subpath', type=str, help='Customize the subpath for gradio, use with reverse proxy') group.add_argument('--old-colors', action='store_true', help='Use the legacy Gradio colors, before the December/2024 update.') group.add_argument('--portable', action='store_true', help='Hide features not available in portable mode like training.') # API group = parser.add_argument_group('API') group.add_argument('--api', action='store_true', help='Enable the API extension.') group.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.') group.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None) group.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.') group.add_argument('--api-key', type=str, default='', help='API authentication key.') group.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.') group.add_argument('--api-enable-ipv6', action='store_true', help='Enable IPv6 for the API') group.add_argument('--api-disable-ipv4', action='store_true', help='Disable IPv4 for the API') group.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.') # Deprecated parameters group = parser.add_argument_group('Deprecated') # Handle CMD_FLAGS.txt cmd_flags_path = Path(__file__).parent.parent / "user_data" / "CMD_FLAGS.txt" if cmd_flags_path.exists(): with cmd_flags_path.open('r', encoding='utf-8') as f: cmd_flags = ' '.join( line.strip().rstrip('\\').strip() for line in f if line.strip().rstrip('\\').strip() and not line.strip().startswith('#') ) if cmd_flags: # Command-line takes precedence over CMD_FLAGS.txt sys.argv = [sys.argv[0]] + shlex.split(cmd_flags) + sys.argv[1:] args = parser.parse_args() args_defaults = parser.parse_args([]) # Create a mapping of all argument aliases to their canonical names alias_to_dest = {} for action in parser._actions: for opt in action.option_strings: alias_to_dest[opt.lstrip('-').replace('-', '_')] = action.dest provided_arguments = [] for arg in sys.argv[1:]: arg = arg.lstrip('-').replace('-', '_') if arg in alias_to_dest: provided_arguments.append(alias_to_dest[arg]) elif hasattr(args, arg): provided_arguments.append(arg) # Default generation parameters neutral_samplers = default_preset() # UI defaults settings = { 'show_controls': True, 'start_with': '', 'mode': 'instruct', 'chat_style': 'cai-chat', 'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>', 'enable_web_search': False, 'web_search_pages': 3, 'prompt-default': 'QA', 'prompt-notebook': 'QA', 'preset': 'Qwen3 - Thinking' if Path('user_data/presets/Qwen3 - Thinking.yaml').exists() else '', 'max_new_tokens': 512, 'max_new_tokens_min': 1, 'max_new_tokens_max': 4096, 'prompt_lookup_num_tokens': 0, 'max_tokens_second': 0, 'auto_max_new_tokens': True, 'ban_eos_token': False, 'add_bos_token': True, 'enable_thinking': True, 'skip_special_tokens': True, 'stream': True, 'static_cache': False, 'truncation_length': 8192, 'seed': -1, 'custom_stopping_strings': '', 'custom_token_bans': '', 'negative_prompt': '', 'dark_theme': True, 'paste_to_attachment': False, # Character settings 'character': 'Assistant', 'name1': 'You', 'name2': 'AI', 'user_bio': '', 'context': 'The following is a conversation with an AI Large Language Model. The AI has been trained to answer questions, provide recommendations, and help with decision making. The AI follows user requests. The AI thinks outside the box.', 'greeting': 'How can I help you today?', 'custom_system_message': '', 'instruction_template_str': "{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if not ns.found -%}\n {{- '' + 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' + '\\n\\n' -}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' -%}\n {{- '' + message['content'] + '\\n\\n' -}}\n {%- else -%}\n {%- if message['role'] == 'user' -%}\n {{-'### Instruction:\\n' + message['content'] + '\\n\\n'-}}\n {%- else -%}\n {{-'### Response:\\n' + message['content'] + '\\n\\n' -}}\n {%- endif -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{-'### Response:\\n'-}}\n{%- endif -%}", 'chat_template_str': "{%- for message in messages %}\n {%- if message['role'] == 'system' -%}\n {%- if message['content'] -%}\n {{- message['content'] + '\\n\\n' -}}\n {%- endif -%}\n {%- if user_bio -%}\n {{- user_bio + '\\n\\n' -}}\n {%- endif -%}\n {%- else -%}\n {%- if message['role'] == 'user' -%}\n {{- name1 + ': ' + message['content'] + '\\n'-}}\n {%- else -%}\n {{- name2 + ': ' + message['content'] + '\\n' -}}\n {%- endif -%}\n {%- endif -%}\n{%- endfor -%}", # Generation parameters - Curve shape 'temperature': 0.6, 'dynatemp_low': neutral_samplers['dynatemp_low'], 'dynatemp_high': neutral_samplers['dynatemp_high'], 'dynatemp_exponent': neutral_samplers['dynatemp_exponent'], 