2025-11-28 00:56:58 +01:00
|
|
|
import time
|
2025-11-28 03:15:15 +01:00
|
|
|
|
2025-11-28 00:56:58 +01:00
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
import modules.shared as shared
|
|
|
|
|
from modules.logging_colors import logger
|
|
|
|
|
from modules.torch_utils import get_device
|
2025-11-28 03:15:15 +01:00
|
|
|
from modules.utils import resolve_model_path
|
2025-11-28 00:56:58 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_image_model(model_name, dtype='bfloat16', attn_backend='sdpa', cpu_offload=False, compile_model=False):
|
|
|
|
|
"""
|
|
|
|
|
Load a diffusers image generation model.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
model_name: Name of the model directory
|
|
|
|
|
dtype: 'bfloat16' or 'float16'
|
|
|
|
|
attn_backend: 'sdpa', 'flash_attention_2', or 'flash_attention_3'
|
|
|
|
|
cpu_offload: Enable CPU offloading for low VRAM
|
|
|
|
|
compile_model: Compile the model for faster inference (slow first run)
|
|
|
|
|
"""
|
2025-11-28 03:23:26 +01:00
|
|
|
from diffusers import PipelineQuantizationConfig, ZImagePipeline
|
2025-11-28 00:56:58 +01:00
|
|
|
|
|
|
|
|
logger.info(f"Loading image model \"{model_name}\"")
|
|
|
|
|
t0 = time.time()
|
|
|
|
|
|
|
|
|
|
dtype_map = {"bfloat16": torch.bfloat16, "float16": torch.float16}
|
|
|
|
|
target_dtype = dtype_map.get(dtype, torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
model_path = resolve_model_path(model_name, image_model=True)
|
|
|
|
|
|
|
|
|
|
try:
|
2025-11-28 03:23:26 +01:00
|
|
|
# Define quantization config for 8-bit
|
|
|
|
|
pipeline_quant_config = PipelineQuantizationConfig(
|
|
|
|
|
quant_backend="bitsandbytes_8bit",
|
|
|
|
|
quant_kwargs={"load_in_8bit": True},
|
|
|
|
|
)
|
|
|
|
|
|
2025-11-28 03:29:32 +01:00
|
|
|
# Define quantization config for 4-bit
|
|
|
|
|
# pipeline_quant_config = PipelineQuantizationConfig(
|
|
|
|
|
# quant_backend="bitsandbytes_4bit",
|
|
|
|
|
# quant_kwargs={
|
|
|
|
|
# "load_in_4bit": True,
|
|
|
|
|
# "bnb_4bit_quant_type": "nf4", # Or "fp4" for floating point
|
|
|
|
|
# "bnb_4bit_compute_dtype": torch.bfloat16, # For faster computation
|
|
|
|
|
# "bnb_4bit_use_double_quant": True, # Nested quantization for extra savings
|
|
|
|
|
# },
|
|
|
|
|
# )
|
|
|
|
|
|
2025-11-28 00:56:58 +01:00
|
|
|
pipe = ZImagePipeline.from_pretrained(
|
|
|
|
|
str(model_path),
|
2025-11-28 03:23:26 +01:00
|
|
|
quantization_config=pipeline_quant_config,
|
2025-11-28 00:56:58 +01:00
|
|
|
torch_dtype=target_dtype,
|
2025-11-28 03:23:26 +01:00
|
|
|
low_cpu_mem_usage=True,
|
2025-11-28 00:56:58 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if not cpu_offload:
|
|
|
|
|
pipe.to(get_device())
|
|
|
|
|
|
|
|
|
|
# Set attention backend
|
|
|
|
|
if attn_backend == 'flash_attention_2':
|
|
|
|
|
pipe.transformer.set_attention_backend("flash")
|
|
|
|
|
elif attn_backend == 'flash_attention_3':
|
|
|
|
|
pipe.transformer.set_attention_backend("_flash_3")
|
|
|
|
|
# sdpa is the default, no action needed
|
|
|
|
|
|
|
|
|
|
if compile_model:
|
|
|
|
|
logger.info("Compiling model (first run will be slow)...")
|
|
|
|
|
pipe.transformer.compile()
|
|
|
|
|
|
|
|
|
|
if cpu_offload:
|
|
|
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
shared.image_model = pipe
|
|
|
|
|
shared.image_model_name = model_name
|
|
|
|
|
|
2025-11-28 03:15:15 +01:00
|
|
|
logger.info(f"Loaded image model \"{model_name}\" in {(time.time() - t0):.2f} seconds.")
|
2025-11-28 00:56:58 +01:00
|
|
|
return pipe
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Failed to load image model: {str(e)}")
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unload_image_model():
|
|
|
|
|
"""Unload the current image model and free VRAM."""
|
|
|
|
|
if shared.image_model is None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
del shared.image_model
|
|
|
|
|
shared.image_model = None
|
|
|
|
|
shared.image_model_name = 'None'
|
|
|
|
|
|
2025-11-28 03:15:15 +01:00
|
|
|
from modules.torch_utils import clear_torch_cache
|
|
|
|
|
clear_torch_cache()
|
2025-11-28 00:56:58 +01:00
|
|
|
|
|
|
|
|
logger.info("Image model unloaded.")
|