Add MLX support

This commit is contained in:
SB Yoon 2025-07-17 18:10:19 -06:00
parent 6338dc0051
commit 365a997a7f
8 changed files with 426 additions and 22 deletions

View file

@ -94,6 +94,9 @@ loaders_and_params = OrderedDict({
'ctx_size', 'ctx_size',
'cpp_runner', 'cpp_runner',
'tensorrt_llm_info', 'tensorrt_llm_info',
],
'MLX': [
'ctx_size',
] ]
}) })
@ -325,6 +328,26 @@ loaders_samplers = {
'presence_penalty', 'presence_penalty',
'auto_max_new_tokens', 'auto_max_new_tokens',
'ban_eos_token', 'ban_eos_token',
},
'MLX': {
'temperature',
'dynatemp_low',
'dynatemp_high',
'dynatemp_exponent',
'top_p',
'top_k',
'min_p',
'xtc_threshold',
'xtc_probability',
'repetition_penalty',
'repetition_penalty_range',
'auto_max_new_tokens',
'ban_eos_token',
'add_bos_token',
'skip_special_tokens',
'dynamic_temperature',
'seed',
'sampler_priority',
} }
} }

354
modules/mlx_loader.py Normal file
View file

@ -0,0 +1,354 @@
import platform
import traceback
from pathlib import Path
import modules.shared as shared
from modules.logging_colors import logger
def is_apple_silicon():
"""Check if running on Apple Silicon"""
return platform.system() == "Darwin" and platform.machine() == "arm64"
class MLXModel:
def __init__(self):
self.model = None
self.tokenizer = None
self.model_name = None
@classmethod
def from_pretrained(cls, model_name):
"""Load MLX model from path or HuggingFace repository"""
if not is_apple_silicon():
logger.warning("MLX backend is only supported on Apple Silicon. Falling back to Transformers.")
return None
try:
from mlx_lm import load
except ImportError:
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
return None
instance = cls()
instance.model_name = model_name
try:
# Determine the model path/name
model_path = cls._resolve_model_path(model_name)
logger.info(f"Loading MLX model: {model_path}")
model, tokenizer = load(model_path)
instance.model = model
instance.tokenizer = tokenizer
logger.info(f"Successfully loaded MLX model: {model_name}")
return instance, instance # Return model, tokenizer tuple for compatibility
except Exception as e:
logger.error(f"Failed to load MLX model {model_name}: {str(e)}")
traceback.print_exc()
return None
@staticmethod
def _resolve_model_path(model_name):
"""Resolve model path - either local path or HuggingFace repo"""
model_path = Path(f'{shared.args.model_dir}/{model_name}')
if model_path.exists():
# Local model path
return str(model_path)
elif model_name.startswith('mlx-community/'):
# Already has mlx-community prefix
return model_name
else:
# Try to find in mlx-community
return f"mlx-community/{model_name}"
def _create_mlx_sampler(self, state):
"""Create MLX sampler with webui parameters"""
try:
from mlx_lm.sample_utils import make_sampler
# Extract sampling parameters from state
temperature = state.get('temperature', 1.0)
top_p = state.get('top_p', 1.0)
top_k = state.get('top_k', 0) # 0 means no top_k limit
min_p = state.get('min_p', 0.0)
# Handle dynamic temperature
if state.get('dynamic_temperature', False):
temp_low = state.get('dynatemp_low', 1.0)
temp_high = state.get('dynatemp_high', 1.0)
temperature = (temp_low + temp_high) / 2 # Simple average for now
# XTC sampling parameters
xtc_probability = state.get('xtc_probability', 0.0)
xtc_threshold = state.get('xtc_threshold', 0.1)
# Ensure temperature is not zero (causes issues with MLX)
if temperature <= 0.0:
temperature = 0.01
# Log sampling parameters for debugging
if shared.args.verbose:
logger.info(f"MLX Sampler - temp: {temperature}, top_p: {top_p}, top_k: {top_k}, min_p: {min_p}")
# Create the sampler
sampler = make_sampler(
temp=temperature,
top_p=top_p if top_p < 1.0 else 0.0, # MLX expects 0.0 to disable
top_k=int(top_k) if top_k > 0 else 0,
min_p=min_p,
min_tokens_to_keep=1, # Always keep at least one token
xtc_probability=xtc_probability,
xtc_threshold=xtc_threshold,
xtc_special_tokens=[] # Could be customized later
)
return sampler
except ImportError:
logger.warning("MLX sampling utilities not available, using default sampler")
return None
except Exception as e:
logger.error(f"Failed to create MLX sampler: {e}")
return None
def _create_logits_processors(self, state):
"""Create logits processors for repetition penalty, etc."""
processors = []
try:
from mlx_lm.sample_utils import make_repetition_penalty
# Repetition penalty
repetition_penalty = state.get('repetition_penalty', 1.0)
if repetition_penalty != 1.0:
context_size = state.get('repetition_penalty_range', 1024)
rep_processor = make_repetition_penalty(
penalty=repetition_penalty,
context_size=context_size
)
processors.append(rep_processor)
except ImportError:
logger.warning("MLX repetition penalty not available")
except Exception as e:
logger.error(f"Failed to create repetition penalty processor: {e}")
return processors if processors else None
def _map_parameters(self, state):
"""Map text-generation-webui parameters to MLX parameters"""
