
7
 Packaging and Distributing .NET
Types

This chapter is about how C# keywords are related to .NET types, and about the relationship between

namespaces and assemblies. You’ll also become familiar with how to package and publish your .NET

apps and libraries for cross-platform use, how to use legacy .NET Framework libraries in .NET libraries,

and the possibility of porting legacy .NET Framework code bases to modern .NET.

This chapter covers the following topics:

• The road to .NET 7

• Understanding .NET components

• Publishing your applications for deployment

• Decompiling .NET assemblies

• Packaging your libraries for NuGet distribution

• Porting from .NET Framework to modern .NET

• Working with preview features

 The road to .NET 7
This part of the book is about the functionality in the Base Class Library (BCL) APIs provided by .NET

and how to reuse functionality across all the diff erent .NET platforms using .NET Standard.

First, we will review the route to this point and why it is important to understand the past.

.NET Core 2.0 and later’s support for a minimum of .NET Standard 2.0 is important because it pro-

vides many of the APIs that were missing from the fi rst version of .NET Core. The 15 years’ worth of

libraries and applications that .NET Framework developers had available to them that are relevant

for modern development have now been migrated to .NET and can run cross-platform on macOS and

Linux variants, as well as on Windows.

Packaging and Distributing .NET Types312

.NET Standard 2.1 added about 3,000 new APIs. Some of those APIs need runtime changes that would

break backward compatibility, so .NET Framework 4.8 only implements .NET Standard 2.0. .NET Core

3.0, Xamarin, Mono, and Unity implement .NET Standard 2.1.

.NET 5 removed the need for .NET Standard if all your projects could use .NET 5. The same applies

to .NET 6 and .NET 7. Since you might still need to create class libraries for legacy .NET Framework

projects or legacy Xamarin mobile apps, there is still a need to create .NET Standard 2.0 and 2.1 class

libraries. In March 2021, I surveyed professional developers, and half still needed to create .NET

Standard 2.0 compliant class libraries.

Now that .NET 6 and .NET 7 have full support for mobile and desktop apps built using .NET MAUI, the

need for .NET Standard has been further reduced.

To summarize the progress that .NET has made over the past fi ve years, I have compared the major

.NET Core and modern .NET versions with the equivalent .NET Framework versions in the following list:

• .NET Core 1.x: Much smaller API compared to .NET Framework 4.6.1, which was the current

version in March 2016.

• .NET Core 2.x: Reached API parity with .NET Framework 4.7.1 for modern APIs because they

both implement .NET Standard 2.0.

• .NET Core 3.x: Larger API compared to .NET Framework for modern APIs because .NET Frame-

work 4.8 does not implement .NET Standard 2.1.

• .NET 5: Even larger API compared to .NET Framework 4.8 for modern APIs, with much-im-

proved performance.

• .NET 6: Continued improvements to performance and expanded APIs. Optional support for

mobile apps in .NET MAUI added in May 2022.

• .NET 7: Final unifi cation with the support for mobile apps in .NET MAUI.

 .NET Core 1.0
.NET Core 1.0 was released in June 2016 and focused on implementing an API suitable for building

modern cross-platform apps, including web and cloud applications and services for Linux using ASP.

NET Core.

 .NET Core 1.1
.NET Core 1.1 was released in November 2016 and focused on fi xing bugs, increasing the number of

Linux distributions supported, supporting .NET Standard 1.6, and improving performance, especially

with ASP.NET Core for web apps and services.

 .NET Core 2.0
.NET Core 2.0 was released in August 2017 and focused on implementing .NET Standard 2.0, the ability

to reference .NET Framework libraries, and more performance improvements.

The third edition of this book was published in November 2017, so it covered up to .NET Core 2.0 and

.NET Core for Universal Windows Platform (UWP) apps.

