Revert "Same as 7f06aec3a1 but for exllamav3_hf"

This reverts commit deb37b821b.
This commit is contained in:
oobabooga 2025-10-15 13:05:41 -07:00
parent 163d863443
commit c871d9cdbd

View file

@ -103,12 +103,6 @@ class Exllamav3HF(PreTrainedModel, GenerationMixin):
labels = kwargs.get('labels', None)
past_key_values = kwargs.get('past_key_values', None)
# Reset the internal sequence state for standalone calls (logit viewer)
# or the very first step of a new generation.
if past_key_values is None:
self.past_seq = None
self.past_seq_negative = None
if len(args) > 0:
if not shared.args.cfg_cache:
logger.error("Please enable the cfg-cache option to use CFG with ExLlamav3_HF.")
@ -125,8 +119,8 @@ class Exllamav3HF(PreTrainedModel, GenerationMixin):
ex_cache = self.ex_cache
seq = input_ids[0].tolist()
if is_negative and past_key_values is not None and isinstance(past_key_values, list):
seq = past_key_values + seq
if is_negative and past_key_values is not None:
seq = past_key_values + seq
seq_tensor = torch.tensor(seq)
reset = True
@ -134,50 +128,97 @@ class Exllamav3HF(PreTrainedModel, GenerationMixin):
# Maximum number of tokens to process in a single forward pass
max_chunk_size = 256
if past_seq is not None:
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
if len(indices) == 0 and seq_tensor.shape[0] > past_seq.shape[0]:
reset = False
# Create a single `params` dictionary that will be used and modified
# in-place across all `forward` calls within this function.
params = {
"attn_mode": "flash_attn",
"cache": ex_cache,
"batch_shape": (1, self.max_tokens),
"reconstruct": False,
"past_len": 0
}
# Make the forward call
if labels is None:
# If it's an efficient continuation, process only the new tokens
if not reset:
params["past_len"] = past_seq.shape[0]
tokens_to_process = seq_tensor[past_seq.shape[0]:]
# Otherwise, process the whole sequence from scratch
else:
tokens_to_process = seq_tensor
if past_seq is not None:
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
if len(indices) > 0:
longest_prefix = indices[0].item()
else:
longest_prefix = min_length
# Process all but the last token of the sequence/sub-sequence
if tokens_to_process.shape[0] > 1:
prefix_to_process = tokens_to_process[:-1]
if longest_prefix > 0:
reset = False
current_len = longest_prefix
remaining_tokens = len(seq_tensor) - longest_prefix - 1
# Process in chunks if the number of tokens is large
for i in range(0, prefix_to_process.shape[0], max_chunk_size):
chunk = prefix_to_process[i:i + max_chunk_size]
self.ex_model.forward(input_ids=chunk.view(1, -1), params=params)
params["past_len"] += chunk.shape[0]
if remaining_tokens > 0:
# Process tokens from longest_prefix to second-to-last token
tokens_to_process = seq_tensor[longest_prefix:-1]
# Process the last token to get logits
last_token = tokens_to_process[-1:].view(1, -1)
logits = self.ex_model.forward(input_ids=last_token, params=params).to(input_ids.device).float()
# Process in chunks if the number of tokens is large
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
chunk = tokens_to_process[i:i + max_chunk_size]
self.ex_model.forward(
input_ids=chunk.view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": longest_prefix + i,
"batch_shape": (1, self.max_tokens),
"reconstruct": False # Force memory-efficient path
}
)
current_len = longest_prefix + remaining_tokens
if reset:
if len(seq_tensor) > 1:
# Process all tokens except the last one
tokens_to_process = seq_tensor[:-1]
# Process in chunks if the number of tokens is large
current_len = 0
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
chunk = tokens_to_process[i:i + max_chunk_size]
self.ex_model.forward(
input_ids=chunk.view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": current_len,
"batch_shape": (1, self.max_tokens),
"reconstruct": False # Force memory-efficient path
}
)
current_len += chunk.shape[0]
else:
current_len = 0
# Process the last token and get logits
logits = self.ex_model.forward(
input_ids=seq_tensor[-1:].view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": current_len,
"batch_shape": (1, self.max_tokens),
"reconstruct": False # Force memory-efficient path
}
).to(input_ids.device).float()
else:
# When processing with labels, handle as a complete sequence
params["attn_mode"] = "flash_attn_nc"
logits = self.ex_model.forward(input_ids=seq_tensor.view(1,-1), params=params).float()
# Process in chunks if the number of tokens is large
tokens_to_process = seq_tensor
all_logits = None
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
chunk = tokens_to_process[i:i + max_chunk_size]
chunk_logits = self.ex_model.forward(
input_ids=chunk.view(1, -1),
params={
"attn_mode": "flash_attn_nc", # No caching for training
"reconstruct": False # Force memory-efficient path
}
).float()
if all_logits is None:
all_logits = chunk_logits
else:
all_logits = torch.cat([all_logits, chunk_logits], dim=1)
logits = all_logits
if is_negative:
self.past_seq_negative = seq_tensor