mlx_params = {}
# Max tokens
if 'max_new_tokens' in state and state['max_new_tokens'] > 0:
mlx_params['max_tokens'] = state['max_new_tokens']
else:
mlx_params['max_tokens'] = 512 # Default
# Create custom sampler with advanced parameters
sampler = self._create_mlx_sampler(state)
if sampler:
mlx_params['sampler'] = sampler
# Create logits processors
logits_processors = self._create_logits_processors(state)
if logits_processors:
mlx_params['logits_processors'] = logits_processors
# Seed handling
seed = state.get('seed', -1)
if seed != -1:
try:
import mlx.core as mx
mx.random.seed(seed)
except Exception as e:
logger.warning(f"Failed to set MLX random seed: {e}")
return mlx_params
def _prepare_prompt(self, prompt):
"""Prepare prompt with chat template if available"""
if self.tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
formatted_prompt = self.tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
return formatted_prompt
return prompt
def generate(self, prompt, state):
"""Non-streaming generation with advanced sampling"""
try:
from mlx_lm.generate import generate_step
import mlx.core as mx
except ImportError:
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
return ""
if self.model is None or self.tokenizer is None:
logger.error("MLX model not loaded")
return ""
try:
# Prepare the prompt
formatted_prompt = self._prepare_prompt(prompt)
# Tokenize the prompt
prompt_tokens = self.tokenizer.encode(formatted_prompt)
prompt_array = mx.array(prompt_tokens)
# Map parameters for MLX
mlx_params = self._map_parameters(state)
# Remove max_tokens from params for generate_step
max_tokens = mlx_params.pop('max_tokens', 512)
# Generate all tokens at once
generated_tokens = []
for token, logprobs in generate_step(
prompt_array,
self.model,
max_tokens=max_tokens,
**mlx_params
):
# Handle both MLX arrays and direct integers
if hasattr(token, 'item'):
token_id = int(token.item())
else:
token_id = int(token)
generated_tokens.append(token_id)
# Check for stop conditions
if shared.stop_everything:
break
# Decode all generated tokens
if generated_tokens:
response = self.tokenizer.decode(generated_tokens)
return response
else:
return ""
except Exception as e:
logger.error(f"MLX generation failed: {str(e)}")
traceback.print_exc()
return ""
def generate_with_streaming(self, prompt, state):
"""True streaming generation using MLX generate_step"""
try:
from mlx_lm.generate import generate_step
import mlx.core as mx
except ImportError:
logger.error("mlx-lm not found. Please install with: pip install mlx-lm")
yield ""
return
if self.model is None or self.tokenizer is None:
logger.error("MLX model not loaded")
yield ""
return
try:
# Prepare the prompt
formatted_prompt = self._prepare_prompt(prompt)
# Tokenize the prompt
prompt_tokens = self.tokenizer.encode(formatted_prompt)
prompt_array = mx.array(prompt_tokens)
# Map parameters for MLX
mlx_params = self._map_parameters(state)
# Remove max_tokens from params for generate_step (use different name)
max_tokens = mlx_params.pop('max_tokens', 512)
# Initialize streaming generation
generated_tokens = []
generated_text = ""
# Use generate_step for true streaming
for token, logprobs in generate_step(
prompt_array,
self.model,
max_tokens=max_tokens,
**mlx_params
):
# Handle both MLX arrays and direct integers
if hasattr(token, 'item'):
token_id = int(token.item())
else:
token_id = int(token)
generated_tokens.append(token_id)
# Decode the new token
try:
# Decode just the new token
new_text = self.tokenizer.decode([token_id])
generated_text += new_text
# Yield the accumulated text so far
yield generated_text
except Exception as decode_error:
logger.warning(f"Failed to decode token {token_id}: {decode_error}")
continue
# Check for stop conditions
if shared.stop_everything:
break
# Final yield with complete text
if generated_text:
yield generated_text
except Exception as e:
logger.error(f"MLX streaming generation failed: {str(e)}")
traceback.print_exc()
yield ""
def encode(self, text, add_bos_token=False, **kwargs):
"""Encode text to tokens"""
if self.tokenizer is None:
import torch
return torch.tensor([[]], dtype=torch.long)
try:
# MLX tokenizer encode method
tokens = self.tokenizer.encode(text)
# Convert to tensor format expected by webui
import torch
tokens_tensor = torch.tensor([tokens], dtype=torch.long)
return tokens_tensor
except Exception as e:
logger.error(f"MLX tokenization failed: {str(e)}")
# Return empty tensor on failure
import torch
return torch.tensor([[]], dtype=torch.long)
def decode(self, token_ids, **kwargs):
"""Decode tokens to text"""
if self.tokenizer is None:
return ""
try:
# MLX tokenizer decode method
text = self.tokenizer.decode(token_ids)
return text
except Exception as e:
logger.error(f"MLX detokenization failed: {str(e)}")
return ""
def unload(self):
"""Unload the model to free memory"""
self.model = None
self.tokenizer = None
logger.info("MLX model unloaded")

