///*! \file sched_waveform.c // * \brief Schedule Wavefrom Streams // * // * \copyright Copyright 2012-2014 FlexRadio Systems. All Rights Reserved. // * Unauthorized use, duplication or distribution of this software is // * strictly prohibited by law. // * // * \date 29-AUG-2014 // * \author Ed Gonzalez // * \mangler Graham / KE9H // * // */ /* ***************************************************************************** * * Copyright (C) 2014 FlexRadio Systems. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contact Information: * email: gplflexradiosystems.com * Mail: FlexRadio Systems, Suite 1-150, 4616 W. Howard LN, Austin, TX 78728 * * ************************************************************************** */ #include #include #include #include // for memset #include #include "common.h" #include "datatypes.h" #include "hal_buffer.h" #include "sched_waveform.h" #include "vita_output.h" //static Queue sched_fft_queue; static pthread_rwlock_t _list_lock; static BufferDescriptor _root; static pthread_t _waveform_thread; static BOOL _waveform_thread_abort = FALSE; static sem_t sched_waveform_sem; static void _dsp_convertBufEndian(BufferDescriptor buf_desc) { int i; if(buf_desc->sample_size != 8) { //TODO: horrendous error here return; } for(i = 0; i < buf_desc->num_samples*2; i++) ((int32*)buf_desc->buf_ptr)[i] = htonl(((int32*)buf_desc->buf_ptr)[i]); } static BufferDescriptor _WaveformList_UnlinkHead(void) { BufferDescriptor buf_desc = NULL; pthread_rwlock_wrlock(&_list_lock); if (_root == NULL || _root->next == NULL) { output("Attempt to unlink from a NULL head"); pthread_rwlock_unlock(&_list_lock); return NULL; } if(_root->next != _root) buf_desc = _root->next; if(buf_desc != NULL) { // make sure buffer exists and is actually linked if(!buf_desc || !buf_desc->prev || !buf_desc->next) { output( "Invalid buffer descriptor"); buf_desc = NULL; } else { buf_desc->next->prev = buf_desc->prev; buf_desc->prev->next = buf_desc->next; buf_desc->next = NULL; buf_desc->prev = NULL; } } pthread_rwlock_unlock(&_list_lock); return buf_desc; } static void _WaveformList_LinkTail(BufferDescriptor buf_desc) { pthread_rwlock_wrlock(&_list_lock); buf_desc->next = _root; buf_desc->prev = _root->prev; _root->prev->next = buf_desc; _root->prev = buf_desc; pthread_rwlock_unlock(&_list_lock); } void sched_waveform_Schedule(BufferDescriptor buf_desc) { _WaveformList_LinkTail(buf_desc); sem_post(&sched_waveform_sem); } void sched_waveform_signal() { sem_post(&sched_waveform_sem); } /* ********************************************************************************************* * ********************************************************************************************* * ********************* *********************** * ********************* LOCATION OF MODULATOR / DEMODULATOR INTERFACE *********************** * ********************* *********************** * ********************************************************************************************* * ****************************************************************************************** */ #include #include "freedv_api.h" #include "circular_buffer.h" #include "resampler.h" #define PACKET_SAMPLES 128 #define SCALE_RX_IN 8000.0 // Multiplier // Was 16000 GGH Jan 30, 2015 #define SCALE_RX_OUT 8000.0 // Divisor #define SCALE_TX_IN 24000.0 // Multiplier // Was 16000 GGH Jan 30, 2015 #define SCALE_TX_OUT 24000.0 // Divisor #define FILTER_TAPS 48 #define DECIMATION_FACTOR 3 /* These are offsets for