///*! \file sched_waveform.c
// * \brief Schedule Wavefrom Streams
// *
// * \copyright Copyright 2012-2014 FlexRadio Systems. All Rights Reserved.
// * Unauthorized use, duplication or distribution of this software is
// * strictly prohibited by law.
// *
// * \date 29-AUG-2014
// * \author Ed Gonzalez
// * \mangler Graham / KE9H
// *
// */
/* *****************************************************************************
*
* Copyright (C) 2014 FlexRadio Systems.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Contact Information:
* email: gplflexradiosystems.com
* Mail: FlexRadio Systems, Suite 1-150, 4616 W. Howard LN, Austin, TX 78728
*
* ************************************************************************** */
#include
#include
#include
#include // for memset
#include
#include
#include
#include
#include
#include "common.h"
#include "datatypes.h"
#include "hal_buffer.h"
#include "sched_waveform.h"
#include "vita_output.h"
#include "thumbDV.h"
#include "bit_pattern_matcher.h"
#include "dstar.h"
#include "DStarDefines.h"
#include "slow_data.h"
#include "ftd2xx.h"
//static Queue sched_fft_queue;
static pthread_rwlock_t _list_lock;
static BufferDescriptor _root;
static pthread_t _waveform_thread;
static BOOL _waveform_thread_abort = FALSE;
static sem_t sched_waveform_sem;
static void _dsp_convertBufEndian( BufferDescriptor buf_desc ) {
int i;
if ( buf_desc->sample_size != 8 ) {
//TODO: horrendous error here
return;
}
for ( i = 0; i < buf_desc->num_samples * 2; i++ )
( ( int32 * )buf_desc->buf_ptr )[i] = htonl( ( ( int32 * )buf_desc->buf_ptr )[i] );
}
static BufferDescriptor _WaveformList_UnlinkHead( void ) {
BufferDescriptor buf_desc = NULL;
pthread_rwlock_wrlock( &_list_lock );
if ( _root == NULL || _root->next == NULL ) {
output( "Attempt to unlink from a NULL head" );
pthread_rwlock_unlock( &_list_lock );
return NULL;
}
if ( _root->next != _root )
buf_desc = _root->next;
if ( buf_desc != NULL ) {
// make sure buffer exists and is actually linked
if ( !buf_desc || !buf_desc->prev || !buf_desc->next ) {
output( "Invalid buffer descriptor" );
buf_desc = NULL;
} else {
buf_desc->next->prev = buf_desc->prev;
buf_desc->prev->next = buf_desc->next;
buf_desc->next = NULL;
buf_desc->prev = NULL;
}
}
pthread_rwlock_unlock( &_list_lock );
return buf_desc;
}
static void _WaveformList_LinkTail( BufferDescriptor buf_desc ) {
pthread_rwlock_wrlock( &_list_lock );
buf_desc->next = _root;
buf_desc->prev = _root->prev;
_root->prev->next = buf_desc;
_root->prev = buf_desc;
pthread_rwlock_unlock( &_list_lock );
}
void sched_waveform_Schedule( BufferDescriptor buf_desc ) {
_WaveformList_LinkTail( buf_desc );
sem_post( &sched_waveform_sem );
}
void sched_waveform_signal() {
sem_post( &sched_waveform_sem );
}
/* *********************************************************************************************
* *********************************************************************************************
* ********************* ***********************
* ********************* LOCATION OF MODULATOR / DEMODULATOR INTERFACE ***********************
* ********************* ***********************
* *********************************************************************************************
* ****************************************************************************************** */
#include
