mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-12-06 07:12:10 +01:00
Compare commits
38 commits
610a8517ce
...
084a1d346b
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
084a1d346b | ||
|
|
5848c7884d | ||
|
|
c11c14590a | ||
|
|
0dd468245c | ||
|
|
b63d57158d | ||
|
|
afa29b9554 | ||
|
|
8eac99599a | ||
|
|
b4f06a50b0 | ||
|
|
15c6e43597 | ||
|
|
56f2a9512f | ||
|
|
3ef428efaa | ||
|
|
c7ad28a4cd | ||
|
|
b451bac082 | ||
|
|
47a0fcd614 | ||
|
|
ac31a7c008 | ||
|
|
a90739f498 | ||
|
|
ffef3c7b1d | ||
|
|
5763947c37 | ||
|
|
2793153717 | ||
|
|
7fb9f19bd8 | ||
|
|
a838223d18 | ||
|
|
14dbc3488e | ||
|
|
235b94f097 | ||
|
|
c357eed4c7 | ||
|
|
c93d27add3 | ||
|
|
fbca54957e | ||
|
|
49c60882bf | ||
|
|
59285d501d | ||
|
|
373baa5c9c | ||
|
|
906dc54969 | ||
|
|
4468c49439 | ||
|
|
5ad174fad2 | ||
|
|
5433ef3333 | ||
|
|
9448bf1caa | ||
|
|
97281ff831 | ||
|
|
9d07d3a229 | ||
|
|
6291e72129 | ||
|
|
0b5399612c |
|
|
@ -28,8 +28,7 @@ A Gradio web UI for Large Language Models.
|
|||
- 100% offline and private, with zero telemetry, external resources, or remote update requests.
|
||||
- **File attachments**: Upload text files, PDF documents, and .docx documents to talk about their contents.
|
||||
- **Vision (multimodal models)**: Attach images to messages for visual understanding ([tutorial](https://github.com/oobabooga/text-generation-webui/wiki/Multimodal-Tutorial)).
|
||||
Image generation: A dedicated tab for diffusers models like Z-Image-Turbo and Qwen-Image. Features 4-bit/8-bit quantization and a persistent gallery with metadata (tutorial).
|
||||
- **Image generation**: A dedicated tab for `diffusers` models like **Z-Image-Turbo** and **Qwen-Image**. Features 4-bit/8-bit quantization and a persistent gallery with metadata ([tutorial](https://github.com/oobabooga/text-generation-webui/wiki/Image-Generation-Tutorial)).
|
||||
- **Image generation**: A dedicated tab for `diffusers` models like **Z-Image-Turbo**. Features 4-bit/8-bit quantization and a persistent gallery with metadata ([tutorial](https://github.com/oobabooga/text-generation-webui/wiki/Image-Generation-Tutorial)).
|
||||
- **Web search**: Optionally search the internet with LLM-generated queries to add context to the conversation.
|
||||
- Aesthetic UI with dark and light themes.
|
||||
- Syntax highlighting for code blocks and LaTeX rendering for mathematical expressions.
|
||||
|
|
|
|||
49
css/main.css
49
css/main.css
|
|
@ -1692,8 +1692,8 @@ button#swap-height-width {
|
|||
}
|
||||
|
||||
#image-output-gallery, #image-output-gallery > :nth-child(2) {
|
||||
height: calc(100vh - 83px);
|
||||
max-height: calc(100vh - 83px);
|
||||
height: calc(100vh - 66px);
|
||||
max-height: calc(100vh - 66px);
|
||||
}
|
||||
|
||||
#image-history-gallery, #image-history-gallery > :nth-child(2) {
|
||||
|
|
@ -1752,3 +1752,48 @@ button#swap-height-width {
|
|||
.min.svelte-1yrv54 {
|
||||
min-height: 0;
|
||||
}
|
||||
|
||||
/* Image Generation Progress Bar */
|
||||
#image-progress .image-ai-separator {
|
||||
height: 24px;
|
||||
margin: 20px 0;
|
||||
border-top: 1px solid var(--input-border-color);
|
||||
}
|
||||
|
||||
#image-progress .image-ai-progress-wrapper {
|
||||
height: 24px;
|
||||
margin: 20px 0;
|
||||
}
|
||||
|
||||
#image-progress .image-ai-progress-track {
|
||||
background: #e5e7eb;
|
||||
border-radius: 4px;
|
||||
overflow: hidden;
|
||||
height: 8px;
|
||||
}
|
||||
|
||||
.dark #image-progress .image-ai-progress-track {
|
||||
background: #333;
|
||||
}
|
||||
|
||||
#image-progress .image-ai-progress-fill {
|
||||
background: #4a9eff;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
#image-progress .image-ai-progress-text {
|
||||
text-align: center;
|
||||
font-size: 12px;
|
||||
color: #666;
|
||||
margin-top: 4px;
|
||||
}
|
||||
|
||||
.dark #image-progress .image-ai-progress-text {
|
||||
color: #888;
|
||||
}
|
||||
|
||||
#llm-prompt-variations {
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: calc(100% - 174px);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -139,6 +139,35 @@ curl http://127.0.0.1:5000/v1/completions \
|
|||
|
||||
For base64-encoded images, just replace the inner "url" values with this format: `_STRING` where FORMAT is the file type (png, jpeg, gif, etc.) and BASE64_STRING is your base64-encoded image data.
|
||||
|
||||
#### Image generation
|
||||
|
||||
```shell
|
||||
curl http://127.0.0.1:5000/v1/images/generations \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"prompt": "an orange tree",
|
||||
"steps": 9,
|
||||
"cfg_scale": 0,
|
||||
"batch_size": 1,
|
||||
"batch_count": 1
|
||||
}'
|
||||
```
|
||||
|
||||
You need to load an image model first. You can do this via the UI, or by adding `--image-model your_model_name` when launching the server.
|
||||
|
||||
The output is a JSON object containing a `data` array. Each element has a `b64_json` field with the base64-encoded PNG image:
|
||||
|
||||
```json
|
||||
{
|
||||
"created": 1764791227,
|
||||
"data": [
|
||||
{
|
||||
"b64_json": "iVBORw0KGgo..."
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### SSE streaming
|
||||
|
||||
```shell
|
||||
|
|
@ -419,7 +448,6 @@ The following environment variables can be used (they take precedence over every
|
|||
| `OPENEDAI_CERT_PATH` | SSL certificate file path | cert.pem |
|
||||
| `OPENEDAI_KEY_PATH` | SSL key file path | key.pem |
|
||||
| `OPENEDAI_DEBUG` | Enable debugging (set to 1) | 1 |
|
||||
| `SD_WEBUI_URL` | WebUI URL (used by endpoint) | http://127.0.0.1:7861 |
|
||||
| `OPENEDAI_EMBEDDING_MODEL` | Embedding model (if applicable) | sentence-transformers/all-mpnet-base-v2 |
|
||||
| `OPENEDAI_EMBEDDING_DEVICE` | Embedding device (if applicable) | cuda |
|
||||
|
||||
|
|
@ -430,7 +458,6 @@ You can also set the following variables in your `settings.yaml` file:
|
|||
```
|
||||
openai-embedding_device: cuda
|
||||
openai-embedding_model: "sentence-transformers/all-mpnet-base-v2"
|
||||
openai-sd_webui_url: http://127.0.0.1:7861
|
||||
openai-debug: 1
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -1,70 +1,69 @@
|
|||
import os
|
||||
"""
|
||||
OpenAI-compatible image generation using local diffusion models.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import io
|
||||
import time
|
||||
|
||||
import requests
|
||||
|
||||
from extensions.openai.errors import ServiceUnavailableError
|
||||
from modules import shared
|
||||
|
||||
|
||||
def generations(prompt: str, size: str, response_format: str, n: int):
|
||||
# Stable Diffusion callout wrapper for txt2img
|
||||
# Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
|
||||
# the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
|
||||
# If you want high quality tailored results you should just use the Stable Diffusion API directly.
|
||||
# it's too general an API to try and shape the result with specific tags like negative prompts
|
||||
# or "masterpiece", etc. SD configuration is beyond the scope of this API.
|
||||
# At this point I will not add the edits and variations endpoints (ie. img2img) because they
|
||||
# require changing the form data handling to accept multipart form data, also to properly support
|
||||
# url return types will require file management and a web serving files... Perhaps later!
|
||||
base_model_size = 512 if 'SD_BASE_MODEL_SIZE' not in os.environ else int(os.environ.get('SD_BASE_MODEL_SIZE', 512))
|
||||
sd_defaults = {
|
||||
'sampler_name': 'DPM++ 2M Karras', # vast improvement
|
||||
'steps': 30,
|
||||
}
|
||||
def generations(request):
|
||||
"""
|
||||
Generate images using the loaded diffusion model.