the input buffers to decimator */ #define MEM_24 FILTER_TAPS /* Memory required in 24kHz buffer */ #define MEM_8 FILTER_TAPS/DECIMATION_FACTOR /* Memory required in 8kHz buffer */ static struct freedv *_freedvS; // Initialize Coder structure static struct my_callback_state _my_cb_state; #define MAX_RX_STRING_LENGTH 40 static char _rx_string[MAX_RX_STRING_LENGTH + 5]; static BOOL _end_of_transmission = FALSE; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Circular Buffer Declarations float RX1_buff[(PACKET_SAMPLES * 12)+1]; // RX1 Packet Input Buffer short RX2_buff[(PACKET_SAMPLES * 12)+1]; // RX2 Vocoder input buffer short RX3_buff[(PACKET_SAMPLES * 12)+1]; // RX3 Vocoder output buffer float RX4_buff[(PACKET_SAMPLES * 12)+1]; // RX4 Packet output Buffer float TX1_buff[(PACKET_SAMPLES * 12) +1]; // TX1 Packet Input Buffer short TX2_buff[(PACKET_SAMPLES * 12)+1]; // TX2 Vocoder input buffer short TX3_buff[(PACKET_SAMPLES * 12)+1]; // TX3 Vocoder output buffer float TX4_buff[(PACKET_SAMPLES * 12)+1]; // TX4 Packet output Buffer circular_float_buffer rx1_cb; Circular_Float_Buffer RX1_cb = &rx1_cb; circular_short_buffer rx2_cb; Circular_Short_Buffer RX2_cb = &rx2_cb; circular_short_buffer rx3_cb; Circular_Short_Buffer RX3_cb = &rx3_cb; circular_float_buffer rx4_cb; Circular_Float_Buffer RX4_cb = &rx4_cb; circular_float_buffer tx1_cb; Circular_Float_Buffer TX1_cb = &tx1_cb; circular_short_buffer tx2_cb; Circular_Short_Buffer TX2_cb = &tx2_cb; circular_short_buffer tx3_cb; Circular_Short_Buffer TX3_cb = &tx3_cb; circular_float_buffer tx4_cb; Circular_Float_Buffer TX4_cb = &tx4_cb; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Callbacks for embedded ASCII stream, transmit and receive void my_put_next_rx_char(void *callback_state, char c) { char new_char[2]; if ( (uint32) c < 32 || (uint32) c > 126 ) { /* Treat all control chars as spaces */ //output(ANSI_YELLOW "Non-valid RX_STRING char. ASCII code = %d\n", (uint32) c); new_char[0] = (char) 0x7F; } else if ( c == ' ' ) { /* Encode spaces differently */ new_char[0] = (char) 0x7F; } else { new_char[0] = c; } new_char[1] = 0; strncat(_rx_string, new_char, MAX_RX_STRING_LENGTH+4); if (strlen(_rx_string) > MAX_RX_STRING_LENGTH) { // lop off first character strcpy(_rx_string, _rx_string+1); } //output(ANSI_MAGENTA "new string = '%s'\n",_rx_string); char* api_cmd = safe_malloc(80); sprintf(api_cmd, "waveform status slice=%d string=\"%s\"",0,_rx_string); tc_sendSmartSDRcommand(api_cmd,FALSE,NULL); safe_free(api_cmd); } struct my_callback_state { char tx_str[80]; char *ptx_str; }; char my_get_next_tx_char(void *callback_state) { struct my_callback_state* pstate = (struct my_callback_state*)callback_state; char c = *pstate->ptx_str++; if (*pstate->ptx_str == 0) { pstate->ptx_str = pstate->tx_str; } return c; } void freedv_set_string(uint32 slice, char* string) { strcpy(_my_cb_state.tx_str, string); _my_cb_state.ptx_str = _my_cb_state.tx_str; output(ANSI_MAGENTA "new TX string is '%s'\n",string); } void sched_waveform_setEndOfTX(BOOL end_of_transmission) { _end_of_transmission = TRUE; } static void* _sched_waveform_thread(void* param) { int nin, nout; int i; // for loop counter float fsample; // a float sample // float Sig2Noise; // Signal to noise ratio // Flags ... int initial_tx = 1; // Flags for TX circular buffer, clear if starting transmit int initial_rx = 1; // Flags for RX circular buffer, clear if starting receive // VOCODER I/O BUFFERS short speech_in[FREEDV_NSAMPLES]; short