#include "circular_buffer.h"
#include "resampler.h"
#include "gmsk_modem.h"
#define PACKET_SAMPLES 128
#define DV_PACKET_SAMPLES 160
#define SCALE_AMBE 32767.0f
//
//#define SCALE_RX_IN 32767.0f // Multiplier // Was 16000 GGH Jan 30, 2015
//#define SCALE_RX_OUT 32767.0f // Divisor
//#define SCALE_TX_IN 32767.0f // Multiplier // Was 16000 GGH Jan 30, 2015
//#define SCALE_TX_OUT 32767.0f // Divisor
#define SCALE_RX_IN SCALE_AMBE
#define SCALE_TX_OUT SCALE_AMBE
#define SCALE_RX_OUT SCALE_AMBE
#define SCALE_TX_IN SCALE_AMBE
#define FILTER_TAPS 48
#define DECIMATION_FACTOR 3
/* These are offsets for the input buffers to decimator */
#define MEM_24 FILTER_TAPS /* Memory required in 24kHz buffer */
#define MEM_8 FILTER_TAPS/DECIMATION_FACTOR /* Memory required in 8kHz buffer */
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Circular Buffer Declarations
short RX3_buff[( DV_PACKET_SAMPLES * 12 ) + 1]; // RX3 Vocoder output buffer
float RX4_buff[( DV_PACKET_SAMPLES * 12 * 40 ) + 1]; // RX4 Packet output Buffer
float TX1_buff[( DV_PACKET_SAMPLES * 12 ) + 1]; // TX1 Packet Input Buffer
short TX2_buff[( DV_PACKET_SAMPLES * 12 ) + 1]; // TX2 Vocoder input buffer
short TX3_buff[( DV_PACKET_SAMPLES * 12 ) + 1]; // TX3 Vocoder output buffer
float TX4_buff[( DV_PACKET_SAMPLES * 12 * 40 ) + 1]; // TX4 Packet output Buffer
circular_short_buffer rx3_cb;
Circular_Short_Buffer RX3_cb = &rx3_cb;
circular_float_buffer rx4_cb;
Circular_Float_Buffer RX4_cb = &rx4_cb;
circular_float_buffer tx1_cb;
Circular_Float_Buffer TX1_cb = &tx1_cb;
circular_short_buffer tx2_cb;
Circular_Short_Buffer TX2_cb = &tx2_cb;
circular_short_buffer tx3_cb;
Circular_Short_Buffer TX3_cb = &tx3_cb;
circular_float_buffer tx4_cb;
Circular_Float_Buffer TX4_cb = &tx4_cb;
static FT_HANDLE _dv_serial_handle = 0;
static GMSK_DEMOD _gmsk_demod = NULL;
static GMSK_MOD _gmsk_mod = NULL;
static DSTAR_MACHINE _dstar = NULL;
static BOOL _end_of_transmission = FALSE;
#define FREEDV_NSAMPLES 160
void sched_waveform_sendStatus( uint32 slice ) {
dstar_updateStatus( _dstar, slice, STATUS_TX );
}
void sched_waveform_setDestinationRptr( uint32 slice , const char * destination_rptr ) {
/* Ignore slice for now */
char string[10];
strncpy( string, destination_rptr, 9 );
charReplace( string, ( char ) 0x7F, ' ' );
memset( _dstar->outgoing_header.destination_rptr, ' ', 8 );
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
uint32 copy_len = strlen( destination_rptr );
if ( copy_len > 9 )
copy_len = 9;
strncpy( _dstar->outgoing_header.destination_rptr, string, copy_len );
/* Enforce termination */
_dstar->outgoing_header.destination_rptr[8] = '\0';
if ( strncmp( _dstar->outgoing_header.destination_rptr, "DIRECT", strlen( "DIRECT" ) ) != 0 ) {
_dstar->outgoing_header.flag1 = 0x1 << 6;
} else {
_dstar->outgoing_header.flag1 = 0;
}
dstar_dumpHeader( &( _dstar->outgoing_header ) );
}
void sched_waveform_setDepartureRptr( uint32 slice , const char * departure_rptr ) {
/* Ignore slice for now */
char string[10];
strncpy( string, departure_rptr, 9 );
charReplace( string, ( char ) 0x7F, ' ' );
/* Replace all fields with spaces to meet DSTAR requirements for blanks */
memset( _dstar->outgoing_header.departure_rptr, ' ', 8 );
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
uint32 copy_len = strlen( departure_rptr );
if ( copy_len > 9 )
copy_len = 9;