Chapter 7 313

 .NET Core 2.1
.NET Core 2.1 was released in May 2018 and focused on an extendable tooling system, adding new types

like Span<T>, new APIs for cryptography and compression, a Windows Compatibility Pack with an ad-

ditional 20,000 APIs to help port old Windows applications, Entity Framework Core value conversions,

LINQ GroupBy conversions, data seeding, query types, and even more performance improvements,

including the topics listed in the following table:

Feature Chapter Topic

Spans 8 Working with spans, indexes, and ranges

Brotli compression 9 Compressing with the Brotli algorithm

EF Core Lazy loading 10 Enabling lazy loading

EF Core Data seeding 10 Understanding data seeding

 .NET Core 2.2
.NET Core 2.2 was released in December 2018 and focused on diagnostic improvements for the run-

time, optional tiered compilation, and adding new features to ASP.NET Core and Entity Framework

Core like spatial data support using types from the NetTopologySuite (NTS) library, query tags, and

collections of owned entities.

 .NET Core 3.0
.NET Core 3.0 was released in September 2019 and focused on adding support for building Windows

desktop applications using Windows Forms (2001), Windows Presentation Foundation (WPF; 2006),

and Entity Framework 6.3, side-by-side and app-local deployments, a fast JSON reader, serial port ac-

cess and other pinout access for Internet of Things (IoT) solutions, and tiered compilation by default,

including the topics listed in the following table:

Feature Chapter Topic

Embedding .NET in-app 7 Publishing your applications for deployment

Index and Range 8 Working with spans, indexes, and ranges

System.Text.Json 9 High-performance JSON processing

The fourth edition of this book was published in October 2019, so it covered some of the new APIs

added in later versions up to .NET Core 3.0.

 .NET Core 3.1
.NET Core 3.1 was released in December 2019 and focused on bug fi xes and refi nements so that it could

be a Long Term Support (LTS) release, not losing support until December 2022.

Packaging and Distributing .NET Types314

 .NET 5.0
.NET 5.0 was released in November 2020 and focused on unifying the various .NET platforms except

mobile, refi ning the platform, and improving performance, including the topics listed in the following

table:

Feature Chapter Topic

Half type 8 Working with numbers

Regular expression performance improvements 8
Regular expression performance

improvements

System.Text.Json improvements 9 High-performance JSON processing

EF Core generated SQL 10 Getting the generated SQL

EF Core Filtered Include 10 Filtering included entities

EF Core Scaff old-DbContext now singularizes

using Humanizer
10

Scaff olding models using an existing

database

 .NET 6.0
.NET 6.0 was released in November 2021 and focused on adding more features to EF Core for data

management, new types for working with dates and times, and improving performance, including

the topics listed in the following table:

Feature Chapter Topic

Check .NET SDK status 7 Checking your .NET SDKs for updates

Support for Apple Silicon 7 Creating a console application to publish

Link trim mode as default 7 Reducing the size of apps using app trimming

EnsureCapacity for List<T> 8
Improving performance by ensuring the

capacity of a collection

Low-level fi le API using RandomAccess 9
Reading and writing with random access

handles

EF Core confi gure conventions 10 Confi guring preconvention models

New LINQ methods 11
Building LINQ expressions with the

Enumerable class

TryGetNonEnumeratedCount 11 Aggregating sequences

Chapter 7 315

 .NET 7.0
.NET 7.0 was released in November 2022 and focused on unifying with the mobile platform, adding

more features like string syntax coloring and IntelliSense, support for creating and extracting tar

archives, and improving performance of inserts and updates with EF Core, including the topics listed

in the following table:

Feature Chapter Topic

[StringSyntax] attribute 8 Activating regular expression syntax coloring

[GeneratedRegex] attribute 8
Improving regular expression performance with

source generators

Tar archive support 9 Working with tar archives

ExecuteUpdate and

ExecuteDelete
10 More effi cient updates and deletes

Order and OrderDescending 11 Sorting by the item itself

 Improving performance with .NET 5 and later
Microsoft has made signifi cant improvements to performance in the past few years. You can read

detailed blog posts at the following links:

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

https://devblogs.microsoft.com/dotnet/performance_improvements_in_net_7/

 Checking your .NET SDKs for updates
With .NET 6, Microsoft added a command to check the versions of .NET SDKs and runtimes that you

have installed and warn you if any need updating. For example, enter the following command:

dotnet sdk check

You will see results, including the status of available updates, as shown in the following partial output:

.NET SDKs:
Version Status

3.1.421 .NET Core 3.1 is going out of support soon.
5.0.406 .NET 5.0 is out of support.
6.0.300 Patch 6.0.301 is available.
7.0.100 Up to date.