speech_out[FREEDV_NSAMPLES]; short demod_in[FREEDV_NSAMPLES]; short mod_out[FREEDV_NSAMPLES]; // RX RESAMPLER I/O BUFFERS float float_in_8k[PACKET_SAMPLES + FILTER_TAPS]; float float_out_8k[PACKET_SAMPLES]; float float_in_24k[PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS]; float float_out_24k[PACKET_SAMPLES * DECIMATION_FACTOR ]; // TX RESAMPLER I/O BUFFERS float tx_float_in_8k[PACKET_SAMPLES + FILTER_TAPS]; float tx_float_out_8k[PACKET_SAMPLES]; float tx_float_in_24k[PACKET_SAMPLES * DECIMATION_FACTOR + FILTER_TAPS]; float tx_float_out_24k[PACKET_SAMPLES * DECIMATION_FACTOR ]; BOOL inhibit_tx = FALSE; BOOL flush_tx = FALSE; // ======================= Initialization Section ========================= _freedvS = freedv_open(FREEDV_MODE_1600); // Default system, only //assert(_freedvS != NULL); // debug only // Initialize the Circular Buffers RX1_cb->size = PACKET_SAMPLES*6 +1; // size = no.elements in array+1 RX1_cb->start = 0; RX1_cb->end = 0; RX1_cb->elems = RX1_buff; RX2_cb->size = PACKET_SAMPLES*6 +1; // size = no.elements in array+1 RX2_cb->start = 0; RX2_cb->end = 0; RX2_cb->elems = RX2_buff; RX3_cb->size = PACKET_SAMPLES*6 +1; // size = no.elements in array+1 RX3_cb->start = 0; RX3_cb->end = 0; RX3_cb->elems = RX3_buff; RX4_cb->size = PACKET_SAMPLES*12 +1; // size = no.elements in array+1 RX4_cb->start = 0; RX4_cb->end = 0; RX4_cb->elems = RX4_buff; TX1_cb->size = PACKET_SAMPLES*6 +1; // size = no.elements in array+1 TX1_cb->start = 0; TX1_cb->end = 0; TX1_cb->elems = TX1_buff; TX2_cb->size = PACKET_SAMPLES*6 +1; // size = no.elements in array+1 TX2_cb->start = 0; TX2_cb->end = 0; TX2_cb->elems = TX2_buff; TX3_cb->size = PACKET_SAMPLES *6 +1; // size = no.elements in array+1 TX3_cb->start = 0; TX3_cb->end = 0; TX3_cb->elems = TX3_buff; TX4_cb->size = PACKET_SAMPLES *12 +1; // size = no.elements in array+1 TX4_cb->start = 0; TX4_cb->end = 0; TX4_cb->elems = TX4_buff; initial_tx = TRUE; initial_rx = TRUE; // initialize the rx callback _freedvS->freedv_put_next_rx_char = &my_put_next_rx_char; // Set up callback for txt msg chars // clear tx_string memset(_my_cb_state.tx_str,0,80); _my_cb_state.ptx_str = _my_cb_state.tx_str; _freedvS->callback_state = (void*)&_my_cb_state; _freedvS->freedv_get_next_tx_char = &my_get_next_tx_char; uint32 bypass_count = 0; BOOL bypass_demod = TRUE; // show that we are running BufferDescriptor buf_desc; while( !_waveform_thread_abort ) { // wait for a buffer descriptor to get posted sem_wait(&sched_waveform_sem); if(!_waveform_thread_abort) { do { buf_desc = _WaveformList_UnlinkHead(); // if we got signalled, but there was no new data, something's wrong // and we'll just wait for the next packet if (buf_desc == NULL) { //output( "We were signaled that there was another buffer descriptor, but there's not one here"); break; } else { // convert the buffer to little endian _dsp_convertBufEndian(buf_desc); //output(" \"Processed\" buffer stream id = 0x%08X\n", buf_desc->stream_id); if( (buf_desc->stream_id & 1) == 0) { //RX BUFFER // If 'initial_rx' flag, clear buffers RX1, RX2, RX3, RX4 if(initial_rx) { RX1_cb->start = 0; // Clear buffers RX1, RX2, RX3, RX4 RX1_cb->end = 0; RX2_cb->start = 0; RX2_cb->end = 0; RX3_cb->start = 0; RX3_cb->end = 0; RX4_cb->start = 0; RX4_cb->end = 0; /* Clear filter memory */ memset(float_in_24k, 0, MEM_24 * sizeof(float)); memset(float_in_8k, 0, MEM_8 * sizeof(float)); /* Requires us to set initial_rx to FALSE which we do at the end of * the first loop */ } // Set the