import os
import traceback
from datetime import datetime
from pathlib import Path
import gradio as gr
import numpy as np
import torch
from modules import shared, ui, utils
from modules.image_models import load_image_model, unload_image_model
from modules.utils import gradio
ASPECT_RATIOS = {
"1:1 Square": (1, 1),
"16:9 Cinema": (16, 9),
"9:16 Mobile": (9, 16),
"4:3 Photo": (4, 3),
"Custom": None,
}
STEP = 32
def round_to_step(value, step=STEP):
return round(value / step) * step
def clamp(value, min_val, max_val):
return max(min_val, min(max_val, value))
def apply_aspect_ratio(aspect_ratio, current_width, current_height):
if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS:
return current_width, current_height
w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio]
if w_ratio == h_ratio:
base = min(current_width, current_height)
new_width = base
new_height = base
elif w_ratio < h_ratio:
new_width = current_width
new_height = round_to_step(current_width * h_ratio / w_ratio)
else:
new_height = current_height
new_width = round_to_step(current_height * w_ratio / h_ratio)
new_width = clamp(new_width, 256, 2048)
new_height = clamp(new_height, 256, 2048)
return int(new_width), int(new_height)
def update_height_from_width(width, aspect_ratio):
if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS:
return gr.update()
w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio]
new_height = round_to_step(width * h_ratio / w_ratio)
new_height = clamp(new_height, 256, 2048)
return int(new_height)
def update_width_from_height(height, aspect_ratio):
if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS:
return gr.update()
w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio]
new_width = round_to_step(height * w_ratio / h_ratio)
new_width = clamp(new_width, 256, 2048)
return int(new_width)
def swap_dimensions_and_update_ratio(width, height, aspect_ratio):
new_width, new_height = height, width
new_ratio = "Custom"
for name, ratios in ASPECT_RATIOS.items():
if ratios is None:
continue
w_r, h_r = ratios
expected_height = new_width * h_r / w_r
if abs(expected_height - new_height) < STEP:
new_ratio = name
break
return new_width, new_height, new_ratio
def create_ui():
if shared.settings['image_model_menu'] != 'None':
shared.image_model_name = shared.settings['image_model_menu']
with gr.Tab("Image AI", elem_id="image-ai-tab"):
with gr.Tabs():
# TAB 1: GENERATE
with gr.TabItem("Generate"):
with gr.Row():
with gr.Column(scale=4, min_width=350):
shared.gradio['image_prompt'] = gr.Textbox(
label="Prompt",
placeholder="Describe your imagination...",
lines=3,
autofocus=True,
value=shared.settings['image_prompt']
)
shared.gradio['image_neg_prompt'] = gr.Textbox(
label="Negative Prompt",
placeholder="Low quality...",
lines=3,
value=shared.settings['image_neg_prompt']
)
shared.gradio['image_generate_btn'] = gr.Button("✨ GENERATE", variant="primary", size="lg", elem_id="gen-btn")
gr.HTML("
")
gr.Markdown("### Dimensions")
with gr.Row():
with gr.Column():
shared.gradio['image_width'] = gr.Slider(256, 2048, value=shared.settings['image_width'], step=32, label="Width")
with gr.Column():
shared.gradio['image_height'] = gr.Slider(256, 2048, value=shared.settings['image_height'], step=32, label="Height")
shared.gradio['image_swap_btn'] = gr.Button("⇄ Swap", elem_classes='refresh-button', scale=0, min_width=80, elem_id="swap-height-width")
with gr.Row():
shared.gradio['image_aspect_ratio'] = gr.Radio(
choices=["1:1 Square", "16:9 Cinema", "9:16 Mobile", "4:3 Photo", "Custom"],
value=shared.settings['image_aspect_ratio'],
label="Aspect Ratio",
interactive=True
)
gr.Markdown("### Config")
with gr.Row():
with gr.Column():
shared.gradio['image_steps'] = gr.Slider(1, 15, value=shared.settings['image_steps'], step=1, label="Steps")
shared.gradio['image_seed'] = gr.Number(label="Seed", value=shared.settings['image_seed'], precision=0, info="-1 = Random")
with gr.Column():
shared.gradio['image_batch_size'] = gr.Slider(1, 32, value=shared.settings['image_batch_size'], step=1, label="Batch Size (VRAM Heavy)", info="Generates N images at once.")