Packaging and Distributing .NET Types316

 Understanding .NET components
.NET is made up of several pieces, which are shown in the following list:

• Language compilers: These turn your source code written with languages such as C#, F#, and

Visual Basic into intermediate language (IL) code stored in assemblies. With C# 6.0 and later,

Microsoft switched to an open-source rewritten compiler known as Roslyn that is also used

by Visual Basic.

• Common Language Runtime (CoreCLR): This runtime loads assemblies, compiles the IL code

stored in them into native code instructions for your computer’s CPU, and executes the code

within an environment that manages resources such as threads and memory.

• Base Class Libraries (BCL or CoreFX): These are prebuilt assemblies of types packaged and

distributed using NuGet for performing common tasks when building applications. You can

use them to quickly build anything you want, rather like combining LEGO™ pieces.

 Assemblies, NuGet packages, and namespaces
An assembly is where a type is stored in the fi lesystem. Assemblies are a mechanism for deploying

code. For example, the System.Data.dll assembly contains types for managing data. To use types

in other assemblies, they must be referenced. Assemblies can be static (pre-created) or dynamic

(generated at runtime). Dynamic assemblies are an advanced feature that we will not cover in this

book. Assemblies can be compiled into a single fi le as a DLL (class library) or an EXE (console app).

Assemblies are distributed as NuGet packages, which are fi les downloadable from public online feeds

and can contain multiple assemblies and other resources. You will also hear about project SDKs,

workloads, and platforms, which are combinations of NuGet packages.

Microsoft ’s NuGet feed is found here: https://www.nuget.org/.

 What is a namespace?
A namespace is the address of a type. Namespaces are a mechanism to uniquely identify a type by

requiring a full address rather than just a short name. In the real world, Bob of 34 Sycamore Street is

diff erent from Bob of 12 Willow Drive.

In .NET, the IActionFilter interface of the System.Web.Mvc namespace is diff erent from the

IActionFilter interface of the System.Web.Http.Filters namespace.

 Dependent assemblies
If an assembly is compiled as a class library and provides types for other assemblies to use, then it

has the fi le extension .dll (dynamic link library), and it cannot be executed standalone.

Likewise, if an assembly is compiled as an application, then it has the fi le extension .exe (executable)

and can be executed standalone. Before .NET Core 3.0, console apps were compiled to .dll fi les and

had to be executed by the dotnet run command or a host executable.

Chapter 7 317

Any assembly can reference one or more class library assemblies as dependencies, but you cannot

have circular references. So, assembly B cannot reference assembly A if assembly A already references

assembly B. The compiler will warn you if you attempt to add a dependency reference that would

cause a circular reference. Circular references are oft en a warning sign of poor code design. If you

are sure that you need a circular reference, then use an interface to solve it.

 Microsoft .NET project SDKs
By default, console applications have a dependency reference on the Microsoft .NET project SDK. This

platform contains thousands of types in NuGet packages that almost all applications would need, such

as the System.Int32 and System.String types.

When using .NET, you reference the dependency assemblies, NuGet packages, and platforms that

your application needs in a project fi le.

Let’s explore the relationship between assemblies and namespaces:

1. Use your preferred code editor to create a new project, as defi ned in the following list:

• Project template: Console App/console

• Project fi le and folder: AssembliesAndNamespaces

• Workspace/solution fi le and folder: Chapter07

2. Open AssembliesAndNamespaces.csproj and note that it is a typical project fi le for a .NET

application, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

</Project>

3. Aft er the <PropertyGroup> section, add a new <ItemGroup> section to statically import System.
Console for all C# fi les using the implicit usings .NET SDK feature, as shown in the following

markup:

<ItemGroup>
 <Using Include="System.Console" Static="true" />
</ItemGroup>

Packaging and Distributing .NET Types318

 Namespaces and types in assemblies
Many common .NET types are in the System.Runtime.dll assembly. There is not always a one-to-one

mapping between assemblies and namespaces. A single assembly can contain many namespaces and a

namespace can be defi ned in many assemblies. You can see the relationship between some assemblies

and the namespaces that they supply types for, as shown in the following table:

Assembly Example namespaces Example types

System.Runtime.dll System, System.Collections, System.
Collections.Generic

Int32, String, IEnumerable<T>

System.Console.dll System Console

System.Threading.
dll

System.Threading Interlocked, Monitor, Mutex

System.Xml.
XDocument.dll

System.Xml.Linq XDocument, XElement, XNode

 NuGet packages
.NET is split into a set of packages, distributed using a Microsoft -supported package management

technology named NuGet. Each of these packages represents a single assembly of the same name. For

example, the System.Collections package contains the System.Collections.dll assembly.

The following are the benefi ts of packages:

• Packages can be easily distributed on public feeds.

• Packages can be reused.

• Packages can ship on their own schedule.

• Packages can be tested independently of other packages.

• Packages can support diff erent OSes and CPUs by including multiple versions of the same

assembly built for diff erent OSes and CPUs.

• Packages can have dependencies specifi c to only one library.

• Apps are smaller because unreferenced packages aren’t part of the distribution. The following

table lists some of the more important packages and their important types:

Package Important types

System.Runtime Object, String, Int32, Array

System.Collections List<T>, Dictionary<TKey, TValue>

System.Net.Http HttpClient, HttpResponseMessage

System.IO.FileSystem File, Directory

System.Reflection Assembly, TypeInfo, MethodInfo

Chapter 7 319

 Understanding frameworks
There is a two-way relationship between frameworks and packages. Packages defi ne the APIs, while

frameworks group packages. A framework without any packages would not defi ne any APIs.

.NET packages each support a set of frameworks. For example, the System.IO.FileSystem package

version 4.3.0 supports the following frameworks:

• .NET Standard, version 1.3 or later

• .NET Framework, version 4.6 or later

• Six Mono and Xamarin platforms (for example, Xamarin.iOS 1.0)

 Importing a namespace to use a type
Let’s explore how namespaces are related to assemblies and types:

1. In the AssembliesAndNamespaces project, in Program.cs, delete the existing statements and

then enter the following code:

XDocument doc = new();

2. Build the project and note the compiler error message, as shown in the following output:

The type or namespace name 'XDocument' could not be found (are you
missing a using directive or an assembly reference?)

The XDocument type is not recognized because we have not told the compiler what the name-

space of the type is. Although this project already has a reference to the assembly that con-

tains the type, we also need to either prefi x the type name with its namespace or import the

namespace.

3. Click inside the XDocument class name. Your code editor displays a light bulb, showing that it

recognizes the type and can automatically fi x the problem for you.

4. Click the light bulb, and select using System.Xml.Linq; from the menu.

This will import the namespace by adding a using statement to the top of the fi le. Once a namespace is

imported at the top of a code fi le, then all the types within the namespace are available for use in that

code fi le by just typing their name without the type name needing to be fully qualifi ed by prefi xing

it with its namespace.

More Information: You can read the details at the following link: https://www.nuget.
org/packages/System.IO.FileSystem/.

Packaging and Distributing .NET Types320

Sometimes I like to add a comment with a type name aft er importing a namespace to remind me

which types require me to import that namespace, as shown in the following code:

using System.Xml.Linq; // XDocument

 Relating C# keywords to .NET types
One of the common questions I get from new C# programmers is, “What is the diff erence between

string with a lowercase s and String with an uppercase S?”

The short answer is easy: none. The long answer is that all C# type keywords like string or int are

aliases for a .NET type in a class library assembly.

When you use the string keyword, the compiler recognizes it as a System.String type. When you

use the int type, the compiler recognizes it as a System.Int32 type.

Let’s see this in action with some code:

1. In Program.cs, declare two variables to hold string values, one using lowercase string and

one using uppercase String, as shown in the following code:

string s1 = "Hello";
String s2 = "World";
WriteLine($"{s1} {s2}");

2. Run the code, and note that at the moment, they both work equally well, and literally mean

the same thing.