'smoothing_factor': neutral_samplers['smoothing_factor'], 'smoothing_curve': neutral_samplers['smoothing_curve'], # Generation parameters - Curve cutoff 'min_p': neutral_samplers['min_p'], 'top_p': 0.95, 'top_k': 20, 'typical_p': neutral_samplers['typical_p'], 'xtc_threshold': neutral_samplers['xtc_threshold'], 'xtc_probability': neutral_samplers['xtc_probability'], 'epsilon_cutoff': neutral_samplers['epsilon_cutoff'], 'eta_cutoff': neutral_samplers['eta_cutoff'], 'tfs': neutral_samplers['tfs'], 'top_a': neutral_samplers['top_a'], 'top_n_sigma': neutral_samplers['top_n_sigma'], # Generation parameters - Repetition suppression 'dry_multiplier': neutral_samplers['dry_multiplier'], 'dry_allowed_length': neutral_samplers['dry_allowed_length'], 'dry_base': neutral_samplers['dry_base'], 'repetition_penalty': neutral_samplers['repetition_penalty'], 'frequency_penalty': neutral_samplers['frequency_penalty'], 'presence_penalty': neutral_samplers['presence_penalty'], 'encoder_repetition_penalty': neutral_samplers['encoder_repetition_penalty'], 'no_repeat_ngram_size': neutral_samplers['no_repeat_ngram_size'], 'repetition_penalty_range': neutral_samplers['repetition_penalty_range'], # Generation parameters - Alternative sampling methods 'penalty_alpha': neutral_samplers['penalty_alpha'], 'guidance_scale': neutral_samplers['guidance_scale'], 'mirostat_mode': neutral_samplers['mirostat_mode'], 'mirostat_tau': neutral_samplers['mirostat_tau'], 'mirostat_eta': neutral_samplers['mirostat_eta'], # Generation parameters - Other options 'do_sample': neutral_samplers['do_sample'], 'dynamic_temperature': neutral_samplers['dynamic_temperature'], 'temperature_last': neutral_samplers['temperature_last'], 'sampler_priority': neutral_samplers['sampler_priority'], 'dry_sequence_breakers': neutral_samplers['dry_sequence_breakers'], 'grammar_string': '', } default_settings = copy.deepcopy(settings) def do_cmd_flags_warnings(): # Security warnings if args.trust_remote_code: logger.warning('trust_remote_code is enabled. This is dangerous.') if 'COLAB_GPU' not in os.environ and not args.nowebui: if args.share: logger.warning("The gradio \"share link\" feature uses a proprietary executable to create a reverse tunnel. Use it with care.") if any((args.listen, args.share)) and not any((args.gradio_auth, args.gradio_auth_path)): logger.warning("\nYou are potentially exposing the web UI to the entire internet without any access password.\nYou can create one with the \"--gradio-auth\" flag like this:\n\n--gradio-auth username:password\n\nMake sure to replace username:password with your own.") if args.multi_user: logger.warning('\nThe multi-user mode is highly experimental and should not be shared publicly.') def fix_loader_name(name): if not name: return name name = name.lower() if name in ['llama.cpp', 'llamacpp', 'llama-cpp', 'llama cpp']: return 'llama.cpp' elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']: return 'Transformers' elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2', 'exllama2', 'exllama-2']: return 'ExLlamav2' elif name in ['exllamav2-hf', 'exllamav2_hf', 'exllama-v2-hf', 'exllama_v2_hf', 'exllama-v2_hf', 'exllama2-hf', 'exllama2_hf', 'exllama-2-hf', 'exllama_2_hf', 'exllama-2_hf']: return 'ExLlamav2_HF' elif name in ['exllamav3-hf', 'exllamav3_hf', 'exllama-v3-hf', 'exllama_v3_hf', 'exllama-v3_hf', 'exllama3-hf', 'exllama3_hf', 'exllama-3-hf', 'exllama_3_hf', 'exllama-3_hf']: return 'ExLlamav3_HF' elif name in ['tensorrt', 'tensorrtllm', 'tensorrt_llm', 'tensorrt-llm', 'tensort', 'tensortllm']: return 'TensorRT-LLM' def add_extension(name, last=False): if args.extensions is None: args.extensions = [name] elif last: args.extensions = [x for x in args.extensions if x != name] args.extensions.append(name) elif name not in args.extensions: args.extensions.append(name) def is_chat(): return True def load_user_config(): ''' Loads custom model-specific settings ''' if Path(f'{args.model_dir}/config-user.yaml').exists(): file_content = open(f'{args.model_dir}/config-user.yaml', 'r').read().strip() if file_content: user_config = yaml.safe_load(file_content) else: user_config = {} else: user_config = {} return user_config args.loader = fix_loader_name(args.loader) # Activate the API extension if args.api or args.public_api: add_extension('openai', last=True) # Load model-specific settings p = Path(f'{args.model_dir}/config.yaml') if p.exists(): model_config = yaml.safe_load(open(p, 'r').read()) else: model_config = {} del p # Load custom model-specific settings user_config = load_user_config() model_config = OrderedDict(model_config) user_config = OrderedDict(user_config)