# modules/ui_image_generation.py import os import traceback from datetime import datetime from pathlib import Path import gradio as gr import numpy as np import torch from modules import shared, utils from modules.image_models import load_image_model, unload_image_model from modules.image_model_settings import get_effective_settings, save_image_model_settings # Aspect ratio definitions: name -> (width_ratio, height_ratio) ASPECT_RATIOS = { "1:1 Square": (1, 1), "16:9 Cinema": (16, 9), "9:16 Mobile": (9, 16), "4:3 Photo": (4, 3), "Custom": None, } STEP = 32 # Slider step for rounding def round_to_step(value, step=STEP): """Round a value to the nearest step.""" return round(value / step) * step def clamp(value, min_val, max_val): """Clamp value between min and max.""" return max(min_val, min(max_val, value)) def apply_aspect_ratio(aspect_ratio, current_width, current_height): """ Apply an aspect ratio preset. Logic to prevent dimension creep: - For tall ratios (like 9:16): keep width fixed, calculate height - For wide ratios (like 16:9): keep height fixed, calculate width - For square (1:1): use the smaller of the current dimensions Returns (new_width, new_height). """ if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS: return current_width, current_height w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio] if w_ratio == h_ratio: # Square ratio - use the smaller current dimension to prevent creep base = min(current_width, current_height) new_width = base new_height = base elif w_ratio < h_ratio: # Tall ratio (like 9:16) - width is the smaller side, keep it fixed new_width = current_width new_height = round_to_step(current_width * h_ratio / w_ratio) else: # Wide ratio (like 16:9) - height is the smaller side, keep it fixed new_height = current_height new_width = round_to_step(current_height * w_ratio / h_ratio) # Clamp to slider bounds new_width = clamp(new_width, 256, 2048) new_height = clamp(new_height, 256, 2048) return int(new_width), int(new_height) def update_height_from_width(width, aspect_ratio): """Update height when width changes (if not Custom).""" if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS: return gr.update() w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio] new_height = round_to_step(width * h_ratio / w_ratio) new_height = clamp(new_height, 256, 2048) return int(new_height) def update_width_from_height(height, aspect_ratio): """Update width when height changes (if not Custom).""" if aspect_ratio == "Custom" or aspect_ratio not in ASPECT_RATIOS: return gr.update() w_ratio, h_ratio = ASPECT_RATIOS[aspect_ratio] new_width = round_to_step(height * w_ratio / h_ratio) new_width = clamp(new_width, 256, 2048) return int(new_width) def swap_dimensions_and_update_ratio(width, height, aspect_ratio): """Swap dimensions and update aspect ratio to match (or set to Custom).""" new_width, new_height = height, width # Try to find a matching aspect ratio for the swapped dimensions new_ratio = "Custom" for name, ratios in ASPECT_RATIOS.items(): if ratios is None: continue w_r, h_r = ratios # Check if the swapped dimensions match this ratio (within tolerance) expected_height = new_width * h_r / w_r if abs(expected_height - new_height) < STEP: new_ratio = name break return new_width, new_height, new_ratio def create_ui(): # Get effective settings (CLI > yaml > defaults) settings = get_effective_settings() # Update shared state (but don't load the model yet) if settings['model_name'] != 'None': shared.image_model_name = settings['model_name'] with gr.Tab("Image AI", elem_id="image-ai-tab"): with gr.Tabs(): # TAB 1: GENERATION STUDIO with gr.TabItem("Generate"): with gr.Row(): # === LEFT COLUMN: CONTROLS === with gr.Column(scale=4, min_width=350): # 1. PROMPT prompt = gr.Textbox(label="Prompt", placeholder="Describe your imagination...", lines=3, autofocus=True) neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="Low quality...", lines=3) # 2. GENERATE BUTTON generate_btn = gr.Button("✨ GENERATE", variant="primary", size="lg", elem_id="gen-btn") gr.HTML("
") # 3. DIMENSIONS gr.Markdown("### 📐 Dimensions") with gr.Row(): with gr.Column(): width_slider = gr.Slider(256, 2048, value=1024, step=32, label="Width") with gr.Column(): height_slider = gr.Slider(256, 2048, value=1024, step=32, label="Height") swap_btn = gr.Button("⇄ Swap", elem_classes='refresh-button', scale=0, min_width=80, elem_id="swap-height-width") with gr.Row(): preset_radio = gr.Radio( choices=["1:1 Square", "16:9 Cinema", "9:16 Mobile", "4:3 Photo", "Custom"], value="1:1 Square", label="Aspect Ratio", interactive=True ) # 4. SETTINGS & BATCHING gr.Markdown("### ⚙️ Config") with gr.Row(): with gr.Column(): steps_slider = gr.Slider(1, 15, value=9, step=1, label="Steps") cfg_slider = gr.Slider(value=0.0, label="Guidance", interactive=False, info="Locked") seed_input = gr.Number(label="Seed", value=-1, precision=0, info="-1 = Random") with gr.Column(): batch_size_parallel = gr.Slider(1, 32, value=1, step=1, label="Batch Size (VRAM Heavy)", info="Generates N images at once.") batch_count_seq = gr.Slider(1, 128, value=1, step=1, label="Sequential Count (Loop)", info="Repeats the generation N times.") # === RIGHT COLUMN: VIEWPORT === with gr.Column(scale=6, min_width=500): with gr.Column(elem_classes=["viewport-container"]): output_gallery = gr.Gallery( label="Output", show_label=False, columns=2, rows=2, height="80vh", object_fit="contain", preview=True ) with gr.Row(): used_seed = gr.Markdown(label="Info", interactive=False) # TAB 2: HISTORY VIEWER with gr.TabItem("Gallery"): with gr.Row(): refresh_btn = gr.Button("🔄 Refresh Gallery", elem_classes="refresh-button") history_gallery = gr.Gallery( label="History", show_label=False, columns=6, object_fit="cover", height="auto", allow_preview=True ) # TAB 3: MODEL SETTINGS with gr.TabItem("Model"): with gr.Row(): with gr.Column(): with gr.Row(): image_model_menu = gr.Dropdown( choices=utils.get_available_image_models(), value=settings['model_name'], label='Model', elem_classes='slim-dropdown' ) image_refresh_models = gr.Button("🔄", elem_classes='refresh-button', scale=0, min_width=40) image_load_model = gr.Button("Load", variant='primary', elem_classes='refresh-button') image_unload_model = gr.Button("Unload", elem_classes='refresh-button') gr.Markdown("## Settings") with gr.Row(): with gr.Column(): image_dtype = gr.Dropdown( choices=['bfloat16', 'float16'], value=settings['dtype'], label='Data Type', info='bfloat16 recommended for modern GPUs' ) image_attn_backend = gr.Dropdown( choices=['sdpa', 'flash_attention_2', 'flash_attention_3'], value=settings['attn_backend'], label='Attention Backend', info='SDPA is default. Flash Attention requires compatible GPU.' ) with gr.Column(): image_compile = gr.Checkbox( value=settings['compile_model'], label='Compile Model', info='Faster inference after first run. First run will be slow.' ) image_cpu_offload = gr.Checkbox( value=settings['cpu_offload'], label='CPU Offload', info='Enable for low VRAM GPUs. Slower but uses less memory.' ) with gr.Column(): image_download_path = gr.Textbox( label="Download model", placeholder="Tongyi-MAI/Z-Image-Turbo", info="Enter the HuggingFace model path like Tongyi-MAI/Z-Image-Turbo. Use : for branch, e.g. Tongyi-MAI/Z-Image-Turbo:main" ) image_download_btn = gr.Button("Download", variant='primary') image_model_status = gr.Markdown( value=f"Model: **{settings['model_name']}** (not loaded)" if settings['model_name'] != 'None' else "No model selected" ) # === WIRING === # Aspect ratio preset changes -> update dimensions preset_radio.change( fn=apply_aspect_ratio, inputs=[preset_radio, width_slider, height_slider], outputs=[width_slider, height_slider], show_progress=False ) # Width slider changes -> update height (if not Custom) width_slider.release( fn=update_height_from_width, inputs=[width_slider, preset_radio], outputs=[height_slider], show_progress=False ) # Height slider changes -> update width (if not Custom) height_slider.release( fn=update_width_from_height, inputs=[height_slider, preset_radio], outputs=[width_slider], show_progress=False ) # Swap button -> swap dimensions and update aspect ratio swap_btn.click( fn=swap_dimensions_and_update_ratio, inputs=[width_slider, height_slider, preset_radio], outputs=[width_slider, height_slider, preset_radio], show_progress=False ) # Generation inputs = [prompt, neg_prompt, width_slider, height_slider, steps_slider, seed_input, batch_size_parallel, batch_count_seq] outputs = [output_gallery, used_seed] generate_btn.click( fn=lambda *args: generate(*args, image_model_menu, image_dtype, image_attn_backend, image_cpu_offload, image_compile), inputs=inputs, outputs=outputs ) prompt.submit( fn=lambda *args: generate(*args, image_model_menu, image_dtype, image_attn_backend, image_cpu_offload, image_compile), inputs=inputs, outputs=outputs ) neg_prompt.submit( fn=lambda *args: generate(*args, image_model_menu, image_dtype, image_attn_backend, image_cpu_offload, image_compile), inputs=inputs, outputs=outputs ) # Model tab events image_refresh_models.click( fn=lambda: gr.update(choices=utils.get_available_image_models()), inputs=None, outputs=[image_model_menu], show_progress=False ) image_load_model.click( fn=load_image_model_wrapper, inputs=[image_model_menu, image_dtype, image_attn_backend, image_cpu_offload, image_compile], outputs=[image_model_status], show_progress=True ) image_unload_model.click( fn=unload_image_model_wrapper, inputs=None, outputs=[image_model_status], show_progress=False ) image_download_btn.click( fn=download_image_model_wrapper, inputs=[image_download_path], outputs=[image_model_status, image_model_menu], show_progress=True ) # History refresh_btn.click(fn=get_history_images, inputs=None, outputs=history_gallery, show_progress=False) def generate(prompt, neg_prompt, width, height, steps, seed, batch_size_parallel, batch_count_seq, model_menu, dtype_dropdown, attn_dropdown, cpu_offload_checkbox, compile_checkbox): """Generate images with the current model settings.""" # Get current UI values (these are Gradio components, we need their values) model_name = shared.image_model_name if model_name == 'None': return [], "No image model selected. Go to the Model tab and select a model." # Auto-load model if not loaded if shared.image_model is None: # Load saved settings for the model saved_settings = load_image_model_settings() result = load_image_model( model_name, dtype=saved_settings['dtype'], attn_backend=saved_settings['attn_backend'], cpu_offload=saved_settings['cpu_offload'], compile_model=saved_settings['compile_model'] ) if result is None: return [], f"Failed to load model `{model_name}`." if seed == -1: seed = np.random.randint(0, 2**32 - 1) generator = torch.Generator("cuda").manual_seed(int(seed)) all_images = [] # Sequential loop (easier on VRAM) for i in range(int(batch_count_seq)): current_seed = seed + i generator.manual_seed(int(current_seed)) # Parallel generation batch_results = shared.image_model( prompt=prompt, negative_prompt=neg_prompt, height=int(height), width=int(width), num_inference_steps=int(steps), guidance_scale=0.0, num_images_per_prompt=int(batch_size_parallel), generator=generator, ).images all_images.extend(batch_results) # Save to disk save_generated_images(all_images, prompt, seed) return all_images, f"Seed: {seed}" def load_image_model_wrapper(model_name, dtype, attn_backend, cpu_offload, compile_model): """Load model and save settings.""" if model_name == 'None' or not model_name: yield "No model selected" return try: yield f"Loading `{model_name}`..." # Unload existing model first unload_image_model() # Load the new model result = load_image_model( model_name, dtype=dtype, attn_backend=attn_backend, cpu_offload=cpu_offload, compile_model=compile_model ) if result is not None: # Save settings to yaml save_image_model_settings(model_name, dtype, attn_backend, cpu_offload, compile_model) yield f"✓ Loaded **{model_name}**" else: yield f"✗ Failed to load `{model_name}`" except Exception: exc = traceback.format_exc() yield f"Error:\n```\n{exc}\n```" def unload_image_model_wrapper(): """Unload model wrapper.""" unload_image_model() if shared.image_model_name != 'None': return f"Model: **{shared.image_model_name}** (not loaded)" else: return "No model loaded" def download_image_model_wrapper(model_path): """Download a model from Hugging Face.""" from huggingface_hub import snapshot_download if not model_path: yield "No model specified", gr.update() return try: # Parse model name and branch if ':' in model_path: model_id, branch = model_path.rsplit(':', 1) else: model_id, branch = model_path, 'main' # Output folder name folder_name = model_id.split('/')[-1] output_folder = Path(shared.args.image_model_dir) / folder_name yield f"Downloading `{model_id}` (branch: {branch})...", gr.update() snapshot_download( repo_id=model_id, revision=branch, local_dir=output_folder, local_dir_use_symlinks=False, ) # Refresh the model list new_choices = utils.get_available_image_models() yield f"✓ Downloaded to `{output_folder}`", gr.update(choices=new_choices, value=folder_name) except Exception: exc = traceback.format_exc() yield f"Error:\n```\n{exc}\n```", gr.update() def save_generated_images(images, prompt, seed): """Save generated images to disk.""" date_str = datetime.now().strftime("%Y-%m-%d") folder_path = os.path.join("user_data", "image_outputs", date_str) os.makedirs(folder_path, exist_ok=True) saved_paths = [] for idx, img in enumerate(images): timestamp = datetime.now().strftime("%H-%M-%S") filename = f"{timestamp}_{seed}_{idx}.png" full_path = os.path.join(folder_path, filename) img.save(full_path) saved_paths.append(full_path) return saved_paths def get_history_images(): """Scan the outputs folder and return all images, newest first.""" output_dir = os.path.join("user_data", "image_outputs") if not os.path.exists(output_dir): return [] image_files = [] for root, dirs, files in os.walk(output_dir): for file in files: if file.endswith((".png", ".jpg", ".jpeg")): full_path = os.path.join(root, file) mtime = os.path.getmtime(full_path) image_files.append((full_path, mtime)) image_files.sort(key=lambda x: x[1], reverse=True) return [x[0] for x in image_files]