|
||||
Returns dict with 'created' timestamp and 'data' list of images.
|
||||
"""
|
||||
from modules.ui_image_generation import generate
|
||||
|
||||
width, height = [int(x) for x in size.split('x')] # ignore the restrictions on size
|
||||
if shared.image_model is None:
|
||||
raise ServiceUnavailableError("No image model loaded. Load a model via the UI first.")
|
||||
|
||||
# to hack on better generation, edit default payload.
|
||||
payload = {
|
||||
'prompt': prompt, # ignore prompt limit of 1000 characters
|
||||
'width': width,
|
||||
'height': height,
|
||||
'batch_size': n,
|
||||
}
|
||||
payload.update(sd_defaults)
|
||||
width, height = request.get_width_height()
|
||||
|
||||
scale = min(width, height) / base_model_size
|
||||
if scale >= 1.2:
|
||||
# for better performance with the default size (1024), and larger res.
|
||||
scaler = {
|
||||
'width': width // scale,
|
||||
'height': height // scale,
|
||||
'hr_scale': scale,
|
||||
'enable_hr': True,
|
||||
'hr_upscaler': 'Latent',
|
||||
'denoising_strength': 0.68,
|
||||
}
|
||||
payload.update(scaler)
|
||||
# Build state dict: GenerationOptions fields + image-specific keys
|
||||
state = request.model_dump()
|
||||
state.update({
|
||||
'image_model_menu': shared.image_model_name,
|
||||
'image_prompt': request.prompt,
|
||||
'image_neg_prompt': request.negative_prompt,
|
||||
'image_width': width,
|
||||
'image_height': height,
|
||||
'image_steps': request.steps,
|
||||
'image_seed': request.image_seed,
|
||||
'image_batch_size': request.batch_size,
|
||||
'image_batch_count': request.batch_count,
|
||||
'image_cfg_scale': request.cfg_scale,
|
||||
'image_llm_variations': False,
|
||||
})
|
||||
|
||||
resp = {
|
||||
'created': int(time.time()),
|
||||
'data': []
|
||||
}
|
||||
from extensions.openai.script import params
|
||||
# Exhaust generator, keep final result
|
||||
images = []
|
||||
for images, _ in generate(state, save_images=False):
|
||||
pass
|
||||
|
||||
# TODO: support SD_WEBUI_AUTH username:password pair.
|
||||
sd_url = f"{os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', ''))}/sdapi/v1/txt2img"
|
||||
if not images:
|
||||
raise ServiceUnavailableError("Image generation failed or produced no images.")
|
||||
|
||||
response = requests.post(url=sd_url, json=payload)
|
||||
r = response.json()
|
||||
if response.status_code != 200 or 'images' not in r:
|
||||
print(r)
|
||||
raise ServiceUnavailableError(r.get('error', 'Unknown error calling Stable Diffusion'), code=response.status_code, internal_message=r.get('errors', None))
|
||||
# r['parameters']...
|
||||
for b64_json in r['images']:
|
||||
if response_format == 'b64_json':
|
||||
resp['data'].extend([{'b64_json': b64_json}])
|
||||
# Build response
|
||||
resp = {'created': int(time.time()), 'data': []}
|
||||
for img in images:
|
||||
b64 = _image_to_base64(img)
|
||||
|
||||
image_obj = {'revised_prompt': request.prompt}
|
||||
|
||||
if request.response_format == 'b64_json':
|
||||
image_obj['b64_json'] = b64
|
||||
else:
|
||||
resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this
|
||||
image_obj['url'] = f'data:image/png;base64,{b64}'
|
||||
|
||||
resp['data'].append(image_obj)
|
||||
|
||||
return resp
|
||||
|
||||
|
||||
def _image_to_base64(image) -> str:
|
||||
buffered = io.BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
||||
|
|
|
|||
|
|
@ -17,10 +17,8 @@ from sse_starlette import EventSourceResponse
|
|||
from starlette.concurrency import iterate_in_threadpool
|
||||
|
||||
import extensions.openai.completions as OAIcompletions
|
||||
import extensions.openai.images as OAIimages
|
||||
import extensions.openai.logits as OAIlogits
|
||||
import extensions.openai.models as OAImodels
|
||||
from extensions.openai.errors import ServiceUnavailableError
|
||||
from extensions.openai.tokens import token_count, token_decode, token_encode
|
||||
from extensions.openai.utils import _start_cloudflared
|
||||
from modules import shared
|
||||
|
|
@ -40,6 +38,8 @@ from .typing import (
|
|||
EmbeddingsResponse,
|
||||
EncodeRequest,
|
||||
EncodeResponse,
|
||||
ImageGenerationRequest,
|
||||
ImageGenerationResponse,
|
||||
LoadLorasRequest,
|
||||
LoadModelRequest,
|
||||
LogitsRequest,
|
||||
|
|
@ -54,12 +54,12 @@ from .typing import (
|
|||
params = {
|
||||
'embedding_device': 'cpu',
|
||||
'embedding_model': 'sentence-transformers/all-mpnet-base-v2',
|
||||
'sd_webui_url': '',
|
||||
'debug': 0
|
||||
}
|
||||
|
||||
|
||||
streaming_semaphore = asyncio.Semaphore(1)
|
||||
image_generation_semaphore = asyncio.Semaphore(1)
|
||||
|
||||
|
||||
def verify_api_key(authorization: str = Header(None)) -> None:
|
||||
|
|
@ -228,20 +228,13 @@ async def handle_audio_transcription(request: Request):
|
|||
return JSONResponse(content=transcription)
|
||||
|
||||
|
||||
@app.post('/v1/images/generations', dependencies=check_key)
|
||||
async def handle_image_generation(request: Request):
|
||||
@app.post('/v1/images/generations', response_model=ImageGenerationResponse, dependencies=check_key)
|
||||
async def handle_image_generation(request_data: ImageGenerationRequest):
|
||||
import extensions.openai.images as OAIimages
|
||||
|
||||
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
|
||||
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
|
||||
|
||||
body = await request.json()
|
||||
prompt = body['prompt']
|
||||
size = body.get('size', '1024x1024')
|
||||
response_format = body.get('response_format', 'url') # or b64_json
|
||||
n = body.get('n', 1) # ignore the batch limits of max 10
|
||||
|
||||
response = await OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
|
||||
return JSONResponse(response)
|
||||
async with image_generation_semaphore:
|
||||
response = await asyncio.to_thread(OAIimages.generations, request_data)
|
||||
return JSONResponse(response)
|
||||
|
||||
|
||||
@app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key)
|
||||
|
|
|
|||
|
|
@ -264,6 +264,42 @@ class LoadLorasRequest(BaseModel):
|
|||
lora_names: List[str]
|
||||
|
||||
|
||||
class ImageGenerationRequest(BaseModel):
|
||||
"""Image-specific parameters for generation."""