View file

@ -22,6 +22,7 @@ def load_model(model_name, loader=None):
'ExLlamav2_HF': ExLlamav2_HF_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader,
'ExLlamav2': ExLlamav2_loader, 'ExLlamav2': ExLlamav2_loader,
'TensorRT-LLM': TensorRT_LLM_loader, 'TensorRT-LLM': TensorRT_LLM_loader,
'MLX': MLX_loader,
} }
metadata = get_model_metadata(model_name) metadata = get_model_metadata(model_name)
@ -51,7 +52,7 @@ def load_model(model_name, loader=None):
tokenizer = load_tokenizer(model_name) tokenizer = load_tokenizer(model_name)
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings})
if loader.lower().startswith('exllama') or loader.lower().startswith('tensorrt') or loader == 'llama.cpp': if loader.lower().startswith('exllama') or loader.lower().startswith('tensorrt') or loader == 'llama.cpp' or loader == 'MLX':
shared.settings['truncation_length'] = shared.args.ctx_size shared.settings['truncation_length'] = shared.args.ctx_size
logger.info(f"Loaded \"{model_name}\" in {(time.time()-t0):.2f} seconds.") logger.info(f"Loaded \"{model_name}\" in {(time.time()-t0):.2f} seconds.")
@ -111,6 +112,19 @@ def TensorRT_LLM_loader(model_name):
return model return model
def MLX_loader(model_name):
try:
from modules.mlx_loader import MLXModel
except ModuleNotFoundError:
raise ModuleNotFoundError("Failed to import MLX loader. Please install mlx-lm: pip install mlx-lm")
result = MLXModel.from_pretrained(model_name)
if result is None:
raise RuntimeError(f"Failed to load MLX model: {model_name}")
return result
def unload_model(keep_model_name=False): def unload_model(keep_model_name=False):
if shared.model is None: if shared.model is None:
return return
@ -118,6 +132,8 @@ def unload_model(keep_model_name=False):
is_llamacpp = (shared.model.__class__.__name__ == 'LlamaServer') is_llamacpp = (shared.model.__class__.__name__ == 'LlamaServer')
if shared.model.__class__.__name__ == 'Exllamav3HF': if shared.model.__class__.__name__ == 'Exllamav3HF':
shared.model.unload() shared.model.unload()
elif shared.model.__class__.__name__ == 'MLXModel':
shared.model.unload()
shared.model = shared.tokenizer = None shared.model = shared.tokenizer = None
shared.lora_names = [] shared.lora_names = []

