diff --git a/modules/ui_model_menu.py b/modules/ui_model_menu.py index 8dea457e..28b7222d 100644 --- a/modules/ui_model_menu.py +++ b/modules/ui_model_menu.py @@ -47,52 +47,27 @@ def create_ui(): with gr.Column(): shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=loaders.loaders_and_params.keys() if not shared.args.portable else ['llama.cpp'], value=None) with gr.Blocks(): + gr.Markdown("## Main options") with gr.Row(): with gr.Column(): shared.gradio['n_gpu_layers'] = gr.Slider(label="gpu-layers", minimum=0, maximum=256, value=shared.args.gpu_layers, info='Must be greater than 0 for the GPU to be used. ⚠️ Lower this value if you can\'t load the model.') - shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=256, value=shared.args.threads) - shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=256, value=shared.args.threads_batch) - shared.gradio['batch_size'] = gr.Slider(label="batch_size", minimum=1, maximum=4096, step=1, value=shared.args.batch_size) - shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend) + shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') shared.gradio['ctx_size'] = gr.Number(label='ctx-size', precision=0, step=256, value=shared.args.ctx_size, info='Context length. ⚠️ Lower this value if you can\'t load the model. Common values: 2048, 4096, 8192, 16384, 32768, 65536, 131072.') shared.gradio['cache_type'] = gr.Dropdown(label="cache_type", choices=['fp16', 'q8_0', 'q4_0', 'fp8', 'q8', 'q7', 'q6', 'q5', 'q4', 'q3', 'q2'], value=shared.args.cache_type, allow_custom_value=True, info='Valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4; ExLlamaV3 - fp16, q2 to q8. For ExLlamaV3, you can type custom combinations for separate k/v bits (e.g. q4_q8).') - shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 60,40') - shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') - shared.gradio['extra_flags'] = gr.Textbox(label='extra-flags', info='Additional flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"', value=shared.args.extra_flags) - shared.gradio['cpu_memory'] = gr.Number(label="Maximum CPU memory in GiB. Use this for CPU offloading.", value=shared.args.cpu_memory) - shared.gradio['alpha_value'] = gr.Number(label='alpha_value', value=shared.args.alpha_value, precision=2, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.') - shared.gradio['rope_freq_base'] = gr.Number(label='rope_freq_base', value=shared.args.rope_freq_base, precision=0, info='Positional embeddings frequency base for NTK RoPE scaling. Related to alpha_value by rope_freq_base = 10000 * alpha_value ^ (64 / 63). 0 = from model.') - shared.gradio['compress_pos_emb'] = gr.Number(label='compress_pos_emb', value=shared.args.compress_pos_emb, precision=2, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.') - shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype, info='Used by load-in-4bit.') - shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type, info='Used by load-in-4bit.') - shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.') + shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend) with gr.Column(): + shared.gradio['flash_attn'] = gr.Checkbox(label="flash_attn", value=shared.args.flash_attn, info='Use flash-attention.') + shared.gradio['streaming_llm'] = gr.Checkbox(label="streaming_llm", value=shared.args.streaming_llm, info='Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.') shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit) shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit) shared.gradio['torch_compile'] = gr.Checkbox(label="torch-compile", value=shared.args.torch_compile, info='Compile the model with torch.compile for improved performance.') - shared.gradio['flash_attn'] = gr.Checkbox(label="flash_attn", value=shared.args.flash_attn, info='Use flash-attention.') shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.') - shared.gradio['streaming_llm'] = gr.Checkbox(label="streaming_llm", value=shared.args.streaming_llm, info='Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.') - shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu, info='llama.cpp: Use llama-cpp-python compiled without GPU acceleration. Transformers: use PyTorch in CPU mode.') - shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk) - shared.gradio['row_split'] = gr.Checkbox(label="row_split", value=shared.args.row_split, info='Split the model by rows across GPUs. This may improve multi-gpu performance.') - shared.gradio['no_kv_offload'] = gr.Checkbox(label="no_kv_offload", value=shared.args.no_kv_offload, info='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.') - shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) - shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) - shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.') shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant, info='Used by load-in-4bit.') - shared.gradio['use_eager_attention'] = gr.Checkbox(label="use_eager_attention", value=shared.args.use_eager_attention, info='Set attn_implementation= eager while loading the model.') - shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16) shared.gradio['autosplit'] = gr.Checkbox(label="autosplit", value=shared.args.autosplit, info='Automatically split the model tensors across the available GPUs.') shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable Tensor Parallelism (TP).') - shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn) - shared.gradio['no_xformers'] = gr.Checkbox(label="no_xformers", value=shared.args.no_xformers) - shared.gradio['no_sdpa'] = gr.Checkbox(label="no_sdpa", value=shared.args.no_sdpa) - shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Necessary to use CFG with this loader.') shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.') shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code) - shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.') shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.") shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `ctx_size` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.') @@ -102,11 +77,44 @@ def create_ui(): shared.gradio['model_draft'] = gr.Dropdown(label="model-draft", choices=utils.get_available_models(), value=lambda: shared.args.model_draft, elem_classes='slim-dropdown', info='Draft model. Speculative decoding only works with models sharing the same vocabulary (e.g., same model family).', interactive=not mu) ui.create_refresh_button(shared.gradio['model_draft'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button', interactive=not mu) - shared.gradio['draft_max'] = gr.Number(label="draft-max", precision=0, step=1, value=shared.args.draft_max, info='Number of tokens to draft for speculative decoding.') shared.gradio['gpu_layers_draft'] = gr.Slider(label="gpu-layers-draft", minimum=0, maximum=256, value=shared.args.gpu_layers_draft, info='Number of layers to offload to the GPU for the draft model.') + shared.gradio['draft_max'] = gr.Number(label="draft-max", precision=0, step=1, value=shared.args.draft_max, info='Number of tokens to draft for speculative decoding. Recommended value: 4.') shared.gradio['device_draft'] = gr.Textbox(label="device-draft", value=shared.args.device_draft, info='Comma-separated list of devices to use for offloading the draft model. Example: CUDA0,CUDA1') shared.gradio['ctx_size_draft'] = gr.Number(label="ctx-size-draft", precision=0, step=256, value=shared.args.ctx_size_draft, info='Size of the prompt context for the draft model. If 0, uses the same as the main model.') + gr.Markdown("## Other options") + with gr.Accordion("See more options", open=False, elem_classes='tgw-accordion'): + with gr.Row(): + with gr.Column(): + shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=256, value=shared.args.threads) + shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=256, value=shared.args.threads_batch) + shared.gradio['batch_size'] = gr.Slider(label="batch_size", minimum=1, maximum=4096, step=1, value=shared.args.batch_size) + shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 60,40') + shared.gradio['extra_flags'] = gr.Textbox(label='extra-flags', info='Additional flags to pass to llama-server. Format: "flag1=value1,flag2,flag3=value3". Example: "override-tensor=exps=CPU"', value=shared.args.extra_flags) + shared.gradio['cpu_memory'] = gr.Number(label="Maximum CPU memory in GiB. Use this for CPU offloading.", value=shared.args.cpu_memory) + shared.gradio['alpha_value'] = gr.Number(label='alpha_value', value=shared.args.alpha_value, precision=2, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.') + shared.gradio['rope_freq_base'] = gr.Number(label='rope_freq_base', value=shared.args.rope_freq_base, precision=0, info='Positional embeddings frequency base for NTK RoPE scaling. Related to alpha_value by rope_freq_base = 10000 * alpha_value ^ (64 / 63). 0 = from model.') + shared.gradio['compress_pos_emb'] = gr.Number(label='compress_pos_emb', value=shared.args.compress_pos_emb, precision=2, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.') + shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype, info='Used by load-in-4bit.') + shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type, info='Used by load-in-4bit.') + shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.') + + with gr.Column(): + shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu, info='llama.cpp: Use llama-cpp-python compiled without GPU acceleration. Transformers: use PyTorch in CPU mode.') + shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk) + shared.gradio['row_split'] = gr.Checkbox(label="row_split", value=shared.args.row_split, info='Split the model by rows across GPUs. This may improve multi-gpu performance.') + shared.gradio['no_kv_offload'] = gr.Checkbox(label="no_kv_offload", value=shared.args.no_kv_offload, info='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.') + shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) + shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) + shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.') + shared.gradio['use_eager_attention'] = gr.Checkbox(label="use_eager_attention", value=shared.args.use_eager_attention, info='Set attn_implementation= eager while loading the model.') + shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16) + shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn) + shared.gradio['no_xformers'] = gr.Checkbox(label="no_xformers", value=shared.args.no_xformers) + shared.gradio['no_sdpa'] = gr.Checkbox(label="no_sdpa", value=shared.args.no_sdpa) + shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Necessary to use CFG with this loader.') + shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.') + with gr.Column(): with gr.Tab("Download"): shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.", interactive=not mu)