|
||||
prompt: str
|
||||
negative_prompt: str = ""
|
||||
size: str = Field(default="1024x1024", description="'WIDTHxHEIGHT'")
|
||||
steps: int = Field(default=9, ge=1)
|
||||
cfg_scale: float = Field(default=0.0, ge=0.0)
|
||||
image_seed: int = Field(default=-1, description="-1 for random")
|
||||
batch_size: int | None = Field(default=None, ge=1, description="Parallel batch size (VRAM heavy)")
|
||||
n: int = Field(default=1, ge=1, description="Alias for batch_size (OpenAI compatibility)")
|
||||
batch_count: int = Field(default=1, ge=1, description="Sequential batch count")
|
||||
|
||||
# OpenAI compatibility (unused)
|
||||
model: str | None = None
|
||||
response_format: str = "b64_json"
|
||||
user: str | None = None
|
||||
|
||||
@model_validator(mode='after')
|
||||
def resolve_batch_size(self):
|
||||
if self.batch_size is None:
|
||||
self.batch_size = self.n
|
||||
return self
|
||||
|
||||
def get_width_height(self) -> tuple[int, int]:
|
||||
try:
|
||||
parts = self.size.lower().split('x')
|
||||
return int(parts[0]), int(parts[1])
|
||||
except (ValueError, IndexError):
|
||||
return 1024, 1024
|
||||
|
||||
|
||||
class ImageGenerationResponse(BaseModel):
|
||||
created: int = int(time.time())
|
||||
data: List[dict]
|
||||
|
||||
|
||||
def to_json(obj):
|
||||
return json.dumps(obj.__dict__, indent=4)
|
||||
|
||||
|
|
|
|||
|
|
@ -36,3 +36,17 @@ function switch_to_character() {
|
|||
document.getElementById("character-tab-button").click();
|
||||
scrollToTop();
|
||||
}
|
||||
|
||||
function switch_to_image_ai_generate() {
|
||||
const container = document.querySelector("#image-ai-tab");
|
||||
const buttons = container.getElementsByTagName("button");
|
||||
|
||||
for (let i = 0; i < buttons.length; i++) {
|
||||
if (buttons[i].textContent.trim() === "Generate") {
|
||||
buttons[i].click();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
scrollToTop();
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,6 @@ import copy
|
|||
import functools
|
||||
import html
|
||||
import json
|
||||
import os
|
||||
import pprint
|
||||
import re
|
||||
import shutil
|
||||
|
|
@ -26,6 +25,7 @@ from modules.html_generator import (
|
|||
convert_to_markdown,
|
||||
make_thumbnail
|
||||
)
|
||||
from modules.image_utils import open_image_safely
|
||||
from modules.logging_colors import logger
|
||||
from modules.text_generation import (
|
||||
generate_reply,
|
||||
|
|
@ -112,7 +112,9 @@ def generate_chat_prompt(user_input, state, **kwargs):
|
|||
add_generation_prompt=False,
|
||||
enable_thinking=state['enable_thinking'],
|
||||
reasoning_effort=state['reasoning_effort'],
|
||||
thinking_budget=-1 if state.get('enable_thinking', True) else 0
|
||||
thinking_budget=-1 if state.get('enable_thinking', True) else 0,
|
||||
bos_token=shared.bos_token,
|
||||
eos_token=shared.eos_token,
|
||||
)
|
||||
|
||||
chat_renderer = partial(
|
||||
|
|
@ -475,7 +477,7 @@ def get_stopping_strings(state):
|
|||
|
||||
if state['mode'] in ['instruct', 'chat-instruct']:
|
||||
template = jinja_env.from_string(state['instruction_template_str'])
|
||||
renderer = partial(template.render, add_generation_prompt=False)
|
||||
renderer = partial(template.render, add_generation_prompt=False, bos_token=shared.bos_token, eos_token=shared.eos_token)
|
||||
renderers.append(renderer)
|
||||
|
||||
if state['mode'] in ['chat']:
|
||||
|
|
@ -1516,20 +1518,6 @@ def load_instruction_template_memoized(template):
|
|||
return load_instruction_template(template)
|
||||
|
||||
|
||||
def open_image_safely(path):
|
||||
if path is None or not isinstance(path, str) or not Path(path).exists():
|
||||
return None
|
||||
|
||||
if os.path.islink(path):
|
||||
return None
|
||||
|
||||
try:
|
||||
return Image.open(path)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to open image file: {path}. Reason: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def upload_character(file, img_path, tavern=False):
|
||||
img = open_image_safely(img_path)
|
||||
decoded_file = file if isinstance(file, str) else file.decode('utf-8')
|
||||
|
|
|
|||
|
|
@ -2,7 +2,6 @@ import time
|
|||
|
||||
import modules.shared as shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.torch_utils import get_device
|
||||
from modules.utils import resolve_model_path
|
||||
|
||||
|
||||
|
|
@ -11,13 +10,14 @@ def get_quantization_config(quant_method):
|
|||
Get the appropriate quantization config based on the selected method.
|
||||
|
||||
Args:
|
||||
quant_method: One of 'none', 'bnb-8bit', 'bnb-4bit', 'quanto-8bit', 'quanto-4bit', 'quanto-2bit'
|
||||
quant_method: One of 'none', 'bnb-8bit', 'bnb-4bit',
|
||||
'torchao-int8wo', 'torchao-fp4', 'torchao-float8wo'
|
||||
|
||||
Returns:
|
||||
PipelineQuantizationConfig or None
|
||||
"""
|
||||
import torch
|
||||
from diffusers import BitsAndBytesConfig, QuantoConfig
|
||||
from diffusers import BitsAndBytesConfig, TorchAoConfig
|
||||
from diffusers.quantizers import PipelineQuantizationConfig
|
||||
|
||||
if quant_method == 'none' or not quant_method:
|
||||
|
|
@ -46,27 +46,27 @@ def get_quantization_config(quant_method):
|
|||
}
|
||||
)
|
||||
|
||||
# Quanto 8-bit quantization
|
||||
elif quant_method == 'quanto-8bit':
|
||||
# torchao int8 weight-only
|
||||
elif quant_method == 'torchao-int8wo':
|
||||
return PipelineQuantizationConfig(
|
||||
quant_mapping={
|
||||
"transformer": QuantoConfig(weights_dtype="int8")
|
||||
"transformer": TorchAoConfig("int8wo")
|
||||
}
|
||||
)
|
||||
|
||||
# Quanto 4-bit quantization
|
||||
elif quant_method == 'quanto-4bit':
|
||||
# torchao fp4 (e2m1)
|
||||
elif quant_method == 'torchao-fp4':
|
||||
return PipelineQuantizationConfig(
|
||||
quant_mapping={
|
||||
"transformer": QuantoConfig(weights_dtype="int4")
|
||||
"transformer": TorchAoConfig("fp4_e2m1")
|
||||
}
|
||||
)
|
||||
|
||||
# Quanto 2-bit quantization
|
||||
elif quant_method == 'quanto-2bit':
|
||||
# torchao float8 weight-only
|
||||
elif quant_method == 'torchao-float8wo':
|
||||
return PipelineQuantizationConfig(
|
||||
quant_mapping={
|
||||
"transformer": QuantoConfig(weights_dtype="int2")
|
||||
"transformer": TorchAoConfig("float8wo")
|
||||
}
|
||||
)
|
||||
|
||||
|
|
@ -98,14 +98,16 @@ def load_image_model(model_name, dtype='bfloat16', attn_backend='sdpa', cpu_offl
|
|||
Args:
|
||||
model_name: Name of the model directory
|
||||
dtype: 'bfloat16' or 'float16'
|
||||
attn_backend: 'sdpa', 'flash_attention_2', or 'flash_attention_3'
|
||||
attn_backend: 'sdpa' or 'flash_attention_2'
|
||||
cpu_offload: Enable CPU offloading for low VRAM
|
||||
compile_model: Compile the model for faster inference (slow first run)
|
||||
quant_method: Quantization method - 'none', 'bnb-8bit', 'bnb-4bit', 'quanto-8bit', 'quanto-4bit', 'quanto-2bit'
|
||||
quant_method: 'none', 'bnb-8bit', 'bnb-4bit', or torchao options (int8wo, fp4, float8wo)
|
||||
"""
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
from modules.torch_utils import get_device
|
||||
|
||||
logger.info(f"Loading image model \"{model_name}\" with quantization: {quant_method}")
|
||||
t0 = time.time()
|
||||
|
||||
|
|
@ -139,18 +141,24 @@ def load_image_model(model_name, dtype='bfloat16', attn_backend='sdpa', cpu_offl
|
|||
if not cpu_offload:
|
||||
pipe.to(get_device())
|
||||
|
||||
# Set attention backend (if supported by the pipeline)
|
||||
if hasattr(pipe, 'transformer') and hasattr(pipe.transformer, 'set_attention_backend'):
|
||||
if attn_backend == 'flash_attention_2':
|
||||
pipe.transformer.set_attention_backend("flash")
|
||||
elif attn_backend == 'flash_attention_3':
|
||||
pipe.transformer.set_attention_backend("_flash_3")
|
||||
# sdpa is the default, no action needed
|
||||
modules = ["transformer", "unet"]
|
||||
|
||||
# Set attention backend
|
||||
if attn_backend == 'flash_attention_2':
|
||||
for name in modules:
|
||||
mod = getattr(pipe, name, None)
|
||||
if hasattr(mod, "set_attention_backend"):
|
||||
mod.set_attention_backend("flash")
|
||||
break
|
||||
|
||||
# Compile model
|
||||
if compile_model:
|
||||
if hasattr(pipe, 'transformer') and hasattr(pipe.transformer, 'compile'):
|
||||
logger.info("Compiling model (first run will be slow)...")
