///*! \file sched_waveform.c // * \brief Schedule Wavefrom Streams // * // * \copyright Copyright 2012-2014 FlexRadio Systems. All Rights Reserved. // * Unauthorized use, duplication or distribution of this software is // * strictly prohibited by law. // * // * \date 29-AUG-2014 // * \author Ed Gonzalez // * \mangler Graham / KE9H // * // */ /* ***************************************************************************** * * Copyright (C) 2014 FlexRadio Systems. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contact Information: * email: gplflexradiosystems.com * Mail: FlexRadio Systems, Suite 1-150, 4616 W. Howard LN, Austin, TX 78728 * * ************************************************************************** */ #include #include #include #include // for memset #include #include #include #include #include "common.h" #include "datatypes.h" #include "hal_buffer.h" #include "sched_waveform.h" #include "vita_output.h" #include "thumbDV.h" #include "bit_pattern_matcher.h" #include "dstar.h" #include "DStarDefines.h" //static Queue sched_fft_queue; static pthread_rwlock_t _list_lock; static BufferDescriptor _root; static pthread_t _waveform_thread; static BOOL _waveform_thread_abort = FALSE; static sem_t sched_waveform_sem; static void _dsp_convertBufEndian(BufferDescriptor buf_desc) { int i; if(buf_desc->sample_size != 8) { //TODO: horrendous error here return; } for(i = 0; i < buf_desc->num_samples*2; i++) ((int32*)buf_desc->buf_ptr)[i] = htonl(((int32*)buf_desc->buf_ptr)[i]); } static BufferDescriptor _WaveformList_UnlinkHead(void) { BufferDescriptor buf_desc = NULL; pthread_rwlock_wrlock(&_list_lock); if (_root == NULL || _root->next == NULL) { output("Attempt to unlink from a NULL head"); pthread_rwlock_unlock(&_list_lock); return NULL; } if(_root->next != _root) buf_desc = _root->next; if(buf_desc != NULL) { // make sure buffer exists and is actually linked if(!buf_desc || !buf_desc->prev || !buf_desc->next) { output( "Invalid buffer descriptor"); buf_desc = NULL; } else { buf_desc->next->prev = buf_desc->prev; buf_desc->prev->next = buf_desc->next; buf_desc->next = NULL; buf_desc->prev = NULL; } } pthread_rwlock_unlock(&_list_lock); return buf_desc; } static void _WaveformList_LinkTail(BufferDescriptor buf_desc) { pthread_rwlock_wrlock(&_list_lock); buf_desc->next = _root; buf_desc->prev = _root->prev; _root->prev->next = buf_desc; _root->prev = buf_desc; pthread_rwlock_unlock(&_list_lock); } void sched_waveform_Schedule(BufferDescriptor buf_desc) { _WaveformList_LinkTail(buf_desc); sem_post(&sched_waveform_sem); } void sched_waveform_signal() { sem_post(&sched_waveform_sem); } /* ********************************************************************************************* * ********************************************************************************************* * ********************* *********************** * ********************* LOCATION OF MODULATOR / DEMODULATOR INTERFACE *********************** * ********************* *********************** * ********************************************************************************************* * ****************************************************************************************** */ #include #include "circular_buffer.h" #include "resampler.h" #include "gmsk_modem.h" #define PACKET_SAMPLES 128 #define DV_PACKET_SAMPLES 160 #define SCALE_AMBE 32767.0f // //#define SCALE_RX_IN 32767.0f // Multiplier // Was 16000 GGH Jan 30, 2015 //#define SCALE_RX_OUT 32767.0f // Divisor //#define SCALE_TX_IN 32767.0f // Multiplier // Was 16000 GGH Jan 30, 2015 //#define SCALE_TX_OUT 32767.0f // Divisor #define SCALE_RX_IN SCALE_AMBE #define SCALE_TX_OUT SCALE_AMBE #define SCALE_RX_OUT SCALE_AMBE #define SCALE_TX_IN SCALE_AMBE #define FILTER_TAPS 48 #define DECIMATION_FACTOR 3 /* These are offsets for the input buffers to decimator */ #define MEM_24 FILTER_TAPS /* Memory required in 24kHz buffer */ #define MEM_8 FILTER_TAPS/DECIMATION_FACTOR /* Memory required in 8kHz buffer */ // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Circular Buffer Declarations short RX3_buff[(DV_PACKET_SAMPLES * 12)+1]; // RX3 Vocoder output buffer float RX4_buff[(DV_PACKET_SAMPLES * 12 * 40)+1]; // RX4 Packet output Buffer float TX1_buff[(DV_PACKET_SAMPLES * 12) +1]; // TX1 Packet Input Buffer short TX2_buff[(DV_PACKET_SAMPLES * 12)+1]; // TX2 Vocoder input buffer short TX3_buff[(DV_PACKET_SAMPLES * 12)+1]; // TX3 Vocoder output buffer float TX4_buff[(DV_PACKET_SAMPLES * 12 * 40)+1]; // TX4 Packet output Buffer circular_short_buffer rx3_cb; Circular_Short_Buffer RX3_cb = &rx3_cb; circular_float_buffer rx4_cb; Circular_Float_Buffer RX4_cb = &rx4_cb; circular_float_buffer tx1_cb; Circular_Float_Buffer TX1_cb = &tx1_cb; circular_short_buffer tx2_cb; Circular_Short_Buffer TX2_cb = &tx2_cb; circular_short_buffer tx3_cb; Circular_Short_Buffer TX3_cb = &tx3_cb; circular_float_buffer tx4_cb; Circular_Float_Buffer TX4_cb = &tx4_cb; static int _dv_serial_fd = 0; static GMSK_DEMOD _gmsk_demod = NULL; static GMSK_MOD _gmsk_mod = NULL; static DSTAR_MACHINE _dstar = NULL; #define FREEDV_NSAMPLES 160 static void icom_byteToBits(unsigned char byte, BOOL * bits ) { unsigned char mask = 0x01; uint32 i = 0; for ( i = 0 ; i < 8 ; i++, mask <<= 1 ) { bits[i] = ( byte & mask ) ? TRUE : FALSE; } } static void* _sched_waveform_thread(void* param) { int nout; int i; // for loop counter float fsample; // a float sample // float Sig2Noise; // Signal to noise ratio // Flags ... int initial_tx = TRUE; // Flags for TX circular buffer, clear if starting transmit int initial_rx = TRUE; // Flags for RX circular buffer, clear if starting receive // VOCODER I/O BUFFERS short speech_in[DV_PACKET_SAMPLES]; short speech_out[DV_PACKET_SAMPLES]; //short demod_in[FREEDV_NSAMPLES]; unsigned char mod_out[DV_PACKET_SAMPLES]; //unsigned char packet_out[FREEDV_NSAMPLES]; // RX RESAMPLER I/O BUFFERS float float_in_8k[DV_PACKET_SAMPLES + FILTER_TAPS]; //float float_out_8k[DV_PACKET_SAMPLES]; float