strncpy( _dstar->outgoing_header.departure_rptr, string, copy_len );
/* Terminate just in case */
_dstar->outgoing_header.departure_rptr[8] = '\0';
dstar_dumpHeader( &( _dstar->outgoing_header ) );
}
void sched_waveform_setCompanionCall( uint32 slice, const char * companion_call ) {
/* Ignore slice for now */
char string[10];
strncpy( string, companion_call, 9 );
charReplace( string, ( char ) 0x7F, ' ' );
memset( _dstar->outgoing_header.companion_call, ' ', 8 );
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
uint32 copy_len = strlen( companion_call );
if ( copy_len > 9 )
copy_len = 9;
strncpy( _dstar->outgoing_header.companion_call, string, copy_len );
_dstar->outgoing_header.companion_call[8] = '\0';
dstar_dumpHeader( &( _dstar->outgoing_header ) );
}
void sched_waveform_setOwnCall1( uint32 slice , const char * owncall1 ) {
/* Ignore slice for now */
char string[10];
strncpy( string, owncall1, 9 );
charReplace( string, ( char ) 0x7F, ' ' );
memset( _dstar->outgoing_header.own_call1, ' ', 8 );
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
uint32 copy_len = strlen( owncall1 );
if ( copy_len > 9 )
copy_len = 9;
strncpy( _dstar->outgoing_header.own_call1, string, copy_len );
/* Enforce termination */
_dstar->outgoing_header.own_call1[8] = '\0';
dstar_dumpHeader( &( _dstar->outgoing_header ) );
}
void sched_waveform_setOwnCall2( uint32 slice , const char * owncall2 ) {
char string[10];
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
memset( _dstar->outgoing_header.own_call2, ' ', 4 );
/* Enforce termination */
_dstar->outgoing_header.own_call2[4] = '\0';
if (strlen(owncall2) > 0)
{
strncpy( string, owncall2, 4);
string[4] = 0;
charReplace( string, ( char ) 0x7F, ' ' );
uint32 copy_len = strlen( owncall2 );
if ( copy_len > 4 )
copy_len = 4;
strncpy( _dstar->outgoing_header.own_call2, string, copy_len );
}
dstar_dumpHeader( &( _dstar->outgoing_header ) );
}
void sched_waveform_setMessage( uint32 slice, const char * message)
{
char string[SLOW_DATA_MESSAGE_LENGTH_BYTES + 1 ];
/* We limit the copy to the string length so that
* we can fill the rest of the string with spaces to
* comply with DSTAR
*/
memset(_dstar->slow_encoder->message, ' ', SLOW_DATA_MESSAGE_LENGTH_BYTES);
/* Enforce termination */
_dstar->slow_encoder->message[SLOW_DATA_MESSAGE_LENGTH_BYTES] = '\0';
/* Ignore slice for now */
if (strlen(message) > 0)
{
strncpy( string, message, SLOW_DATA_MESSAGE_LENGTH_BYTES);
string[SLOW_DATA_MESSAGE_LENGTH_BYTES] = 0;
charReplace( string, ( char ) 0x7F, ' ' );
uint32 copy_len = strlen( string );
if ( copy_len > SLOW_DATA_MESSAGE_LENGTH_BYTES )
copy_len = SLOW_DATA_MESSAGE_LENGTH_BYTES;
strncpy(_dstar->slow_encoder->message, string, copy_len);
}
output( "TX Message: '%s' : strlen() = %d \n", _dstar->slow_encoder->message , strlen(_dstar->slow_encoder->message));
}
void sched_waveform_setHandle( FT_HANDLE * handle ) {
_dv_serial_handle = *handle;
}
void sched_waveform_setEndOfTX( BOOL end_of_transmission ) {
_end_of_transmission = TRUE;
}
void sched_waveform_setDSTARSlice( uint32 slice )
{
if ( _dstar != NULL ) {
_dstar->slice = slice;
}
}
static void * _sched_waveform_thread( void * param ) {
prctl(PR_SET_NAME, "DV-SchedWav");
int nout;
int i; // for loop counter
float fsample; // a float sample
// float Sig2Noise; // Signal to noise ratio
// Flags ...