|
||||
pipe.transformer.compile()
|
||||
for name in modules:
|
||||
mod = getattr(pipe, name, None)
|
||||
if hasattr(mod, "compile"):
|
||||
logger.info("Compiling model (first run will be slow)...")
|
||||
mod.compile()
|
||||
break
|
||||
|
||||
if cpu_offload:
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
|
|
|||
|
|
@ -1,9 +1,7 @@
|
|||
"""
|
||||
Shared image processing utilities for multimodal support.
|
||||
Used by both ExLlamaV3 and llama.cpp implementations.
|
||||
"""
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Tuple
|
||||
|
||||
from PIL import Image
|
||||
|
|
@ -11,6 +9,20 @@ from PIL import Image
|
|||
from modules.logging_colors import logger
|
||||
|
||||
|
||||
def open_image_safely(path):
|
||||
if path is None or not isinstance(path, str) or not Path(path).exists():
|
||||
return None
|
||||
|
||||
if os.path.islink(path):
|
||||
return None
|
||||
|
||||
try:
|
||||
return Image.open(path)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to open image file: {path}. Reason: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def convert_pil_to_base64(image: Image.Image) -> str:
|
||||
"""Converts a PIL Image to a base64 encoded string."""
|
||||
buffered = io.BytesIO()
|
||||
|
|
|
|||
|
|
@ -89,8 +89,9 @@ def get_model_metadata(model):
|
|||
else:
|
||||
bos_token = ""
|
||||
|
||||
template = template.replace('eos_token', "'{}'".format(eos_token))
|
||||
template = template.replace('bos_token', "'{}'".format(bos_token))
|
||||
|
||||
shared.bos_token = bos_token
|
||||
shared.eos_token = eos_token
|
||||
|
||||
template = re.sub(r"\{\{-?\s*raise_exception\(.*?\)\s*-?\}\}", "", template, flags=re.DOTALL)
|
||||
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
|
||||
|
|
@ -160,13 +161,16 @@ def get_model_metadata(model):
|
|||
|
||||
# 4. If a template was found from any source, process it
|
||||
if template:
|
||||
shared.bos_token = '<s>'
|
||||
shared.eos_token = '</s>'
|
||||
|
||||
for k in ['eos_token', 'bos_token']:
|
||||
if k in metadata:
|
||||
value = metadata[k]
|
||||
if isinstance(value, dict):
|
||||
value = value['content']
|
||||
|
||||
template = template.replace(k, "'{}'".format(value))
|
||||
setattr(shared, k, value)
|
||||
|
||||
template = re.sub(r"\{\{-?\s*raise_exception\(.*?\)\s*-?\}\}", "", template, flags=re.DOTALL)
|
||||
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
|
||||
|
|
|
|||
|
|
@ -19,6 +19,8 @@ is_seq2seq = False
|
|||
is_multimodal = False
|
||||
model_dirty_from_training = False
|
||||
lora_names = []
|
||||
bos_token = '<s>'
|
||||
eos_token = '</s>'
|
||||
|
||||
# Image model variables
|
||||
image_model = None
|
||||
|
|
@ -56,11 +58,11 @@ group = parser.add_argument_group('Image model')
|
|||
group.add_argument('--image-model', type=str, help='Name of the image model to select on startup (overrides saved setting).')
|
||||
group.add_argument('--image-model-dir', type=str, default='user_data/image_models', help='Path to directory with all the image models.')
|
||||
group.add_argument('--image-dtype', type=str, default=None, choices=['bfloat16', 'float16'], help='Data type for image model.')
|
||||
group.add_argument('--image-attn-backend', type=str, default=None, choices=['sdpa', 'flash_attention_2', 'flash_attention_3'], help='Attention backend for image model.')
|
||||
group.add_argument('--image-attn-backend', type=str, default=None, choices=['sdpa', 'flash_attention_2'], help='Attention backend for image model.')
|
||||
group.add_argument('--image-cpu-offload', action='store_true', help='Enable CPU offloading for image model.')
|
||||
group.add_argument('--image-compile', action='store_true', help='Compile the image model for faster inference.')
|
||||
group.add_argument('--image-quant', type=str, default=None,
|
||||
choices=['none', 'bnb-8bit', 'bnb-4bit', 'quanto-8bit', 'quanto-4bit', 'quanto-2bit'],
|
||||
choices=['none', 'bnb-8bit', 'bnb-4bit', 'torchao-int8wo', 'torchao-fp4', 'torchao-float8wo'],
|
||||
help='Quantization method for image model.')