float_in_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS]; float float_out_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR ]; // TX RESAMPLER I/O BUFFERS float tx_float_in_8k[DV_PACKET_SAMPLES + FILTER_TAPS]; float tx_float_out_8k[DV_PACKET_SAMPLES]; float tx_float_in_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS]; // ======================= Initialization Section ========================= thumbDV_init("/dev/ttyUSB0", &_dv_serial_fd); // Initialize the Circular Buffers RX3_cb->size = DV_PACKET_SAMPLES * 12 +1; // size = no.elements in array+1 RX3_cb->start = 0; RX3_cb->end = 0; RX3_cb->elems = RX3_buff; strncpy(RX3_cb->name, "RX3", 4); RX4_cb->size = DV_PACKET_SAMPLES*(12*40) +1; // size = no.elements in array+1 RX4_cb->start = 0; RX4_cb->end = 0; RX4_cb->elems = RX4_buff; strncpy(RX4_cb->name, "RX4", 4); TX1_cb->size = DV_PACKET_SAMPLES * 12 +1; // size = no.elements in array+1 TX1_cb->start = 0; TX1_cb->end = 0; TX1_cb->elems = TX1_buff; strncpy(TX1_cb->name, "TX1", 4); TX2_cb->size = DV_PACKET_SAMPLES * 12 +1; // size = no.elements in array+1 TX2_cb->start = 0; TX2_cb->end = 0; TX2_cb->elems = TX2_buff; strncpy(TX2_cb->name, "TX2", 4); TX3_cb->size = DV_PACKET_SAMPLES * 12 +1; // size = no.elements in array+1 TX3_cb->start = 0; TX3_cb->end = 0; TX3_cb->elems = TX3_buff; strncpy(TX3_cb->name, "TX3", 4); TX4_cb->size = DV_PACKET_SAMPLES * (12*40) +1; // size = no.elements in array+1 TX4_cb->start = 0; TX4_cb->end = 0; TX4_cb->elems = TX4_buff; strncpy(TX4_cb->name, "TX4", 4); initial_tx = TRUE; initial_rx = TRUE; uint32 dstar_tx_frame_count = 0; // show that we are running BufferDescriptor buf_desc; while( !_waveform_thread_abort ) { // wait for a buffer descriptor to get posted sem_wait(&sched_waveform_sem); if(!_waveform_thread_abort) { do { buf_desc = _WaveformList_UnlinkHead(); // if we got signalled, but there was no new data, something's wrong // and we'll just wait for the next packet if (buf_desc == NULL) { //output( "We were signaled that there was another buffer descriptor, but there's not one here"); break; } else { // convert the buffer to little endian _dsp_convertBufEndian(buf_desc); //output(" \"Processed\" buffer stream id = 0x%08X\n", buf_desc->stream_id); if( (buf_desc->stream_id & 1) == 0) { //RX BUFFER // If 'initial_rx' flag, clear buffers RX1, RX2, RX3, RX4 if(initial_rx) { RX3_cb->start = 0; RX3_cb->end = 0; RX4_cb->start = 0; RX4_cb->end = 0; /* Clear filter memory */ memset(float_in_24k, 0, MEM_24 * sizeof(float)); memset(float_in_8k, 0, MEM_8 * sizeof(float)); /* Requires us to set initial_rx to FALSE which we do at the end of * the first loop */ } // Set the transmit 'initial' flag initial_tx = TRUE; enum DEMOD_STATE state = DEMOD_UNKNOWN; for(i=0 ; i < PACKET_SAMPLES ; i++) { state = gmsk_decode(_gmsk_demod, ((Complex*)buf_desc->buf_ptr)[i].real); unsigned char ambe_out[9] = {0}; BOOL ambe_packet_out = FALSE; if ( state == DEMOD_TRUE ) { ambe_packet_out = dstar_stateMachine(_dstar, TRUE, ambe_out, 9); } else if ( state == DEMOD_FALSE ) { ambe_packet_out = dstar_stateMachine(_dstar, FALSE, ambe_out, 9); } else { /* Nothing to do since we have not "locked" a bit out yet */ } if ( ambe_packet_out == TRUE ) { nout = 0; nout = thumbDV_decode(_dv_serial_fd, ambe_out, speech_out, DV_PACKET_SAMPLES); uint32 j = 0; for( j = 0 ; j < nout ; j++) cbWriteShort(RX3_cb, speech_out[j]); } } // Check for >= 160 samples in RX3_cb, convert to floats // and spin the upsampler. Move output to RX4_cb. if(csbContains(RX3_cb) >= DV_PACKET_SAMPLES) { for( i=0 ; i< DV_PACKET_SAMPLES ; i++) { float_in_8k[i+MEM_8] = ((float) (cbReadShort(RX3_cb) / SCALE_RX_OUT)); } fdmdv_8_to_24(float_out_24k, &float_in_8k[MEM_8], DV_PACKET_SAMPLES); for( i=0 ; i< DV_PACKET_SAMPLES * DECIMATION_FACTOR ; i++) { cbWriteFloat(RX4_cb, float_out_24k[i]); } } // Check for >= 128 samples in RX4_cb. Form packet and // export. uint32 check_samples = PACKET_SAMPLES; if(cfbContains(RX4_cb) >= check_samples ) { for( i=0 ; i< PACKET_SAMPLES ; i++) { // Set up the outbound packet fsample = cbReadFloat(RX4_cb); // // put the fsample into the outbound packet ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; } } else { memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof(Complex)); if(initial_rx) initial_rx = FALSE; } } else if ( (buf_desc->stream_id & 1) == 1) { //TX BUFFER // If 'initial_rx' flag, clear buffers TX1, TX2, TX3, TX4 if(initial_tx) { TX1_cb->start = 0; // Clear buffers RX1, RX2, RX3, RX4 TX1_cb->end = 0; TX2_cb->start = 0; TX2_cb->end = 0; TX3_cb->start = 0; TX3_cb->end = 0; TX4_cb->start = 0; TX4_cb->end = 0; /* Clear filter memory */ memset(tx_float_in_24k, 0, MEM_24 * sizeof(float)); memset(tx_float_in_8k, 0, MEM_8 * sizeof(float)); /* Requires us to set initial_rx to FALSE which we do at the end of * the first loop */ } initial_rx = TRUE; // Check for new receiver input packet & move to TX1_cb. for( i = 0 ; i < PACKET_SAMPLES ; i++ ) { //output("Outputting ") // fsample = Get next float from packet; cbWriteFloat(TX1_cb, ((Complex*)buf_desc->buf_ptr)[i].real); } // // Check for >= 384 samples in TX1_cb and spin downsampler // Convert to shorts and move to TX2_cb. if(cfbContains(TX1_cb) >= DV_PACKET_SAMPLES * DECIMATION_FACTOR) { for(i=0 ; i< DV_PACKET_SAMPLES * DECIMATION_FACTOR ; i++) { tx_float_in_24k[i + MEM_24] = cbReadFloat(TX1_cb); } fdmdv_24_to_8(tx_float_out_8k, &tx_float_in_24k[MEM_24], DV_PACKET_SAMPLES); for(i=0 ; i < DV_PACKET_SAMPLES ; i++) { cbWriteShort(TX2_cb, (short) (tx_float_out_8k[i]*SCALE_TX_IN)); } } // // // Check for >= 320 samples in TX2_cb and spin vocoder // Move output to TX3_cb. uint32 decode_out = 0; if ( csbContains(TX2_cb) >= DV_PACKET_SAMPLES ) { for( i=0 ; i< DV_PACKET_SAMPLES ; i++) { speech_in[i] = cbReadShort(TX2_cb); } /* DECODE */ decode_out = thumbDV_encode(_dv_serial_fd, speech_in, mod_out, DV_PACKET_SAMPLES); } float buf[5]; uint32 j = 0; if ( initial_tx ) { initial_tx = FALSE; /* Create Sync */ for ( i = 0 ; i < 64 * 10 ; i += 2 ) { gmsk_encode(_gmsk_mod, TRUE, buf, DSTAR_RADIO_BIT_LENGTH); for ( j = 0 ; j < DSTAR_RADIO_BIT_LENGTH ; j++ ) { cbWriteFloat(TX4_cb, buf[j]); } gmsk_encode(_gmsk_mod, FALSE, buf, DSTAR_RADIO_BIT_LENGTH); for ( j = 0 ; j < DSTAR_RADIO_BIT_LENGTH ; j++ ) { cbWriteFloat(TX4_cb, buf[j]); } } for ( i = 0 ; i < FRAME_SYNC_LENGTH_BITS ; i++ ) { gmsk_encode(_gmsk_mod, FRAME_SYNC_BITS[i], buf, DSTAR_RADIO_BIT_LENGTH); for ( j = 0 ; j < DSTAR_RADIO_BIT_LENGTH ; j++ ) { cbWriteFloat(TX4_cb, buf[j]); } } dstar_header tmp_h; tmp_h.flag1 = 0; tmp_h.flag2 = 0; tmp_h.flag3 = 0; strncpy((char*)tmp_h.destination_rptr, "DIRECT", 9); strncpy((char*)tmp_h.departure_rptr, "DIRECT", 9); strncpy((char*)tmp_h.companion_call, "CQCQCQ", 9); strncpy((char*)tmp_h.own_call1, "K5SDR", 9); strncpy((char*)tmp_h.own_call2, "WOOT", 5); dstar_pfcs pfcs; pfcs.crc16 = 0xFFFF; unsigned char header_bytes[330] = {0}; dstar_headerToBytes(&tmp_h, header_bytes); dstar_pfcsUpdateBuffer(&pfcs, header_bytes, 312/8); dstar_pfcsResult(&pfcs, header_bytes + 312/8); BOOL bits[FEC_SECTION_LENGTH_BITS] = {0}; gmsk_bytesToBits(header_bytes, bits, 328); BOOL encoded[330*2] = {0}; BOOL interleaved[330*2] = {0}; BOOL scrambled[330*2] = {0}; uint32 outLen = 0; dstar_FECencode(bits, encoded, 330, &outLen); //output("Encode outLen = %d\n", outLen); outLen = 660; dstar_interleave(encoded, interleaved, outLen); uint32 count = 0; dstar_scramble(interleaved, scrambled, outLen, &count); output("Count = %d\n", count); for ( i = 0 ; i < count ; i++ ) { gmsk_encode(_gmsk_mod, scrambled[i], buf, DSTAR_RADIO_BIT_LENGTH); for ( j = 0 ; j < DSTAR_RADIO_BIT_LENGTH ; j++ ) { cbWriteFloat(TX4_cb, buf[j]); } } dstar_tx_frame_count = 0; } else { /* Data and Voice */ float data_buf[DATA_FRAME_LENGTH_BITS * DSTAR_RADIO_BIT_LENGTH] = {0}; if ( decode_out != 0 ) { BOOL bits[8] = {0} ; uint32 k = 0; for ( i = 0 ; i < VOICE_FRAME_LENGTH_BYTES ; i++ ) { icom_byteToBits(mod_out[i], bits ); for ( j = 0 ; j < 8 ; j++ ) { gmsk_encode(_gmsk_mod, bits[j], buf, DSTAR_RADIO_BIT_LENGTH); for ( k = 0 ; k < DSTAR_RADIO_BIT_LENGTH ; k++ ) { cbWriteFloat(TX4_cb, buf[k]); } } } if ( dstar_tx_frame_count % 21 == 0 ) { /* Sync Bits */ unsigned char sync_bytes[3] = {0}; memcpy(sync_bytes, DATA_SYNC_BYTES, 3); gmsk_encodeBuffer(_gmsk_mod, sync_bytes, DATA_FRAME_LENGTH_BITS, data_buf, DATA_FRAME_LENGTH_BITS * DSTAR_RADIO_BIT_LENGTH); for ( i = 0 ; i < DATA_FRAME_LENGTH_BITS * DSTAR_RADIO_BIT_LENGTH ; i++ ) { cbWriteFloat(TX4_cb, data_buf[i]); } } else { dstar_header tmp_h; tmp_h.flag1 = 0; tmp_h.flag2 = 0; tmp_h.flag3 = 0; strncpy((char*)tmp_h.destination_rptr, "DIRECT ", 9); strncpy((char*)tmp_h.departure_rptr, "DIRECT ", 9); strncpy((char*)tmp_h.companion_call, "CQCQCQ ", 9); strncpy((char*)tmp_h.own_call1, "K5SDR ", 9); strncpy((char*)tmp_h.own_call2, "WOOT", 5); dstar_pfcs pfcs; pfcs.crc16 = 0xFFFF; unsigned char header_bytes[41] = {0}; dstar_headerToBytes(&tmp_h, header_bytes); dstar_pfcsUpdateBuffer(&pfcs, header_bytes, 