2025-11-27 22:44:07 +01:00
|
|
|
import os
|
2025-11-27 23:24:35 +01:00
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
import gradio as gr
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
from modules import shared
|
|
|
|
|
from modules.image_models import load_image_model, unload_image_model
|
|
|
|
|
|
2025-11-27 19:10:11 +01:00
|
|
|
|
|
|
|
|
def create_ui():
|
2025-11-27 22:44:07 +01:00
|
|
|
with gr.Tab("Image AI", elem_id="image-ai-tab"):
|
|
|
|
|
with gr.Tabs():
|
|
|
|
|
# TAB 1: GENERATION STUDIO
|
|
|
|
|
with gr.TabItem("Generate Images"):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
|
|
|
|
|
# === LEFT COLUMN: CONTROLS ===
|
|
|
|
|
with gr.Column(scale=4, min_width=350):
|
|
|
|
|
|
|
|
|
|
# 1. PROMPT
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", placeholder="Describe your imagination...", lines=3, autofocus=True)
|
|
|
|
|
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="Low quality...", lines=3)
|
|
|
|
|
|
|
|
|
|
# 2. GENERATE BUTTON
|
|
|
|
|
generate_btn = gr.Button("✨ GENERATE", variant="primary", size="lg", elem_id="gen-btn")
|
|
|
|
|
gr.HTML("<hr style='border-top: 1px solid #444; margin: 20px 0;'>")
|
|
|
|
|
|
|
|
|
|
# 3. DIMENSIONS
|
|
|
|
|
gr.Markdown("### 📐 Dimensions")
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
width_slider = gr.Slider(256, 2048, value=1024, step=32, label="Width")
|
|
|
|
|
|
|
|
|
|
with gr.Column():
|
|
|
|
|
height_slider = gr.Slider(256, 2048, value=1024, step=32, label="Height")
|
|
|
|
|
|
|
|
|
|
preset_radio = gr.Radio(
|
|
|
|
|
choices=["1:1 Square", "16:9 Cinema", "9:16 Mobile", "4:3 Photo", "Custom"],
|
|
|
|
|
value="1:1 Square",
|
|
|
|
|
label="Aspect Ratio",
|
|
|
|
|
interactive=True
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 4. SETTINGS & BATCHING
|
|
|
|
|
gr.Markdown("### ⚙️ Config")
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
steps_slider = gr.Slider(1, 15, value=9, step=1, label="Steps")
|
|
|
|
|
cfg_slider = gr.Slider(value=0.0, label="Guidance", interactive=False, info="Locked")
|
|
|
|
|
seed_input = gr.Number(label="Seed", value=-1, precision=0, info="-1 = Random")
|
|
|
|
|
|
|
|
|
|
with gr.Column():
|
|
|
|
|
batch_size_parallel = gr.Slider(1, 32, value=1, step=1, label="Batch Size (VRAM Heavy)", info="Generates N images at once.")
|
|
|
|
|
batch_count_seq = gr.Slider(1, 128, value=1, step=1, label="Sequential Count (Loop)", info="Repeats the generation N times.")
|
|
|
|
|
|
|
|
|
|
# === RIGHT COLUMN: VIEWPORT ===
|
|
|
|
|
with gr.Column(scale=6, min_width=500):
|
|
|
|
|
with gr.Column(elem_classes=["viewport-container"]):
|
|
|
|
|
output_gallery = gr.Gallery(
|
|
|
|
|
label="Output", show_label=False, columns=2, rows=2, height="80vh", object_fit="contain", preview=True
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
used_seed = gr.Markdown(label="Info", interactive=False, lines=3)
|
|
|
|
|
|
|
|
|
|
# TAB 2: HISTORY VIEWER
|
|
|
|
|
with gr.TabItem("Gallery"):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
refresh_btn = gr.Button("🔄 Refresh Gallery", elem_classes="refresh-button")
|
|
|
|
|
|
|
|
|
|
history_gallery = gr.Gallery(
|
|
|
|
|
label="History", show_label=False, columns=6, object_fit="cover", height="auto", allow_preview=True
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# === WIRING ===
|
|
|
|
|
|
|
|
|
|
# Aspect Buttons
|
|
|
|
|
# btn_sq.click(lambda: set_dims(1024, 1024), outputs=[width_slider, height_slider])
|
|
|
|
|
# btn_port.click(lambda: set_dims(720, 1280), outputs=[width_slider, height_slider])
|
|
|
|
|
# btn_land.click(lambda: set_dims(1280, 720), outputs=[width_slider, height_slider])
|
|
|
|
|
# btn_wide.click(lambda: set_dims(1536, 640), outputs=[width_slider, height_slider])
|
|
|
|
|
|
|
|
|
|
# Generation
|
|
|
|
|
inputs = [prompt, neg_prompt, width_slider, height_slider, steps_slider, seed_input, batch_size_parallel, batch_count_seq]
|
|
|
|
|
outputs = [output_gallery, used_seed]
|
|
|
|
|
|
2025-11-27 22:53:46 +01:00
|
|
|
generate_btn.click(fn=generate, inputs=inputs, outputs=outputs)
|
|
|
|
|
prompt.submit(fn=generate, inputs=inputs, outputs=outputs)
|
|
|
|
|
neg_prompt.submit(fn=generate, inputs=inputs, outputs=outputs)
|
2025-11-27 22:44:07 +01:00
|
|
|
|
|
|
|
|
# System
|
|
|
|
|
# load_btn.click(fn=load_pipeline, inputs=[backend_drop, compile_check, offload_check, gr.State("bfloat16")], outputs=None)
|
|
|
|
|
|
|
|
|
|
# History
|
|
|
|
|
# refresh_btn.click(fn=get_history_images, inputs=None, outputs=history_gallery)
|
|
|
|
|
# Load history on app launch
|
|
|
|
|
# demo.load(fn=get_history_images, inputs=None, outputs=history_gallery)
|
2025-11-27 19:10:11 +01:00
|
|
|
|
|
|
|
|
|
2025-11-27 22:53:46 +01:00
|
|
|
def generate(prompt, neg_prompt, width, height, steps, seed, batch_size_parallel, batch_count_seq):
|
2025-11-27 23:24:35 +01:00
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
from modules import shared
|
|
|
|
|
from modules.image_models import load_image_model
|
|
|
|
|
|
|
|
|
|
# Auto-load model if not loaded
|
|
|
|
|
if shared.image_model is None:
|
|
|
|
|
if shared.image_model_name == 'None':
|
|
|
|
|
return [], "No image model selected. Please load a model first."