View file

@ -174,25 +174,34 @@ def get_model_metadata(model):
def infer_loader(model_name, model_settings, hf_quant_method=None): def infer_loader(model_name, model_settings, hf_quant_method=None):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') import platform
if not path_to_model.exists():
loader = None # Check for MLX models first (before path checks)
elif shared.args.portable: if (model_name.startswith('mlx-community/') or model_name.startswith('mlx-community_')) and platform.system() == "Darwin" and platform.machine() == "arm64":
loader = 'llama.cpp' loader = 'MLX'
elif len(list(path_to_model.glob('*.gguf'))) > 0: elif re.match(r'.*\.mlx', model_name.lower()) and platform.system() == "Darwin" and platform.machine() == "arm64":
loader = 'llama.cpp' loader = 'MLX'
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
elif hf_quant_method == 'exl3':
loader = 'ExLlamav3_HF'
elif hf_quant_method in ['exl2', 'gptq']:
loader = 'ExLlamav2_HF'
elif re.match(r'.*exl3', model_name.lower()):
loader = 'ExLlamav3_HF'
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
else: else:
loader = 'Transformers' # Original logic for other loaders
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
loader = None
elif shared.args.portable:
loader = 'llama.cpp'
elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
elif hf_quant_method == 'exl3':
loader = 'ExLlamav3_HF'
elif hf_quant_method in ['exl2', 'gptq']:
loader = 'ExLlamav2_HF'
elif re.match(r'.*exl3', model_name.lower()):
loader = 'ExLlamav3_HF'
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
else:
loader = 'Transformers'
return loader return loader

View file

@ -40,7 +40,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
yield '' yield ''
return return
if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'TensorRTLLMModel']: if shared.model.__class__.__name__ in ['LlamaServer', 'Exllamav2Model', 'TensorRTLLMModel', 'MLXModel']:
generate_func = generate_reply_custom generate_func = generate_reply_custom
else: else:
generate_func = generate_reply_HF generate_func = generate_reply_HF
@ -153,7 +153,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
if truncation_length is not None: if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:] input_ids = input_ids[:, -truncation_length:]
if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel'] or shared.args.cpu: if shared.model.__class__.__name__ in ['Exllamav2Model', 'TensorRTLLMModel', 'MLXModel'] or shared.args.cpu:
return input_ids return input_ids
else: else:
device = get_device() device = get_device()

View file

@ -59,7 +59,7 @@ def create_ui():
shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.') shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.')
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code) shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code)
shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `ctx_size` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.') shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `ctx_size` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.')
# Speculative decoding # Speculative decoding
with gr.Accordion("Speculative decoding", open=False, elem_classes='tgw-accordion') as shared.gradio['speculative_decoding_accordion']: with gr.Accordion("Speculative decoding", open=False, elem_classes='tgw-accordion') as shared.gradio['speculative_decoding_accordion']:
with gr.Row(): with gr.Row():

View file

@ -7,6 +7,7 @@ gradio==4.37.*
html2text==2025.4.15 html2text==2025.4.15
jinja2==3.1.6 jinja2==3.1.6
markdown markdown
mlx-lm>=0.26.3
numpy==2.2.* numpy==2.2.*
pandas pandas
peft==0.15.* peft==0.15.*

View file

@ -3,6 +3,7 @@ gradio==4.37.*
html2text==2025.4.15 html2text==2025.4.15
jinja2==3.1.6 jinja2==3.1.6
markdown markdown
mlx-lm>=0.26.3
numpy==2.2.* numpy==2.2.*
pydantic==2.8.2 pydantic==2.8.2
PyPDF2==3.0.1 PyPDF2==3.0.1