text-generation-webui/modules/exllamav3_hf.py

188 lines
6.7 KiB
Python
Raw Normal View History

2025-04-09 05:07:08 +02:00
import os
import traceback
from pathlib import Path
from typing import Any, Dict, Optional, Union
import torch
from exllamav3 import Cache, Config, Model
from torch.nn import CrossEntropyLoss
from transformers import (
GenerationConfig,
GenerationMixin,
PretrainedConfig,
PreTrainedModel
)
2025-04-09 05:07:08 +02:00
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.logging_colors import logger
try:
import flash_attn
except Exception:
logger.warning('Failed to load flash-attention due to the following error:\n')
traceback.print_exc()
class Exllamav3HF(PreTrainedModel, GenerationMixin):
2025-04-09 05:07:08 +02:00
def __init__(self, model_dir):
super().__init__(PretrainedConfig())
self.generation_config = GenerationConfig()
config = Config.from_directory(model_dir)
self.ex_model = Model.from_config(config)
# Calculate the closest multiple of 256 at or above the chosen value
max_tokens = shared.args.ctx_size
2025-04-09 05:07:08 +02:00
if max_tokens % 256 != 0:
adjusted_tokens = ((max_tokens // 256) + 1) * 256
logger.warning(f"max_num_tokens must be a multiple of 256. Adjusting from {max_tokens} to {adjusted_tokens}")
max_tokens = adjusted_tokens
self.ex_cache = Cache(self.ex_model, max_num_tokens=max_tokens)
# Create load parameters dictionary
load_params = {'progressbar': True}
if shared.args.gpu_split:
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
load_params['use_per_device'] = split
self.ex_model.load(**load_params)
self.past_seq = None
self.max_tokens = max_tokens
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
return torch.device(0)
def __call__(self, *args, **kwargs):
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
past_key_values = kwargs.get('past_key_values', None)
if len(args) > 0:
if not shared.args.cfg_cache:
logger.error("Please enable the cfg-cache option to use CFG with ExLlamav3_HF.")
return
input_ids = args[0]
is_negative = True
past_seq = self.past_seq_negative
ex_cache = self.ex_cache_negative
else:
input_ids = kwargs['input_ids']
is_negative = False
past_seq = self.past_seq
ex_cache = self.ex_cache
seq = input_ids[0].tolist()
if is_negative and past_key_values is not None:
seq = past_key_values + seq
seq_tensor = torch.tensor(seq)
reset = True
# Make the forward call
if labels is None:
if past_seq is not None:
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
if len(indices) > 0:
longest_prefix = indices[0].item()
else:
longest_prefix = min_length
if longest_prefix > 0:
reset = False
current_len = longest_prefix
if len(seq_tensor) - longest_prefix > 1:
self.ex_model.forward(
input_ids=seq_tensor[longest_prefix:-1].view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": longest_prefix,
"batch_shape": (1, self.max_tokens)
}
)
current_len = longest_prefix + len(seq_tensor) - longest_prefix - 1
if reset:
if len(seq_tensor) > 1:
self.ex_model.forward(
input_ids=seq_tensor[:-1].view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": 0,
"batch_shape": (1, self.max_tokens)
}
)
current_len = len(seq_tensor) - 1
else:
current_len = 0
logits = self.ex_model.forward(
input_ids=seq_tensor[-1:].view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": current_len,
"batch_shape": (1, self.max_tokens)
}
).to(input_ids.device).float()
else:
logits = self.ex_model.forward(
input_ids=seq_tensor.view(1, -1),
params={
"attn_mode": "flash_attn",
"cache": ex_cache,
"past_len": 0,
"batch_shape": (1, self.max_tokens)
}
).float()
if is_negative:
self.past_seq_negative = seq_tensor
else:
self.past_seq = seq_tensor
2025-04-18 15:17:58 +02:00
if torch.cuda.is_available():
torch.cuda.synchronize()
2025-04-09 05:07:08 +02:00
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
return Exllamav3HF(pretrained_model_name_or_path)