|
|
|
|
|
load_image_model(shared.image_model_name)
|
|
|
|
|
|
|
|
|
|
if shared.image_model is None:
|
|
|
|
|
return [], "Failed to load image model."
|
|
|
|
|
|
|
|
|
|
if seed == -1:
|
|
|
|
|
seed = np.random.randint(0, 2**32 - 1)
|
|
|
|
|
|
2025-11-27 22:53:46 +01:00
|
|
|
generator = torch.Generator("cuda").manual_seed(int(seed))
|
|
|
|
|
all_images = []
|
2025-11-27 23:24:35 +01:00
|
|
|
|
|
|
|
|
# Sequential loop (easier on VRAM)
|
|
|
|
|
for i in range(int(batch_count_seq)):
|
2025-11-27 22:53:46 +01:00
|
|
|
current_seed = seed + i
|
|
|
|
|
generator.manual_seed(int(current_seed))
|
2025-11-27 23:24:35 +01:00
|
|
|
|
|
|
|
|
# Parallel generation
|
|
|
|
|
batch_results = shared.image_model(
|
2025-11-27 22:53:46 +01:00
|
|
|
prompt=prompt,
|
|
|
|
|
negative_prompt=neg_prompt,
|
|
|
|
|
height=int(height),
|
|
|
|
|
width=int(width),
|
|
|
|
|
num_inference_steps=int(steps),
|
|
|
|
|
guidance_scale=0.0,
|
|
|
|
|
num_images_per_prompt=int(batch_size_parallel),
|
|
|
|
|
generator=generator,
|
|
|
|
|
).images
|
2025-11-27 23:24:35 +01:00
|
|
|
|
2025-11-27 22:53:46 +01:00
|
|
|
all_images.extend(batch_results)
|
2025-11-27 23:24:35 +01:00
|
|
|
|
2025-11-27 22:53:46 +01:00
|
|
|
# Save to disk
|
|
|
|
|
save_generated_images(all_images, prompt, seed)
|
2025-11-27 23:24:35 +01:00
|
|
|
|
|
|
|
|
return all_images, f"Seed: {seed}"
|
2025-11-27 22:53:46 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
# --- File Saving Logic ---
|
|
|
|
|
def save_generated_images(images, prompt, seed):
|
|
|
|
|
# Create folder structure: outputs/YYYY-MM-DD/
|
|
|
|
|
date_str = datetime.now().strftime("%Y-%m-%d")
|
|
|
|
|
folder_path = os.path.join("outputs", date_str)
|
|
|
|
|
os.makedirs(folder_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
saved_paths = []
|
|
|
|
|
|
|
|
|
|
for idx, img in enumerate(images):
|
|
|
|
|
timestamp = datetime.now().strftime("%H-%M-%S")
|
|
|
|
|
# Filename: Time_Seed_Index.png
|
|
|
|
|
filename = f"{timestamp}_{seed}_{idx}.png"
|
|
|
|
|
full_path = os.path.join(folder_path, filename)
|
|
|
|
|
|
|
|
|
|
# Save image
|
|
|
|
|
img.save(full_path)
|
|
|
|
|
saved_paths.append(full_path)
|
|
|
|
|
|
|
|
|
|
# Optional: Save prompt metadata in a text file next to it?
|
|
|
|
|
# For now, we just save the image.
|
|
|
|
|
|
|
|
|
|
return saved_paths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# --- History Logic ---
|
|
|
|
|
def get_history_images():
|
|
|
|
|
"""Scans the outputs folder and returns all images, newest first"""
|
|
|
|
|
if not os.path.exists("outputs"):
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
image_files = []
|
|
|
|
|
for root, dirs, files in os.walk("outputs"):
|
|
|
|
|
for file in files:
|
|
|
|
|
if file.endswith((".png", ".jpg", ".jpeg")):
|
|
|
|
|
full_path = os.path.join(root, file)
|
|
|
|
|
# Get creation time for sorting
|
|
|
|
|
mtime = os.path.getmtime(full_path)
|
|
|
|
|
image_files.append((full_path, mtime))
|
|
|
|
|
|
|
|
|
|
# Sort by time, newest first
|
|
|
|
|
image_files.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
|
return [x[0] for x in image_files]
|