|
||||
|
||||
# Model loader
|
||||
|
|
@ -319,6 +321,8 @@ settings = {
|
|||
'image_seed': -1,
|
||||
'image_batch_size': 1,
|
||||
'image_batch_count': 1,
|
||||
'image_llm_variations': False,
|
||||
'image_llm_variations_prompt': 'Write a variation of the image generation prompt above. Consider the intent of the user with that prompt and write something that will likely please them, with added details. Output only the new prompt. Do not add any explanations, prefixes, or additional text.',
|
||||
'image_model_menu': 'None',
|
||||
'image_dtype': 'bfloat16',
|
||||
'image_attn_backend': 'sdpa',
|
||||
|
|
|
|||
|
|
@ -280,25 +280,28 @@ def list_interface_input_elements():
|
|||
'include_past_attachments',
|
||||
]
|
||||
|
||||
# Image generation elements
|
||||
elements += [
|
||||
'image_prompt',
|
||||
'image_neg_prompt',
|
||||
'image_width',
|
||||
'image_height',
|
||||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_cfg_scale',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_model_menu',
|
||||
'image_dtype',
|
||||
'image_attn_backend',
|
||||
'image_compile',
|
||||
'image_cpu_offload',
|
||||
'image_quant',
|
||||
]
|
||||
if not shared.args.portable:
|
||||
# Image generation elements
|
||||
elements += [
|
||||
'image_prompt',
|
||||
'image_neg_prompt',
|
||||
'image_width',
|
||||
'image_height',
|
||||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_cfg_scale',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_llm_variations',
|
||||
'image_llm_variations_prompt',
|
||||
'image_model_menu',
|
||||
'image_dtype',
|
||||
'image_attn_backend',
|
||||
'image_compile',
|
||||
'image_cpu_offload',
|
||||
'image_quant',
|
||||
]
|
||||
|
||||
return elements
|
||||
|
||||
|
|
@ -531,25 +534,31 @@ def setup_auto_save():
|
|||
'paste_to_attachment',
|
||||
'include_past_attachments',
|
||||
|
||||
# Image generation tab (ui_image_generation.py)
|
||||
'image_prompt',
|
||||
'image_neg_prompt',
|
||||
'image_width',
|
||||
'image_height',
|
||||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_cfg_scale',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_model_menu',
|
||||
'image_dtype',
|
||||
'image_attn_backend',
|
||||
'image_compile',
|
||||
'image_cpu_offload',
|
||||
'image_quant',
|
||||
]
|
||||
|
||||
if not shared.args.portable:
|
||||
# Image generation tab (ui_image_generation.py)
|
||||
change_elements += [
|
||||
'image_prompt',
|
||||
'image_neg_prompt',
|
||||
'image_width',
|
||||
'image_height',
|
||||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_cfg_scale',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_llm_variations',
|
||||
'image_llm_variations_prompt',
|
||||
'image_model_menu',
|
||||
'image_dtype',
|
||||
'image_attn_backend',
|
||||
'image_compile',
|
||||
'image_cpu_offload',
|
||||
'image_quant',
|
||||
]
|
||||
|
||||
for element_name in change_elements:
|
||||
if element_name in shared.gradio:
|
||||
shared.gradio[element_name].change(
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ from pathlib import Path
|
|||
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
|
||||
from modules import shared, ui, utils
|
||||
|
|
@ -16,10 +15,10 @@ from modules.image_models import (
|
|||
load_image_model,
|
||||
unload_image_model
|
||||
)
|
||||
from modules.image_utils import open_image_safely
|
||||
from modules.logging_colors import logger
|
||||
from modules.text_generation import stop_everything_event
|
||||
from modules.torch_utils import get_device
|
||||
from modules.utils import gradio
|
||||
from modules.utils import check_model_loaded, gradio
|
||||
|
||||
ASPECT_RATIOS = {
|
||||
"1:1 Square": (1, 1),
|
||||
|
|
@ -30,7 +29,7 @@ ASPECT_RATIOS = {
|
|||
}
|
||||
|
||||
STEP = 16
|
||||
IMAGES_PER_PAGE = 64
|
||||
IMAGES_PER_PAGE = 32
|
||||
|
||||
# Settings keys to save in PNG metadata (Generate tab only)
|
||||
METADATA_SETTINGS_KEYS = [
|
||||
|
|
@ -41,8 +40,6 @@ METADATA_SETTINGS_KEYS = [
|
|||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_cfg_scale',
|
||||
]
|
||||
|
||||
|
|
@ -137,6 +134,9 @@ def build_generation_metadata(state, actual_seed):
|
|||
|
||||
def save_generated_images(images, state, actual_seed):
|
||||
"""Save images with generation metadata embedded in PNG."""
|
||||
if shared.args.multi_user:
|
||||
return
|
||||
|
||||
date_str = datetime.now().strftime("%Y-%m-%d")
|
||||
folder_path = os.path.join("user_data", "image_outputs", date_str)
|
||||
os.makedirs(folder_path, exist_ok=True)
|
||||
|
|
@ -146,7 +146,7 @@ def save_generated_images(images, state, actual_seed):
|
|||
|
||||
for idx, img in enumerate(images):
|
||||
timestamp = datetime.now().strftime("%H-%M-%S")
|
||||
filename = f"{timestamp}_{actual_seed:010d}_{idx:03d}.png"
|
||||
filename = f"TGW_{timestamp}_{actual_seed:010d}_{idx:03d}.png"
|
||||
filepath = os.path.join(folder_path, filename)
|
||||
|
||||
# Create PNG metadata
|
||||
|
|
@ -160,9 +160,14 @@ def save_generated_images(images, state, actual_seed):
|
|||
def read_image_metadata(image_path):
|
||||
"""Read generation metadata from PNG file."""
|
||||
try:
|
||||
with Image.open(image_path) as img:
|
||||
img = open_image_safely(image_path)
|
||||
if img is None:
|
||||
return None
|
||||
try:
|
||||
if hasattr(img, 'text') and 'image_gen_settings' in img.text:
|
||||
return json.loads(img.text['image_gen_settings'])
|
||||
finally:
|
||||
img.close()
|
||||
except Exception as e:
|
||||
logger.debug(f"Could not read metadata from {image_path}: {e}")
|
||||
return None
|
||||
|
|
@ -173,7 +178,7 @@ def format_metadata_for_display(metadata):
|
|||
if not metadata:
|
||||
return "No generation settings found in this image."
|
||||
|
||||
lines = ["**Generation Settings**", ""]
|
||||
lines = []
|
||||
|
||||
# Display in a nice order
|
||||
display_order = [
|
||||
|
|
@ -185,8 +190,6 @@ def format_metadata_for_display(metadata):
|
|||
('image_steps', 'Steps'),
|
||||
('image_cfg_scale', 'CFG Scale'),
|
||||
('image_seed', 'Seed'),
|
||||
('image_batch_size', 'Batch Size'),
|
||||
('image_batch_count', 'Batch Count'),
|
||||
('model', 'Model'),
|
||||
('generated_at', 'Generated At'),
|
||||
]
|
||||
|
|
@ -291,8 +294,10 @@ def on_gallery_select(evt: gr.SelectData, current_page):
|
|||
if evt.index is None:
|
||||
return "", "Select an image to view its settings"
|
||||
|
||||
# Get the current page's images to find the actual file path
|
||||
all_images = get_all_history_images()
|
||||
if not _image_cache:
|
||||
get_all_history_images()
|
||||
|
||||
all_images = _image_cache
|
||||
total_images = len(all_images)
|
||||
|
||||
# Calculate the actual index in the full list
|
||||
|
|
@ -312,11 +317,11 @@ def on_gallery_select(evt: gr.SelectData, current_page):
|
|||
def send_to_generate(selected_image_path):
|
||||
"""Load settings from selected image and return updates for all Generate tab inputs."""
|
||||
if not selected_image_path or not os.path.exists(selected_image_path):
|
||||
return [gr.update()] * 10 + ["No image selected"]
|
||||
return [gr.update()] * 8 + ["No image selected"]
|
||||
|
||||
metadata = read_image_metadata(selected_image_path)
|
||||
if not metadata:
|
||||
return [gr.update()] * 10 + ["No settings found in this image"]
|
||||
return [gr.update()] * 8 + ["No settings found in this image"]
|
||||
|
||||
# Return updates for each input element in order
|
||||
updates = [
|
||||
|
|
@ -327,8 +332,6 @@ def send_to_generate(selected_image_path):
|
|||
gr.update(value=metadata.get('image_aspect_ratio', '1:1 Square')),
|
||||
gr.update(value=metadata.get('image_steps', 9)),
|
||||
gr.update(value=metadata.get('image_seed', -1)),
|
||||
gr.update(value=metadata.get('image_batch_size', 1)),
|
||||
gr.update(value=metadata.get('image_batch_count', 1)),
|
||||
gr.update(value=metadata.get('image_cfg_scale', 0.0)),
|
||||
]
|
||||
|
||||
|
|
@ -368,10 +371,26 @@ def create_ui():
|
|||
lines=3,
|
||||
value=shared.settings['image_neg_prompt']
|
||||
)
|
||||
shared.gradio['image_llm_variations'] = gr.Checkbox(
|
||||
value=shared.settings['image_llm_variations'],
|
||||
label='LLM Prompt Variations',
|
||||
elem_id="llm-prompt-variations",
|
||||
)
|
||||
shared.gradio['image_llm_variations_prompt'] = gr.Textbox(
|
||||
value=shared.settings['image_llm_variations_prompt'],
|
||||
label='Variation Prompt',
|
||||
lines=3,
|
||||
placeholder='Instructions for generating prompt variations...',
|
||||
visible=shared.settings['image_llm_variations'],
|
||||
info='Use the loaded LLM to generate creative prompt variations for each sequential batch.'