3. In AssembliesAndNamespaces.csproj, add entries to prevent the System namespace from

being globally imported, as shown in the following markup:

<ItemGroup>
 <Using Remove="System" />
</ItemGroup>

4. In Program.cs, note the compiler error message, as shown in the following output:

The type or namespace name 'String' could not be found (are you missing a
using directive or an assembly reference?)

5. At the top of Program.cs, import the System namespace with a using statement that will fi x

the error, as shown in the following code:

using System; // String

Good Practice: When you have a choice, use the C# keyword instead of the actual type

because the keywords do not need the namespace to be imported.

Chapter 7 321

 Mapping C# aliases to .NET types
The following table shows the 18 C# type keywords along with their actual .NET types:

Keyword .NET type Keyword .NET type

string System.String char System.Char

sbyte System.SByte byte System.Byte

short System.Int16 ushort System.UInt16

int System.Int32 uint System.UInt32

long System.Int64 ulong System.UInt64

nint System.IntPtr nuint System.UIntPtr

float System.Single double System.Double

decimal System.Decimal bool System.Boolean

object System.Object dynamic System.Dynamic.DynamicObject

Other .NET programming language compilers can do the same thing. For example, the Visual Basic

.NET language has a type named Integer that is its alias for System.Int32.

 Understanding native-sized integers
C# 9 introduced the nint and nuint keyword aliases for native-sized integers, meaning that the stor-

age size for the integer value is platform-specifi c. They store a 32-bit integer in a 32-bit process and

sizeof() returns 4 bytes; they store a 64-bit integer in a 64-bit process and sizeof() returns 8 bytes.

The aliases represent pointers to the integer value in memory, which is why their .NET names are

IntPtr and UIntPtr. The actual storage type will be either System.Int32 or System.Int64 depending

on the process.

In a 64-bit process, the following code:

WriteLine($"int.MaxValue = {int.MaxValue:N0}");
WriteLine($"nint.MaxValue = {nint.MaxValue:N0}");

produces this output:

int.MaxValue = 2,147,483,647
nint.MaxValue = 9,223,372,036,854,775,807

 Revealing the location of a type
Code editors provide built-in documentation for .NET types. Let’s explore:

1. Right-click inside XDocument and choose Go to Defi nition.

Packaging and Distributing .NET Types322

2. Navigate to the top of the code fi le and note the assembly fi lename is System.Xml.XDocument.
dll, but the class is in the System.Xml.Linq namespace, as shown in Figure 7.1:

Figure 7.1: Assembly and namespace that contains the XDocument type

3. Close the XDocument [from metadata] tab.

4. Right-click inside string or String and choose Go to Defi nition.

5. Navigate to the top of the code fi le and note the assembly fi lename is System.Runtime.dll but

the class is in the System namespace.

Your code editor is technically lying to you. If you remember when we wrote code in Chapter 2, Speaking

C#, when we revealed the extent of the C# vocabulary, we discovered that the System.Runtime.dll

assembly contains zero types.

What the System.Runtime.dll assembly does contain are type-forwarders. These are special types

that appear to exist in an assembly but are implemented elsewhere. In this case, they are implemented

deep inside the .NET runtime using highly optimized code.

 Sharing code with legacy platforms using .NET Standard
Before .NET Standard, there were Portable Class Libraries (PCLs). With PCLs, you could create a li-

brary of code and explicitly specify which platforms you want the library to support, such as Xamarin,

Silverlight, and Windows 8. Your library could then use the intersection of APIs that are supported

by the specifi ed platforms.

Microsoft realized that this is unsustainable, so they created .NET Standard—a single API that all future

.NET platforms would support. There are older versions of .NET Standard, but .NET Standard 2.0 was

an attempt to unify all important recent .NET platforms. .NET Standard 2.1 was released in late 2019

but only .NET Core 3.0 and that year’s version of Xamarin support its new features. For the rest of this

book, I will use the term .NET Standard to mean .NET Standard 2.0.