int initial_tx = TRUE; // Flags for TX circular buffer, clear if starting transmit
int initial_rx = TRUE; // Flags for RX circular buffer, clear if starting receive
// VOCODER I/O BUFFERS
short speech_in[DV_PACKET_SAMPLES];
short speech_out[DV_PACKET_SAMPLES];
//short demod_in[FREEDV_NSAMPLES];
unsigned char mod_out[DV_PACKET_SAMPLES];
//unsigned char packet_out[FREEDV_NSAMPLES];
// RX RESAMPLER I/O BUFFERS
float float_in_8k[DV_PACKET_SAMPLES + FILTER_TAPS];
//float float_out_8k[DV_PACKET_SAMPLES];
float float_in_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS];
float float_out_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR ];
// TX RESAMPLER I/O BUFFERS
float tx_float_in_8k[DV_PACKET_SAMPLES + FILTER_TAPS];
float tx_float_out_8k[DV_PACKET_SAMPLES];
float tx_float_in_24k[DV_PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS];
BOOL inhibit_tx = FALSE;
BOOL flush_tx = FALSE;
// ======================= Initialization Section =========================
thumbDV_init( &_dv_serial_handle );
// Initialize the Circular Buffers
RX3_cb->size = DV_PACKET_SAMPLES * 12 + 1; // size = no.elements in array+1
RX3_cb->start = 0;
RX3_cb->end = 0;
RX3_cb->elems = RX3_buff;
strncpy( RX3_cb->name, "RX3", 4 );
RX4_cb->size = DV_PACKET_SAMPLES * ( 12 * 40 ) + 1; // size = no.elements in array+1
RX4_cb->start = 0;
RX4_cb->end = 0;
RX4_cb->elems = RX4_buff;
strncpy( RX4_cb->name, "RX4", 4 );
TX1_cb->size = DV_PACKET_SAMPLES * 12 + 1; // size = no.elements in array+1
TX1_cb->start = 0;
TX1_cb->end = 0;
TX1_cb->elems = TX1_buff;
strncpy( TX1_cb->name, "TX1", 4 );
TX2_cb->size = DV_PACKET_SAMPLES * 12 + 1; // size = no.elements in array+1
TX2_cb->start = 0;
TX2_cb->end = 0;
TX2_cb->elems = TX2_buff;
strncpy( TX2_cb->name, "TX2", 4 );
TX3_cb->size = DV_PACKET_SAMPLES * 12 + 1; // size = no.elements in array+1
TX3_cb->start = 0;
TX3_cb->end = 0;
TX3_cb->elems = TX3_buff;
strncpy( TX3_cb->name, "TX3", 4 );
TX4_cb->size = DV_PACKET_SAMPLES * ( 12 * 40 ) + 1; // size = no.elements in array+1
TX4_cb->start = 0;
TX4_cb->end = 0;
TX4_cb->elems = TX4_buff;
strncpy( TX4_cb->name, "TX4", 4 );
initial_tx = TRUE;
initial_rx = TRUE;
BOOL initial_tx_flush = FALSE;
uint32 dstar_tx_frame_count = 0;
// show that we are running
BufferDescriptor buf_desc;
while ( !_waveform_thread_abort ) {
// wait for a buffer descriptor to get posted
sem_wait( &sched_waveform_sem );
if ( !_waveform_thread_abort ) {
do {
buf_desc = _WaveformList_UnlinkHead();
// if we got signalled, but there was no new data, something's wrong
// and we'll just wait for the next packet
if ( buf_desc == NULL ) {
//output( "We were signaled that there was another buffer descriptor, but there's not one here");
break;
} else {
// convert the buffer to little endian
_dsp_convertBufEndian( buf_desc );
//output(" \"Processed\" buffer stream id = 0x%08X\n", buf_desc->stream_id);
if ( ( buf_desc->stream_id & 1 ) == 0 ) { //RX BUFFER
// If 'initial_rx' flag, clear buffers RX1, RX2, RX3, RX4
if ( initial_rx ) {
RX3_cb->start = 0;
RX3_cb->end = 0;
RX4_cb->start = 0;
RX4_cb->end = 0;
/* Clear filter memory */
memset( float_in_24k, 0, MEM_24 * sizeof( float ) );
memset( float_in_8k, 0, MEM_8 * sizeof( float ) );
thumbDV_flushLists();
/* Requires us to set initial_rx to FALSE which we do at the end of
* the first loop
*/
}
// Set the transmit 'initial' flag
initial_tx = TRUE;
inhibit_tx = FALSE;
flush_tx = FALSE;
_end_of_transmission = FALSE;
gmsk_resetMODFilter( _gmsk_mod );
enum DEMOD_STATE state = DEMOD_UNKNOWN;
for ( i = 0 ; i < PACKET_SAMPLES ; i++ ) {
state = gmsk_decode( _gmsk_demod, ( ( Complex * )buf_desc->buf_ptr )[i].real );
unsigned char ambe_out[9] = {0};
BOOL ambe_packet_out = FALSE;
if ( state == DEMOD_TRUE ) {
ambe_packet_out = dstar_rxStateMachine( _dstar, TRUE, ambe_out, 9 );
} else if ( state == DEMOD_FALSE ) {
ambe_packet_out = dstar_rxStateMachine( _dstar, FALSE, ambe_out, 9 );
} else {
/* Nothing to do since we have not "locked" a bit out yet */
}
if ( ambe_packet_out == TRUE ) {
nout = 0;
nout = thumbDV_decode( _dv_serial_handle, ambe_out, speech_out, DV_PACKET_SAMPLES );
uint32 j = 0;
for ( j = 0 ; j < nout ; j++ )
cbWriteShort( RX3_cb, speech_out[j] );
}
}
// Check for >= 160 samples in RX3_cb, convert to floats
// and spin the upsampler. Move output to RX4_cb.