312/8); dstar_pfcsResult(&pfcs, header_bytes + 312/8); unsigned char icom_bytes[41 + 4 + 9] = { 0 } ; /* Interleave SLOW_DATA_HEADER */ uint32 icom_idx = 0; uint32 header_idx = 0; for ( i = 0 ; i < 8 ; i++ ) { icom_bytes[icom_idx++] = 0x55; for ( j = 0 ; j < 5 ; j++ ) { icom_bytes[icom_idx++] = header_bytes[header_idx++]; } } icom_bytes[icom_idx++] = 0x55; icom_bytes[icom_idx++] = header_bytes[header_idx++]; for ( i = 0 ; i < 4 ; i++ ) icom_bytes[icom_idx++] = 'f'; unsigned char * dummy_bytes = NULL; static uint32 dbytes_idx = 0; dummy_bytes = icom_bytes + dbytes_idx; dbytes_idx += DATA_FRAME_LENGTH_BYTES; if ( dbytes_idx >= 41 + 4 + 9 ) { dbytes_idx = 0; } thumbDV_dump("Data: ", dummy_bytes, DATA_FRAME_LENGTH_BYTES); BOOL dummy_bits[DATA_FRAME_LENGTH_BITS] = {0}; BOOL dummy_bits_out[DATA_FRAME_LENGTH_BITS] = {0}; uint32 dummy_count = 0; //gmsk_bytesToBits(dummy_bytes, dummy_bits, DATA_FRAME_LENGTH_BITS); uint32 n = 0; for ( i = 0 , n = 0 ; i < DATA_FRAME_LENGTH_BYTES ; i++ , n += 8) { icom_byteToBits(dummy_bytes[i], dummy_bits + n); } dstar_scramble(dummy_bits, dummy_bits_out, DATA_FRAME_LENGTH_BITS, &dummy_count); gmsk_bitsToBytes(dummy_bits_out, dummy_bytes, DATA_FRAME_LENGTH_BITS); gmsk_encodeBuffer(_gmsk_mod, dummy_bytes, DATA_FRAME_LENGTH_BITS, data_buf, DATA_FRAME_LENGTH_BITS * DSTAR_RADIO_BIT_LENGTH); for ( i = 0 ; i < DATA_FRAME_LENGTH_BITS * DSTAR_RADIO_BIT_LENGTH ; i++ ) { cbWriteFloat(TX4_cb, data_buf[i]); } } dstar_tx_frame_count++; } } uint32 tx_check_samples = PACKET_SAMPLES; if(cfbContains(TX4_cb) >= tx_check_samples ) { for( i = 0 ; i < PACKET_SAMPLES ; i++) { // Set up the outbound packet fsample = cbReadFloat(TX4_cb); // put the fsample into the outbound packet ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; } } else { memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof(Complex)); } initial_tx = FALSE; } emit_waveform_output(buf_desc); hal_BufferRelease(&buf_desc); } } while(1); // Seems infinite loop but will exit once there are no longer any buffers linked in _Waveformlist } } _waveform_thread_abort = TRUE; gmsk_destroyDemodulator(_gmsk_demod); gmsk_destroyModulator(_gmsk_mod); dstar_destroyMachine(_dstar); return NULL; } void sched_waveform_Init(void) { _dstar = dstar_createMachine(); _gmsk_demod = gmsk_createDemodulator(); _gmsk_mod = gmsk_createModulator(); _gmsk_mod->m_invert = TRUE; pthread_rwlock_init(&_list_lock, NULL); pthread_rwlock_wrlock(&_list_lock); _root = (BufferDescriptor)safe_malloc(sizeof(buffer_descriptor)); memset(_root, 0, sizeof(buffer_descriptor)); _root->next = _root; _root->prev = _root; pthread_rwlock_unlock(&_list_lock); sem_init(&sched_waveform_sem, 0, 0); pthread_create(&_waveform_thread, NULL, &_sched_waveform_thread, NULL); struct sched_param fifo_param; fifo_param.sched_priority = 30; pthread_setschedparam(_waveform_thread, SCHED_FIFO, &fifo_param); } void sched_waveformThreadExit() { _waveform_thread_abort = TRUE; sem_post(&sched_waveform_sem); }