shared.gradio['image_batch_count'] = gr.Slider(1, 128, value=shared.settings['image_batch_count'], step=1, label="Sequential Count (Loop)", info="Repeats the generation N times.")
with gr.Column(scale=6, min_width=500):
with gr.Column(elem_classes=["viewport-container"]):
shared.gradio['image_output_gallery'] = gr.Gallery(label="Output", show_label=False, columns=2, rows=2, height="80vh", object_fit="contain", preview=True, elem_id="image-output-gallery")
with gr.Row():
shared.gradio['image_used_seed'] = gr.Markdown(label="Info", interactive=False)
# TAB 2: GALLERY
with gr.TabItem("Gallery"):
with gr.Row():
shared.gradio['image_refresh_history'] = gr.Button("🔄 Refresh Gallery", elem_classes="refresh-button")
shared.gradio['image_history_gallery'] = gr.Gallery(value=lambda : get_history_images(), label="History", show_label=False, columns=6, object_fit="cover", height="auto", allow_preview=True, elem_id="image-history-gallery")
# TAB 3: MODEL
with gr.TabItem("Model"):
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['image_model_menu'] = gr.Dropdown(
choices=utils.get_available_image_models(),
value=shared.settings['image_model_menu'],
label='Model',
elem_classes='slim-dropdown'
)
shared.gradio['image_refresh_models'] = gr.Button("🔄", elem_classes='refresh-button', scale=0, min_width=40)
shared.gradio['image_load_model'] = gr.Button("Load", variant='primary', elem_classes='refresh-button')
shared.gradio['image_unload_model'] = gr.Button("Unload", elem_classes='refresh-button')
gr.Markdown("## Settings")
with gr.Row():
with gr.Column():
shared.gradio['image_dtype'] = gr.Dropdown(
choices=['bfloat16', 'float16'],
value=shared.settings['image_dtype'],
label='Data Type',
info='bfloat16 recommended for modern GPUs'
)
shared.gradio['image_attn_backend'] = gr.Dropdown(
choices=['sdpa', 'flash_attention_2', 'flash_attention_3'],
value=shared.settings['image_attn_backend'],
label='Attention Backend',
info='SDPA is default. Flash Attention requires compatible GPU.'
)
with gr.Column():
shared.gradio['image_compile'] = gr.Checkbox(
value=shared.settings['image_compile'],
label='Compile Model',
info='Faster inference after first run. First run will be slow.'
)
shared.gradio['image_cpu_offload'] = gr.Checkbox(
value=shared.settings['image_cpu_offload'],
label='CPU Offload',
info='Enable for low VRAM GPUs. Slower but uses less memory.'
)
with gr.Column():
shared.gradio['image_download_path'] = gr.Textbox(
label="Download model",
placeholder="Tongyi-MAI/Z-Image-Turbo",
info="Enter HuggingFace path. Use : for branch, e.g. user/model:main"
)
shared.gradio['image_download_btn'] = gr.Button("Download", variant='primary')
shared.gradio['image_model_status'] = gr.Markdown(
value=f"Model: **{shared.settings['image_model_menu']}** (not loaded)" if shared.settings['image_model_menu'] != 'None' else "No model selected"
)
def create_event_handlers():
# Dimension controls
shared.gradio['image_aspect_ratio'].change(
apply_aspect_ratio,
gradio('image_aspect_ratio', 'image_width', 'image_height'),
gradio('image_width', 'image_height'),
show_progress=False
)
shared.gradio['image_width'].release(
update_height_from_width,
gradio('image_width', 'image_aspect_ratio'),
gradio('image_height'),
show_progress=False
)
shared.gradio['image_height'].release(
update_width_from_height,
gradio('image_height', 'image_aspect_ratio'),
gradio('image_width'),
show_progress=False
)
shared.gradio['image_swap_btn'].click(
swap_dimensions_and_update_ratio,
gradio('image_width', 'image_height', 'image_aspect_ratio'),
gradio('image_width', 'image_height', 'image_aspect_ratio'),
show_progress=False
)
# Generation
shared.gradio['image_generate_btn'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_used_seed'))
shared.gradio['image_prompt'].submit(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_used_seed'))
shared.gradio['image_neg_prompt'].submit(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_used_seed'))
# Model management
shared.gradio['image_refresh_models'].click(
lambda: gr.update(choices=utils.get_available_image_models()),
None,
gradio('image_model_menu'),
show_progress=False
)
shared.gradio['image_load_model'].click(
load_image_model_wrapper,
gradio('image_model_menu', 'image_dtype', 'image_attn_backend', 'image_cpu_offload', 'image_compile'),
gradio('image_model_status'),
show_progress=True
)
shared.gradio['image_unload_model'].click(
unload_image_model_wrapper,
None,
gradio('image_model_status'),
show_progress=False
)
shared.gradio['image_download_btn'].click(
download_image_model_wrapper,
gradio('image_download_path'),
gradio('image_model_status', 'image_model_menu'),
show_progress=True
)
# History
shared.gradio['image_refresh_history'].click(
get_history_images,
None,
gradio('image_history_gallery'),
show_progress=False
)
def generate(state):
model_name = state['image_model_menu']
if not model_name or model_name == 'None':
return [], "No image model selected. Go to the Model tab and select a model."