if ( csbContains( RX3_cb ) >= DV_PACKET_SAMPLES ) {
for ( i = 0 ; i < DV_PACKET_SAMPLES ; i++ ) {
float_in_8k[i + MEM_8] = ( ( float )( cbReadShort( RX3_cb ) / SCALE_RX_OUT ) );
}
fdmdv_8_to_24( float_out_24k, &float_in_8k[MEM_8], DV_PACKET_SAMPLES );
for ( i = 0 ; i < DV_PACKET_SAMPLES * DECIMATION_FACTOR ; i++ ) {
cbWriteFloat( RX4_cb, float_out_24k[i] );
}
}
// Check for >= 128 samples in RX4_cb. Form packet and
// export.
uint32 check_samples = PACKET_SAMPLES;
if ( cfbContains( RX4_cb ) >= check_samples ) {
for ( i = 0 ; i < PACKET_SAMPLES ; i++ ) {
// Set up the outbound packet
fsample = cbReadFloat( RX4_cb );
// // put the fsample into the outbound packet
( ( Complex * )buf_desc->buf_ptr )[i].real = fsample;
( ( Complex * )buf_desc->buf_ptr )[i].imag = fsample;
}
} else {
memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof( Complex ) );
}
if ( initial_rx )
initial_rx = FALSE;
emit_waveform_output( buf_desc );
} else if ( ( buf_desc->stream_id & 1 ) == 1 ) { //TX BUFFER
// If 'initial_rx' flag, clear buffers TX1, TX2, TX3, TX4
if ( initial_tx ) {
TX1_cb->start = 0; // Clear buffers RX1, RX2, RX3, RX4
TX1_cb->end = 0;
TX2_cb->start = 0;
TX2_cb->end = 0;
TX3_cb->start = 0;
TX3_cb->end = 0;
TX4_cb->start = 0;
TX4_cb->end = 0;
/* Clear filter memory */
memset( tx_float_in_24k, 0, MEM_24 * sizeof( float ) );
memset( tx_float_in_8k, 0, MEM_8 * sizeof( float ) );
thumbDV_flushLists();
/* Requires us to set initial_rx to FALSE which we do at the end of
* the first loop
*/
}
initial_rx = TRUE;
// Check for new receiver input packet & move to TX1_cb.
if ( !inhibit_tx ) {
for ( i = 0 ; i < PACKET_SAMPLES ; i++ ) {
//output("Outputting ")
// fsample = Get next float from packet;
cbWriteFloat( TX1_cb, ( ( Complex * )buf_desc->buf_ptr )[i].real );
}
//
// Check for >= 384 samples in TX1_cb and spin downsampler
// Convert to shorts and move to TX2_cb.
if ( cfbContains( TX1_cb ) >= DV_PACKET_SAMPLES * DECIMATION_FACTOR ) {
for ( i = 0 ; i < DV_PACKET_SAMPLES * DECIMATION_FACTOR ; i++ ) {
tx_float_in_24k[i + MEM_24] = cbReadFloat( TX1_cb );
}
fdmdv_24_to_8( tx_float_out_8k, &tx_float_in_24k[MEM_24], DV_PACKET_SAMPLES );
for ( i = 0 ; i < DV_PACKET_SAMPLES ; i++ ) {
cbWriteShort( TX2_cb, ( short )( tx_float_out_8k[i]*SCALE_TX_IN ) );
}
}
//
// // Check for >= 320 samples in TX2_cb and spin vocoder
// Move output to TX3_cb.