transmit 'initial' flag initial_tx = TRUE; inhibit_tx = FALSE; flush_tx = FALSE; _end_of_transmission = FALSE; // Check for new receiver input packet & move to RX1_cb. // TODO - If transmit packet, discard here? for( i = 0 ; i < PACKET_SAMPLES ; i++) { //output("Outputting ") // fsample = Get next float from packet; cbWriteFloat(RX1_cb, ((Complex*)buf_desc->buf_ptr)[i].real); } // // Check for >= 384 samples in RX1_cb and spin downsampler // Convert to shorts and move to RX2_cb. if(cfbContains(RX1_cb) >= 384) { for(i=0 ; i<384 ; i++) { float_in_24k[i + MEM_24] = cbReadFloat(RX1_cb); } fdmdv_24_to_8(float_out_8k, &float_in_24k[MEM_24], 128); for(i=0 ; i<128 ; i++) { cbWriteShort(RX2_cb, (short) (float_out_8k[i]*SCALE_RX_IN)); } } // // // Check for >= 320 samples in RX2_cb and spin vocoder // Move output to RX3_cb. // do { nin = freedv_nin(_freedvS); // TODO Is nin, nout really necessary? if ( csbContains(RX2_cb) >= nin ) { // for( i=0 ; i< nin ; i++) { demod_in[i] = cbReadShort(RX2_cb); } nout = freedv_rx(_freedvS, speech_out, demod_in); if ( _freedvS->fdmdv_stats.sync ) { /* Increase count for turning bypass off */ if ( bypass_count < 10) bypass_count++; } else { if ( bypass_count > 0 ) bypass_count--; } if ( bypass_count > 7 ) { //if ( bypass_demod ) output("baypass_demod transitioning to FALSE\n"); bypass_demod = FALSE; } else if ( bypass_count < 2 ) { //if ( !bypass_demod ) output("baypass_demod transitioning to TRUE \n"); bypass_demod = TRUE; } if ( bypass_demod ) { for ( i = 0 ; i < nin ; i++ ) { cbWriteShort(RX3_cb, demod_in[i]); } } else { for( i=0 ; i < nout ; i++) { cbWriteShort(RX3_cb, speech_out[i]); } } //output("%d\n", bypass_count); } // } else { // break; /* Break out of while loop */ //} //} while (1); // // Check for >= 128 samples in RX3_cb, convert to floats // and spin the upsampler. Move output to RX4_cb. if(csbContains(RX3_cb) >= 128) { for( i=0 ; i<128 ; i++) { float_in_8k[i+MEM_8] = ((float) (cbReadShort(RX3_cb) / SCALE_RX_OUT) ); } fdmdv_8_to_24(float_out_24k, &float_in_8k[MEM_8], 128); for( i=0 ; i<384 ; i++) { cbWriteFloat(RX4_cb, float_out_24k[i]); } //Sig2Noise = (_freedvS->fdmdv_stats.snr_est); } // Check for >= 128 samples in RX4_cb. Form packet and // export. uint32 check_samples = PACKET_SAMPLES; if(initial_rx) check_samples = PACKET_SAMPLES * 3; if(cfbContains(RX4_cb) >= check_samples ) { for( i=0 ; i<128 ; i++) { //output("Fetching from end buffer \n"); // Set up the outbound packet fsample = cbReadFloat(RX4_cb); // put the fsample into the outbound packet ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; } } else { //output("RX Starved buffer out\n"); memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof(Complex)); if(initial_rx) initial_rx = FALSE; } emit_waveform_output(buf_desc); } else if ( (buf_desc->stream_id & 1) == 1) { //TX BUFFER // If 'initial_rx' flag, clear buffers TX1, TX2, TX3, TX4 if(initial_tx) { TX1_cb->start = 0; // Clear buffers RX1, RX2, RX3, RX4 TX1_cb->end = 0; TX2_cb->start = 0; TX2_cb->end = 0; TX3_cb->start = 0; TX3_cb->end = 0; TX4_cb->start = 0; TX4_cb->end = 0; /* Clear filter memory */ memset(tx_float_in_24k, 0, MEM_24 * sizeof(float)); memset(tx_float_in_8k, 0, MEM_8 * sizeof(float)); /* Requires us to set initial_rx to FALSE which we do at the end of * the first loop */ } initial_rx = TRUE; // Check for new receiver input packet & move to TX1_cb. // TODO - If transmit packet, discard here? if ( !inhibit_tx ) { for( i = 0 ; i < PACKET_SAMPLES ; i++ ) { //output("Outputting ") // fsample = Get next float from packet; cbWriteFloat(TX1_cb, ((Complex*)buf_desc->buf_ptr)[i].real); } // // Check for >= 384 samples in TX1_cb and spin downsampler // Convert to shorts and move to TX2_cb. if(cfbContains(TX1_cb) >= 384) { for(i=0 ; i<384 ; i++) { tx_float_in_24k[i + MEM_24] = cbReadFloat(TX1_cb); } fdmdv_24_to_8(tx_float_out_8k, &tx_float_in_24k[MEM_24], 128); for(i=0 ; i<128 ; i++) { cbWriteShort(TX2_cb, (short) (tx_float_out_8k[i]*SCALE_TX_IN)); } } // // // Check for >= 320 samples in TX2_cb and spin vocoder // Move output to TX3_cb. if ( csbContains(TX2_cb) >= 320 ) { for( i=0 ; i< 320 ; i++) { speech_in[i] = cbReadShort(TX2_cb); } freedv_tx(_freedvS, mod_out, speech_in); for( i=0 ; i < 320 ; i++) { cbWriteShort(TX3_cb, mod_out[i]); } } // Check for >= 128 samples in TX3_cb, convert to floats // and spin the upsampler. Move output to TX4_cb. if(csbContains(TX3_cb) >= 128) { for( i=0 ; i<128 ; i++) { tx_float_in_8k[i+MEM_8] = ((float) (cbReadShort(TX3_cb) / SCALE_TX_OUT)); } fdmdv_8_to_24(tx_float_out_24k, &tx_float_in_8k[MEM_8], 128); for( i=0 ; i<384 ; i++) { cbWriteFloat(TX4_cb, tx_float_out_24k[i]); } //Sig2Noise = (_freedvS->fdmdv_stats.snr_est); } } // Check for >= 128 samples in RX4_cb. Form packet and // export. uint32 tx_check_samples = PACKET_SAMPLES; if(initial_tx) tx_check_samples = PACKET_SAMPLES * 3; if ( _end_of_transmission ) flush_tx = TRUE; if ( !inhibit_tx ) { if(cfbContains(TX4_cb) >= tx_check_samples ) { for( i = 0 ; i < PACKET_SAMPLES ; i++) { //output("Fetching from end buffer \n"); // Set up the outbound packet fsample = cbReadFloat(TX4_cb); // put the fsample into the outbound packet ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; } } else { //output("TX Starved buffer out\n"); memset( buf_desc->buf_ptr, 0, PACKET_SAMPLES * sizeof(Complex)); if(initial_tx) initial_tx = FALSE; } emit_waveform_output(buf_desc); if ( flush_tx ) { inhibit_tx = TRUE; while ( cfbContains(TX4_cb) > 0 ) { if ( cfbContains(TX4_cb) > PACKET_SAMPLES ) { for( i = 0 ; i < PACKET_SAMPLES ; i++) { // Set up the outbound packet fsample = cbReadFloat(TX4_cb); // put the fsample into the outbound packet ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; } } else { int end_index = 0; for ( i = 0 ; i <= cfbContains(TX4_cb); i++ ) { fsample = cbReadFloat(TX4_cb); ((Complex*)buf_desc->buf_ptr)[i].real = fsample; ((Complex*)buf_desc->buf_ptr)[i].imag = fsample; end_index = i+1; } for ( i = end_index ; i < PACKET_SAMPLES ; i++ ) { ((Complex*)buf_desc->buf_ptr)[i].real = 0.0f; ((Complex*)buf_desc->buf_ptr)[i].imag = 0.0f; } } emit_waveform_output(buf_desc); } } } } hal_BufferRelease(&buf_desc); } } while(1); // Seems infinite loop but will exit once there are no longer any buffers linked in _Waveformlist } } _waveform_thread_abort = TRUE; freedv_close(_freedvS); return NULL; } void sched_waveform_Init(void) { pthread_rwlock_init(&_list_lock, NULL); pthread_rwlock_wrlock(&_list_lock); _root = (BufferDescriptor)safe_malloc(sizeof(buffer_descriptor)); memset(_root, 0, sizeof(buffer_descriptor)); _root->next = _root; _root->prev = _root; pthread_rwlock_unlock(&_list_lock); sem_init(&sched_waveform_sem, 0, 0); pthread_create(&_waveform_thread, NULL, &_sched_waveform_thread, NULL); struct sched_param fifo_param; fifo_param.sched_priority = 30; pthread_setschedparam(_waveform_thread, SCHED_FIFO, &fifo_param); } void sched_waveformThreadExit() { _waveform_thread_abort = TRUE; sem_post(&sched_waveform_sem); }