|
||||
)
|
||||
|
||||
shared.gradio['image_generate_btn'] = gr.Button("Generate", variant="primary", size="lg")
|
||||
shared.gradio['image_stop_btn'] = gr.Button("Stop", size="lg", visible=False)
|
||||
gr.HTML("<hr style='border-top: 1px solid #444; margin: 20px 0;'>")
|
||||
shared.gradio['image_progress'] = gr.HTML(
|
||||
value=progress_bar_html(),
|
||||
elem_id="image-progress"
|
||||
)
|
||||
|
||||
gr.Markdown("### Dimensions")
|
||||
with gr.Row():
|
||||
|
|
@ -401,6 +420,7 @@ def create_ui():
|
|||
info="Z-Image Turbo: 0.0 | Qwen: 4.0"
|
||||
)
|
||||
shared.gradio['image_seed'] = gr.Number(label="Seed", value=shared.settings['image_seed'], precision=0, info="-1 = Random")
|
||||
|
||||
with gr.Column():
|
||||
shared.gradio['image_batch_size'] = gr.Slider(1, 32, value=shared.settings['image_batch_size'], step=1, label="Batch Size (VRAM Heavy)", info="Generates N images at once.")
|
||||
shared.gradio['image_batch_count'] = gr.Slider(1, 128, value=shared.settings['image_batch_count'], step=1, label="Sequential Count (Loop)", info="Repeats the generation N times.")
|
||||
|
|
@ -416,9 +436,9 @@ def create_ui():
|
|||
# Pagination controls
|
||||
with gr.Row():
|
||||
shared.gradio['image_refresh_history'] = gr.Button("🔄 Refresh", elem_classes="refresh-button")
|
||||
shared.gradio['image_prev_page'] = gr.Button("◀ Prev", elem_classes="refresh-button")
|
||||
shared.gradio['image_prev_page'] = gr.Button("◀ Prev Page", elem_classes="refresh-button")
|
||||
shared.gradio['image_page_info'] = gr.Markdown(value=get_initial_page_info, elem_id="image-page-info")
|
||||
shared.gradio['image_next_page'] = gr.Button("Next ▶", elem_classes="refresh-button")
|
||||
shared.gradio['image_next_page'] = gr.Button("Next Page ▶", elem_classes="refresh-button")
|
||||
shared.gradio['image_page_input'] = gr.Number(value=1, label="Page", precision=0, minimum=1, scale=0, min_width=80)
|
||||
shared.gradio['image_go_to_page'] = gr.Button("Go", elem_classes="refresh-button", scale=0, min_width=50)
|
||||
|
||||
|
|
@ -439,7 +459,7 @@ def create_ui():
|
|||
)
|
||||
|
||||
with gr.Column(scale=1):
|
||||
gr.Markdown("### Selected Image")
|
||||
gr.Markdown("### Generation Settings")
|
||||
shared.gradio['image_settings_display'] = gr.Markdown("Select an image to view its settings")
|
||||
shared.gradio['image_send_to_generate'] = gr.Button("Send to Generate", variant="primary")
|
||||
shared.gradio['image_gallery_status'] = gr.Markdown("")
|
||||
|
|
@ -471,9 +491,9 @@ def create_ui():
|
|||
with gr.Column():
|
||||
shared.gradio['image_quant'] = gr.Dropdown(
|
||||
label='Quantization',
|
||||
choices=['none', 'bnb-8bit', 'bnb-4bit', 'quanto-8bit', 'quanto-4bit', 'quanto-2bit'],
|
||||
choices=['none', 'bnb-8bit', 'bnb-4bit', 'torchao-int8wo', 'torchao-fp4', 'torchao-float8wo'],
|
||||
value=shared.settings['image_quant'],
|
||||
info='Quantization method for reduced VRAM usage. Quanto supports lower precisions (2-bit, 4-bit, 8-bit).'
|
||||
info='BnB: bitsandbytes quantization. torchao: int8wo, fp4, float8wo.'
|
||||
)
|
||||
|
||||
shared.gradio['image_dtype'] = gr.Dropdown(
|
||||
|
|
@ -483,7 +503,7 @@ def create_ui():
|
|||
info='bfloat16 recommended for modern GPUs'
|
||||
)
|
||||
shared.gradio['image_attn_backend'] = gr.Dropdown(
|
||||
choices=['sdpa', 'flash_attention_2', 'flash_attention_3'],
|
||||
choices=['sdpa', 'flash_attention_2'],
|
||||
value=shared.settings['image_attn_backend'],
|
||||
label='Attention Backend',
|
||||
info='SDPA is default. Flash Attention requires compatible GPU.'
|
||||
|
|
@ -507,9 +527,7 @@ def create_ui():
|
|||
info="Enter HuggingFace path. Use : for branch, e.g. user/model:main"
|
||||
)
|
||||
shared.gradio['image_download_btn'] = gr.Button("Download", variant='primary')
|
||||
shared.gradio['image_model_status'] = gr.Markdown(
|
||||
value=f"Model: **{shared.settings['image_model_menu']}** (not loaded)" if shared.settings['image_model_menu'] != 'None' else "No model selected"
|
||||
)
|
||||
shared.gradio['image_model_status'] = gr.Markdown(value="")
|
||||
|
||||
|
||||
def create_event_handlers():
|
||||
|
|
@ -546,19 +564,19 @@ def create_event_handlers():
|
|||
shared.gradio['image_generate_btn'].click(
|
||||
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
|
||||
lambda: [gr.update(visible=True), gr.update(visible=False)], None, gradio('image_stop_btn', 'image_generate_btn')).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery'), show_progress=False).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_progress'), show_progress=False).then(
|
||||
lambda: [gr.update(visible=False), gr.update(visible=True)], None, gradio('image_stop_btn', 'image_generate_btn'))
|
||||
|
||||
shared.gradio['image_prompt'].submit(
|
||||
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
|
||||
lambda: [gr.update(visible=True), gr.update(visible=False)], None, gradio('image_stop_btn', 'image_generate_btn')).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery'), show_progress=False).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_progress'), show_progress=False).then(
|
||||
lambda: [gr.update(visible=False), gr.update(visible=True)], None, gradio('image_stop_btn', 'image_generate_btn'))
|
||||
|
||||
shared.gradio['image_neg_prompt'].submit(
|
||||
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
|
||||
lambda: [gr.update(visible=True), gr.update(visible=False)], None, gradio('image_stop_btn', 'image_generate_btn')).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery'), show_progress=False).then(
|
||||
generate, gradio('interface_state'), gradio('image_output_gallery', 'image_progress'), show_progress=False).then(
|
||||
lambda: [gr.update(visible=False), gr.update(visible=True)], None, gradio('image_stop_btn', 'image_generate_btn'))
|
||||
|
||||
# Stop button
|
||||
|
|
@ -644,11 +662,10 @@ def create_event_handlers():
|
|||
'image_aspect_ratio',
|
||||
'image_steps',
|
||||
'image_seed',
|
||||
'image_batch_size',
|
||||
'image_batch_count',
|
||||
'image_cfg_scale',
|
||||
'image_gallery_status'
|
||||
),
|
||||
js=f'() => {{{ui.switch_tabs_js}; switch_to_image_ai_generate()}}',
|
||||
show_progress=False
|
||||
)
|
||||
|
||||
|
|
@ -659,24 +676,101 @@ def create_event_handlers():
|
|||
show_progress=False
|
||||
)
|
||||
|
||||
# LLM Variations visibility toggle
|
||||
shared.gradio['image_llm_variations'].change(
|
||||
lambda x: gr.update(visible=x),
|
||||
gradio('image_llm_variations'),
|
||||
gradio('image_llm_variations_prompt'),
|
||||
show_progress=False
|
||||
)
|
||||
|
||||
def generate(state):
|
||||
|
||||
def generate_prompt_variation(state):
|
||||
"""Generate a creative variation of the image prompt using the LLM."""
