mirror of
https://github.com/neonbjb/tortoise-tts.git
synced 2025-12-06 07:12:00 +01:00
added tts streaming example
This commit is contained in:
parent
46dfb899a9
commit
5257d66d88
2
setup.py
2
setup.py
|
|
@ -4,7 +4,7 @@ with open("README.md", "r", encoding="utf-8") as fh:
|
|||
long_description = fh.read()
|
||||
|
||||
setuptools.setup(
|
||||
name="TorToiSe",
|
||||
name="tortoise-tts",
|
||||
packages=setuptools.find_packages(),
|
||||
version="3.0.0",
|
||||
author="James Betker",
|
||||
|
|
|
|||
85
tortoise/tts_stream.py
Normal file
85
tortoise/tts_stream.py
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
import argparse
|
||||
import os
|
||||
from time import time
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
from api_fast import TextToSpeech, MODELS_DIR
|
||||
from utils.audio import load_audio, load_voices
|
||||
from utils.text import split_and_recombine_text
|
||||
import sounddevice as sd
|
||||
import queue
|
||||
import threading
|
||||
def play_audio(audio_queue):
|
||||
while True:
|
||||
chunk = audio_queue.get()
|
||||
if chunk is None:
|
||||
break
|
||||
sd.play(chunk.cpu().numpy(), samplerate=24000)
|
||||
sd.wait()
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="tortoise/data/riding_hood.txt")
|
||||
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
||||
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='lj')
|
||||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
parser.add_argument('--output_name', type=str, help='How to name the output file', default='combined.wav')
|
||||
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard')
|
||||
parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None)
|
||||
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this'
|
||||
'should only be specified if you have custom checkpoints.', default=MODELS_DIR)
|
||||
parser.add_argument('--seed', type=int, help='Random seed which can be used to reproduce results.', default=None)
|
||||
parser.add_argument('--use_deepspeed', type=bool, help='Use deepspeed for speed bump.', default=False)
|
||||
parser.add_argument('--kv_cache', type=bool, help='If you disable this please wait for a long a time to get the output', default=True)
|
||||
parser.add_argument('--half', type=bool, help="float16(half) precision inference if True it's faster and take less vram and ram", default=True)
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
if torch.backends.mps.is_available():
|
||||
args.use_deepspeed = False
|
||||
tts = TextToSpeech(models_dir=args.model_dir, use_deepspeed=args.use_deepspeed, kv_cache=args.kv_cache, half=args.half)
|
||||
|
||||
outpath = args.output_path
|
||||
outname = args.output_name
|
||||
selected_voices = args.voice.split(',')
|
||||
regenerate = args.regenerate
|
||||
if regenerate is not None:
|
||||
regenerate = [int(e) for e in regenerate.split(',')]
|
||||
|
||||
# Process text
|
||||
with open(args.textfile, 'r', encoding='utf-8') as f:
|
||||
text = ' '.join([l for l in f.readlines()])
|
||||
if '|' in text:
|
||||
print("Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not"
|
||||
"your intent, please remove all '|' characters from the input.")
|
||||
texts = text.split('|')
|
||||
else:
|
||||
texts = split_and_recombine_text(text)
|
||||
audio_queue = queue.Queue()
|
||||
playback_thread = threading.Thread(target=play_audio, args=(audio_queue,))
|
||||
playback_thread.start()
|
||||
|
||||
seed = int(time()) if args.seed is None else args.seed
|
||||
for selected_voice in selected_voices:
|
||||
voice_outpath = os.path.join(outpath, selected_voice)
|
||||
os.makedirs(voice_outpath, exist_ok=True)
|
||||
|
||||
if '&' in selected_voice:
|
||||
voice_sel = selected_voice.split('&')
|
||||
else:
|
||||
voice_sel = [selected_voice]
|
||||
|
||||
voice_samples, conditioning_latents = load_voices(voice_sel)
|
||||
all_parts = []
|
||||
for j, text in enumerate(texts):
|
||||
if regenerate is not None and j not in regenerate:
|
||||
all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000))
|
||||
continue
|
||||
start_time = time()
|
||||
audio_generator = tts.tts_stream(text, voice_samples=voice_samples, use_deterministic_seed=seed)
|
||||
for wav_chunk in audio_generator:
|
||||
audio_queue.put(wav_chunk)
|
||||
audio_queue.put(None)
|
||||
playback_thread.join()
|
||||
Loading…
Reference in a new issue