if shared.image_model is None:
result = load_image_model(
model_name,
dtype=state['image_dtype'],
attn_backend=state['image_attn_backend'],
cpu_offload=state['image_cpu_offload'],
compile_model=state['image_compile']
)
if result is None:
return [], f"Failed to load model `{model_name}`."
shared.image_model_name = model_name
seed = state['image_seed']
if seed == -1:
seed = np.random.randint(0, 2**32 - 1)
generator = torch.Generator("cuda").manual_seed(int(seed))
all_images = []
for i in range(int(state['image_batch_count'])):
generator.manual_seed(int(seed + i))
batch_results = shared.image_model(
prompt=state['image_prompt'],
negative_prompt=state['image_neg_prompt'],
height=int(state['image_height']),
width=int(state['image_width']),
num_inference_steps=int(state['image_steps']),
guidance_scale=0.0,
num_images_per_prompt=int(state['image_batch_size']),
generator=generator,
).images
all_images.extend(batch_results)
save_generated_images(all_images, state['image_prompt'], seed)
return all_images, f"Seed: {seed}"
def load_image_model_wrapper(model_name, dtype, attn_backend, cpu_offload, compile_model):
if not model_name or model_name == 'None':
yield "No model selected"
return
try:
yield f"Loading `{model_name}`..."
unload_image_model()
result = load_image_model(
model_name,
dtype=dtype,
attn_backend=attn_backend,
cpu_offload=cpu_offload,
compile_model=compile_model
)
if result is not None:
shared.image_model_name = model_name
yield f"✓ Loaded **{model_name}**"
else:
yield f"✗ Failed to load `{model_name}`"
except Exception:
yield f"Error:\n```\n{traceback.format_exc()}\n```"
def unload_image_model_wrapper():
unload_image_model()
if shared.image_model_name != 'None':
return f"Model: **{shared.image_model_name}** (not loaded)"
return "No model loaded"
def download_image_model_wrapper(model_path):
from huggingface_hub import snapshot_download
if not model_path:
yield "No model specified", gr.update()
return
try:
if ':' in model_path:
model_id, branch = model_path.rsplit(':', 1)
else:
model_id, branch = model_path, 'main'
folder_name = model_id.replace('/', '_')
output_folder = Path(shared.args.image_model_dir) / folder_name
yield f"Downloading `{model_id}` (branch: {branch})...", gr.update()
snapshot_download(
repo_id=model_id,
revision=branch,
local_dir=output_folder,
local_dir_use_symlinks=False,
)
new_choices = utils.get_available_image_models()
yield f"✓ Downloaded to `{output_folder}`", gr.update(choices=new_choices, value=folder_name)
except Exception:
yield f"Error:\n```\n{traceback.format_exc()}\n```", gr.update()
def save_generated_images(images, prompt, seed):
date_str = datetime.now().strftime("%Y-%m-%d")
folder_path = os.path.join("user_data", "image_outputs", date_str)
os.makedirs(folder_path, exist_ok=True)
for idx, img in enumerate(images):
timestamp = datetime.now().strftime("%H-%M-%S")
filename = f"{timestamp}_{seed}_{idx}.png"
img.save(os.path.join(folder_path, filename))
def get_history_images():
output_dir = os.path.join("user_data", "image_outputs")
if not os.path.exists(output_dir):
return []
image_files = []
for root, _, files in os.walk(output_dir):
for file in files:
if file.endswith((".png", ".jpg", ".jpeg")):
full_path = os.path.join(root, file)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [x[0] for x in image_files]