|
||||
from modules.chat import generate_chat_prompt
|
||||
from modules.text_generation import generate_reply
|
||||
|
||||
prompt = state['image_prompt']
|
||||
|
||||
# Check if LLM is loaded
|
||||
model_loaded, _ = check_model_loaded()
|
||||
if not model_loaded:
|
||||
logger.warning("No LLM loaded for prompt variation. Using original prompt.")
|
||||
return prompt
|
||||
|
||||
# Get the custom variation prompt or use default
|
||||
variation_instruction = state.get('image_llm_variations_prompt', '')
|
||||
if not variation_instruction:
|
||||
variation_instruction = 'Write a variation of the image generation prompt above. Consider the intent of the user with that prompt and write something that will likely please them, with added details. Output only the new prompt. Do not add any explanations, prefixes, or additional text.'
|
||||
|
||||
augmented_message = f"{prompt}\n\n=====\n\n{variation_instruction}"
|
||||
|
||||
# Use minimal state for generation
|
||||
var_state = state.copy()
|
||||
var_state['history'] = {'internal': [], 'visible': [], 'metadata': {}}
|
||||
var_state['auto_max_new_tokens'] = True
|
||||
var_state['enable_thinking'] = False
|
||||
var_state['reasoning_effort'] = 'low'
|
||||
var_state['start_with'] = ""
|
||||
|
||||
formatted_prompt = generate_chat_prompt(augmented_message, var_state)
|
||||
|
||||
variation = ""
|
||||
for reply in generate_reply(formatted_prompt, var_state, stopping_strings=[], is_chat=True):
|
||||
variation = reply
|
||||
|
||||
# Strip thinking blocks if present
|
||||
if "</think>" in variation:
|
||||
variation = variation.rsplit("</think>", 1)[1]
|
||||
elif "<|start|>assistant<|channel|>final<|message|>" in variation:
|
||||
variation = variation.rsplit("<|start|>assistant<|channel|>final<|message|>", 1)[1]
|
||||
elif "</seed:think>" in variation:
|
||||
variation = variation.rsplit("</seed:think>", 1)[1]
|
||||
|
||||
variation = variation.strip()
|
||||
if len(variation) >= 2 and variation.startswith('"') and variation.endswith('"'):
|
||||
variation = variation[1:-1]
|
||||
|
||||
if variation:
|
||||
logger.info("Prompt variation:")
|
||||
print(variation)
|
||||
return variation
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
def progress_bar_html(progress=0, text=""):
|
||||
"""Generate HTML for progress bar. Empty div when progress <= 0."""
|
||||
if progress <= 0:
|
||||
return '<div class="image-ai-separator"></div>'
|
||||
|
||||
return f'''<div class="image-ai-progress-wrapper">
|
||||
<div class="image-ai-progress-track">
|
||||
<div class="image-ai-progress-fill" style="width: {progress * 100:.1f}%;"></div>
|
||||
</div>
|
||||
<div class="image-ai-progress-text">{text}</div>
|
||||
</div>'''
|
||||
|
||||
|
||||
def generate(state, save_images=True):
|
||||
"""
|
||||
Generate images using the loaded model.
|
||||
Automatically adjusts parameters based on pipeline type.
|
||||
"""
|
||||
import queue
|
||||
import threading
|
||||
|
||||
import torch
|
||||
|
||||
from modules.torch_utils import clear_torch_cache
|
||||
|
||||
clear_torch_cache()
|
||||
from modules.torch_utils import clear_torch_cache, get_device
|
||||
|
||||
try:
|
||||
model_name = state['image_model_menu']
|
||||
|
||||
if not model_name or model_name == 'None':
|
||||
logger.error("No image model selected. Go to the Model tab and select a model.")
|
||||
return []
|
||||
yield [], progress_bar_html()
|
||||
return
|
||||
|
||||
if shared.image_model is None:
|
||||
result = load_image_model(
|
||||
|
|
@ -689,7 +783,8 @@ def generate(state):
|
|||
)
|
||||
if result is None:
|
||||
logger.error(f"Failed to load model `{model_name}`.")
|
||||
return []
|
||||
yield [], progress_bar_html()
|
||||
return
|
||||
|
||||
shared.image_model_name = model_name
|
||||
|
||||
|
|
@ -700,7 +795,7 @@ def generate(state):
|
|||
device = get_device()
|
||||
if device is None:
|
||||
device = "cpu"
|
||||
generator = torch.Generator(device).manual_seed(int(seed))
|
||||
generator = torch.Generator(device)
|
||||
|
||||
all_images = []
|
||||
|
||||
|
|
@ -709,70 +804,113 @@ def generate(state):
|
|||
if pipeline_type is None:
|
||||
pipeline_type = get_pipeline_type(shared.image_model)
|
||||
|
||||
# Process Prompt
|
||||
prompt = state['image_prompt']
|
||||
|
||||
# Apply "Positive Magic" for Qwen models only
|
||||
if pipeline_type == 'qwenimage':
|
||||
magic_suffix = ", Ultra HD, 4K, cinematic composition"
|
||||
# Avoid duplication if user already added it
|
||||
if magic_suffix.strip(", ") not in prompt:
|
||||
prompt += magic_suffix
|
||||
|
||||
# Reset stop flag at start
|
||||
shared.stop_everything = False
|
||||
|
||||
# Callback to check for interruption during diffusion steps
|
||||
batch_count = int(state['image_batch_count'])
|
||||
steps_per_batch = int(state['image_steps'])
|
||||
total_steps = steps_per_batch * batch_count
|
||||
|
||||
# Queue for progress updates from callback
|
||||
progress_queue = queue.Queue()
|
||||
|
||||
def interrupt_callback(pipe, step_index, timestep, callback_kwargs):
|
||||
if shared.stop_everything:
|
||||
pipe._interrupt = True
|
||||
|
||||
progress_queue.put(step_index + 1)
|
||||
return callback_kwargs
|
||||
|
||||
# Build generation kwargs
|
||||
gen_kwargs = {
|
||||
"prompt": prompt,
|
||||
"negative_prompt": state['image_neg_prompt'],
|
||||
"height": int(state['image_height']),
|
||||
"width": int(state['image_width']),
|
||||
"num_inference_steps": int(state['image_steps']),
|
||||
"num_inference_steps": steps_per_batch,
|
||||
"num_images_per_prompt": int(state['image_batch_size']),
|
||||
"generator": generator,
|
||||
"callback_on_step_end": interrupt_callback,
|
||||
}
|
||||
|
||||
# Add pipeline-specific parameters for CFG
|
||||
cfg_val = state.get('image_cfg_scale', 0.0)
|
||||
|
||||
if pipeline_type == 'qwenimage':
|
||||
# Qwen-Image uses true_cfg_scale (typically 4.0)
|
||||
gen_kwargs["true_cfg_scale"] = cfg_val
|
||||
else:
|
||||
# Z-Image and others use guidance_scale (typically 0.0 for Turbo)
|
||||
gen_kwargs["guidance_scale"] = cfg_val
|
||||
|
||||
t0 = time.time()
|
||||
for i in range(int(state['image_batch_count'])):
|
||||
|
||||
for batch_idx in range(batch_count):
|
||||
if shared.stop_everything:
|
||||
break
|
||||
|
||||
generator.manual_seed(int(seed + i))
|
||||
batch_results = shared.image_model(**gen_kwargs).images
|
||||
all_images.extend(batch_results)
|
||||
generator.manual_seed(int(seed + batch_idx))
|
||||
|
||||
# Generate prompt variation if enabled
|
||||
if state['image_llm_variations']:
|
||||
gen_kwargs["prompt"] = generate_prompt_variation(state)
|
||||
|
||||
# Run generation in thread so we can yield progress
|
||||
result_holder = []
|
||||
error_holder = []
|
||||
|
||||
def run_batch():
|
||||
try:
|
||||
# Apply magic suffix only at generation time for qwenimage
|
||||
clean_prompt = gen_kwargs["prompt"]
|
||||
if pipeline_type == 'qwenimage':
|
||||
magic_suffix = ", Ultra HD, 4K, cinematic composition"
|
||||
if magic_suffix.strip(", ") not in clean_prompt:
|
||||
gen_kwargs["prompt"] = clean_prompt + magic_suffix
|
||||
|
||||
result_holder.extend(shared.image_model(**gen_kwargs).images)
|
||||
gen_kwargs["prompt"] = clean_prompt # restore
|
||||
except Exception as e:
|
||||
error_holder.append(e)
|
||||
|
||||
thread = threading.Thread(target=run_batch)
|
||||
thread.start()
|
||||
|
||||
# Yield progress updates while generation runs
|
||||
while thread.is_alive():
|
||||
try:
|
||||
step = progress_queue.get(timeout=0.1)
|
||||
absolute_step = batch_idx * steps_per_batch + step
|
||||
pct = absolute_step / total_steps
|
||||
text = f"Batch {batch_idx + 1}/{batch_count} — Step {step}/{steps_per_batch}"