uint32 decode_out = 0;
if ( csbContains( TX2_cb ) >= DV_PACKET_SAMPLES ) {
for ( i = 0 ; i < DV_PACKET_SAMPLES ; i++ ) {
speech_in[i] = cbReadShort( TX2_cb );
}
/* DECODE */
decode_out = thumbDV_encode( _dv_serial_handle, speech_in, mod_out, DV_PACKET_SAMPLES );
}
if ( initial_tx ) {
initial_tx = FALSE;
_dstar->tx_state = BIT_FRAME_SYNC;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, NULL);
_dstar->tx_state = HEADER_PROCESSING;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, NULL);
slow_data_createEncodeBytes(_dstar);
initial_tx_flush = TRUE;
dstar_tx_frame_count = 0;
} else {
/* Data and Voice */
if ( decode_out != 0 ) {
_dstar->tx_state = VOICE_FRAME;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, mod_out);
if ( dstar_tx_frame_count % 21 == 0 ) {
_dstar->tx_state = DATA_SYNC_FRAME;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, NULL);
if ( _dstar->slow_encoder->encode_state == HEADER_TX )
_dstar->slow_encoder->header_index = 0;
} else {
_dstar->tx_state = DATA_FRAME;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, NULL);
}
dstar_tx_frame_count++;
}
}
if ( _end_of_transmission && !inhibit_tx ) {
_dstar->tx_state = END_PATTERN;
dstar_txStateMachine(_dstar, _gmsk_mod, TX4_cb, NULL);
flush_tx = TRUE;
initial_tx_flush = TRUE;
}
}
if ( !inhibit_tx ) {
uint32 tx_check_samples = PACKET_SAMPLES;
if ( cfbContains( TX4_cb ) >= tx_check_samples ) {
for ( i = 0 ; i < PACKET_SAMPLES ; i++ ) {
// Set up the outbound packet
fsample = cbReadFloat( TX4_cb );
// put the fsample into the outbound packet
( ( Complex * )buf_desc->buf_ptr )[i].real = fsample;
( ( Complex * )buf_desc->buf_ptr )[i].imag = fsample;
}
} else {
memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof( Complex ) );
}
emit_waveform_output( buf_desc );
if ( flush_tx && initial_tx_flush ) {
initial_tx_flush = FALSE;
inhibit_tx = TRUE;
//output("TX4_cb has %d samples\n", cfbContains(TX4_cb));
while ( cfbContains( TX4_cb ) > 0 ) {
if ( cfbContains( TX4_cb ) > PACKET_SAMPLES ) {
for ( i = 0 ; i < PACKET_SAMPLES ; i++ ) {
// Set up the outbound packet
fsample = cbReadFloat( TX4_cb );
// put the fsample into the outbound packet
( ( Complex * )buf_desc->buf_ptr )[i].real = fsample;
( ( Complex * )buf_desc->buf_ptr )[i].imag = fsample;
}
} else {
int end_index = 0;
for ( i = 0 ; i <= cfbContains( TX4_cb ); i++ ) {
fsample = cbReadFloat( TX4_cb );
( ( Complex * )buf_desc->buf_ptr )[i].real = fsample;
( ( Complex * )buf_desc->buf_ptr )[i].imag = fsample;
end_index = i + 1;
}
for ( i = end_index ; i < PACKET_SAMPLES ; i++ ) {
( ( Complex * )buf_desc->buf_ptr )[i].real = 0.0f;
( ( Complex * )buf_desc->buf_ptr )[i].imag = 0.0f;
}
}
emit_waveform_output( buf_desc );
}
}
}
}
hal_BufferRelease( &buf_desc );
}
} while ( 1 ); // Seems infinite loop but will exit once there are no longer any buffers linked in _Waveformlist
}
}
_waveform_thread_abort = TRUE;
gmsk_destroyDemodulator( _gmsk_demod );
gmsk_destroyModulator( _gmsk_mod );
dstar_destroyMachine( _dstar );
return NULL;
}
void sched_waveform_Init( void ) {
_dstar = dstar_createMachine();
_gmsk_demod = gmsk_createDemodulator();
_gmsk_mod = gmsk_createModulator();
_gmsk_mod->m_invert = TRUE;
pthread_rwlock_init( &_list_lock, NULL );
pthread_rwlock_wrlock( &_list_lock );
_root = ( BufferDescriptor )safe_malloc( sizeof( buffer_descriptor ) );
memset( _root, 0, sizeof( buffer_descriptor ) );
_root->next = _root;
_root->prev = _root;
pthread_rwlock_unlock( &_list_lock );
sem_init( &sched_waveform_sem, 0, 0 );
pthread_create( &_waveform_thread, NULL, &_sched_waveform_thread, NULL );
struct sched_param fifo_param;
fifo_param.sched_priority = 30;
pthread_setschedparam( _waveform_thread, SCHED_FIFO, &fifo_param );
}
void sched_waveformThreadExit() {
_waveform_thread_abort = TRUE;
sem_post( &sched_waveform_sem );
}