|
||||
yield all_images, progress_bar_html(pct, text)
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
thread.join()
|
||||
|
||||
if error_holder:
|
||||
raise error_holder[0]
|
||||
|
||||
# Save this batch's images with the actual prompt and seed used
|
||||
if save_images:
|
||||
batch_seed = seed + batch_idx
|
||||
original_prompt = state['image_prompt']
|
||||
state['image_prompt'] = gen_kwargs["prompt"]
|
||||
save_generated_images(result_holder, state, batch_seed)
|
||||
state['image_prompt'] = original_prompt
|
||||
|
||||
all_images.extend(result_holder)
|
||||
yield all_images, progress_bar_html((batch_idx + 1) / batch_count, f"Batch {batch_idx + 1}/{batch_count} complete")
|
||||
|
||||
t1 = time.time()
|
||||
save_generated_images(all_images, state, seed)
|
||||
|
||||
total_images = int(state['image_batch_count']) * int(state['image_batch_size'])
|
||||
total_steps = state["image_steps"] * int(state['image_batch_count'])
|
||||
total_images = batch_count * int(state['image_batch_size'])
|
||||
logger.info(f'Generated {total_images} {"image" if total_images == 1 else "images"} in {(t1 - t0):.2f} seconds ({total_steps / (t1 - t0):.2f} steps/s, seed {seed})')
|
||||
|
||||
return all_images
|
||||
yield all_images, progress_bar_html()
|
||||
clear_torch_cache()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Image generation failed: {e}")
|
||||
traceback.print_exc()
|
||||
return []
|
||||
yield [], progress_bar_html()
|
||||
clear_torch_cache()
|
||||
|
||||
|
||||
def load_image_model_wrapper(model_name, dtype, attn_backend, cpu_offload, compile_model, quant_method):
|
||||
|
|
|
|||
|
|
@ -11,7 +11,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -26,6 +25,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -44,8 +44,8 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.16/exllamav3-0.0.16+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.16/exllamav3-0.0.16+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,7 +42,7 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+rocm6.4.4-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+rocm6.4.4-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,7 +42,7 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+rocm6.2.4.torch2.6.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,5 +42,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,5 +42,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,5 +42,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# llama.cpp (CPU only, AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -42,5 +42,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# llama.cpp (CPU only, no AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
|
|
|||
|
|
@ -11,7 +11,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -26,6 +25,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
@ -44,8 +44,8 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.16/exllamav3-0.0.16+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav3/releases/download/v0.0.16/exllamav3-0.0.16+cu128.torch2.7.0-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/turboderp-org/exllamav2/releases/download/v0.3.2/exllamav2-0.3.2+cu128.torch2.7.0-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ huggingface-hub==0.36.0
|
|||
jinja2==3.1.6
|
||||
markdown
|
||||
numpy==2.2.*
|
||||
optimum-quanto==0.2.7
|
||||
pandas
|
||||
peft==0.18.*
|
||||
Pillow>=9.5.0
|
||||
|
|
@ -24,6 +23,7 @@ safetensors==0.6.*
|
|||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
torchao==0.14.*
|
||||
transformers==4.57.*
|
||||
triton-windows==3.5.1.post21; platform_system == "Windows"
|
||||
tqdm
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+rocm6.4.4-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+rocm6.4.4-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+rocm6.4.4avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+rocm6.4.4avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_15_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_15_0_arm64.whl; platform_system == "Darwin" and platform_release >= "24.0.0"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0-py3-none-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# llama.cpp (CPU only, AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx2-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx2-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# llama.cpp (CPU only, no AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cpuavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124avx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+cu124avx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# Vulkan wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkan-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkan-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ rich
|
|||
tqdm
|
||||
|
||||
# Gradio
|
||||
gradio==4.37.*
|
||||
gradio==6.0.*
|
||||
https://github.com/oobabooga/gradio/releases/download/custom-build/gradio_client-1.0.2+custom.1-py3-none-any.whl
|
||||
|
||||
# API
|
||||
|
|
@ -23,5 +23,5 @@ sse-starlette==1.6.5
|
|||
tiktoken
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.62.0/llama_cpp_binaries-0.62.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkanavx-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
https://github.com/oobabooga/llama-cpp-binaries/releases/download/v0.64.0/llama_cpp_binaries-0.64.0+vulkanavx-py3-none-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||
|
|
|
|||
32
server.py
32
server.py
|
|
@ -275,6 +275,22 @@ if __name__ == "__main__":
|
|||
if extension not in shared.args.extensions:
|
||||
shared.args.extensions.append(extension)
|
||||
|
||||
# Load image model if specified via CLI
|
||||
if shared.args.image_model:
|
||||
logger.info(f"Loading image model: {shared.args.image_model}")
|
||||
result = load_image_model(
|
||||
shared.args.image_model,
|
||||
dtype=shared.settings.get('image_dtype', 'bfloat16'),
|
||||
attn_backend=shared.settings.get('image_attn_backend', 'sdpa'),
|
||||
cpu_offload=shared.settings.get('image_cpu_offload', False),
|
||||
compile_model=shared.settings.get('image_compile', False),
|
||||
quant_method=shared.settings.get('image_quant', 'none')
|
||||
)
|
||||
if result is not None:
|
||||
shared.image_model_name = shared.args.image_model
|
||||
else:
|
||||
logger.error(f"Failed to load image model: {shared.args.image_model}")
|
||||
|
||||
available_models = utils.get_available_models()
|
||||
|
||||
# Model defined through --model
|
||||
|
|
@ -321,22 +337,6 @@ if __name__ == "__main__":
|
|||
if shared.args.lora:
|
||||
add_lora_to_model(shared.args.lora)
|
||||
|
||||
# Load image model if specified via CLI
|
||||
if shared.args.image_model:
|
||||
logger.info(f"Loading image model: {shared.args.image_model}")
|
||||
result = load_image_model(
|
||||
shared.args.image_model,
|
||||
dtype=shared.settings.get('image_dtype', 'bfloat16'),
|
||||
attn_backend=shared.settings.get('image_attn_backend', 'sdpa'),
|
||||
cpu_offload=shared.settings.get('image_cpu_offload', False),
|
||||
compile_model=shared.settings.get('image_compile', False),
|
||||
quant_method=shared.settings.get('image_quant', 'none')
|
||||
)
|
||||
if result is not None:
|
||||
shared.image_model_name = shared.args.image_model
|
||||
else:
|
||||
logger.error(f"Failed to load image model: {shared.args.image_model}")
|
||||
|
||||
shared.generation_lock = Lock()
|
||||
|
||||
if shared.args.idle_timeout > 0:
|
||||
|
|
|
|||
0
user_data/image_models/place-your-models-here.txt
Normal file
0
user_data/image_models/place-your-models-here.txt
Normal file
Loading…
Reference in a new issue