.NET Standard is like HTML5 in that they are both standards that a platform should support. Just as

Google’s Chrome browser and Microsoft ’s Edge browser implement the HTML5 standard, .NET Core,

.NET Framework, and Xamarin all implement .NET Standard. If you want to create a library of types

that will work across variants of legacy .NET, you can do so most easily with .NET Standard.

Chapter 7 323

Your choice of which .NET Standard version to target comes down to a balance between maximizing

platform support and available functionality. A lower version supports more platforms but has a

smaller set of APIs. A higher version supports fewer platforms but has a larger set of APIs. Generally,

you should choose the lowest version that supports all the APIs that you need.

 Understanding defaults for class libraries with different SDKs
When using the dotnet SDK tool to create a class library, it might be useful to know which target

framework will be used by default, as shown in the following table:

SDK Default target framework for new class libraries

.NET Core 3.1 netstandard2.0

.NET 6 net6.0

.NET 7 net7.0

Of course, just because a class library targets a specifi c version of .NET by default does not mean you

cannot change it aft er creating a class library project using the default template.

You can manually set the target framework to a value that supports the projects that need to reference

that library, as shown in the following table:

Class library target

framework
Can be used by projects that target

netstandard2.0
.NET Framework 4.6.1 or later, .NET Core 2.0 or later, .NET 5.0 or later,

Mono 5.4 or later, Xamarin.Android 8.0 or later, Xamarin.iOS 10.14 or

later

netstandard2.1 .NET Core 3.0 or later, .NET 5.0 or later, Mono 6.4 or later, Xamarin.

Android 10.0 or later, Xamarin.iOS 12.16 or later

net6.0 .NET 6.0 or later

net7.0 .NET 7.0 or later

Good Practice: Since many of the API additions in .NET Standard 2.1 required runtime

changes, and .NET Framework is Microsoft ’s legacy platform that needs to remain as

unchanging as possible, .NET Framework 4.8 remained on .NET Standard 2.0 rather than

implementing .NET Standard 2.1. If you need to support .NET Framework customers, then

you should create class libraries on .NET Standard 2.0 even though it is not the latest and

does not support all the recent language and BCL new features.

Good Practice: Always check the target framework of a class library and then manually

change it to something more appropriate if necessary. Make a conscious decision about

what it should be rather than accepting the default.

Packaging and Distributing .NET Types324

 Creating a .NET Standard 2.0 class library
We will create a class library using .NET Standard 2.0 so that it can be used across all important .NET

legacy platforms and cross-platform on Windows, macOS, and Linux operating systems, while also

having access to a wide set of .NET APIs:

1. Use your preferred code editor to add a new Class Library/classlib project named

SharedLibrary that targets .NET Standard 2.0 to the Chapter07 solution/workspace:

• If you use Visual Studio 2022, when prompted for the Target Framework, select .NET

Standard 2.0, and then set the startup project for the solution to the current selection.

• If you use Visual Studio Code, include a switch to target .NET Standard 2.0, as shown

in the following command, and then select SharedLibrary as the active OmniSharp

project:

dotnet new classlib -f netstandard2.0

An alternative to manually creating two class libraries is to create one that supports multi-targeting.

If you would like me to add a section about multi-targeting to the next edition, please let me know.

You can read about multi-targeting here: https://docs.microsoft.com/en-us/dotnet/standard/
library-guidance/cross-platform-targeting#multi-targeting.

 Controlling the .NET SDK
By default, executing dotnet commands uses the most recent installed .NET SDK. There may be times

when you want to control which SDK is used.

For example, one reader of the fourth edition wanted their experience to match the book steps that

use the .NET Core 3.1 SDK. But they had installed the .NET 5.0 SDK as well and that was being used by

default. As described in the previous section, the behavior when creating new class libraries changed

to target .NET 5.0 instead of .NET Standard 2.0, and that confused the reader.

You can control the .NET SDK used by default by using a global.json fi le. The dotnet command

searches the current folder and ancestor folders for a global.json fi le.

You do not need to complete the following steps, but if you want to try and do not already have .NET

6.0 SDK installed then you can install it from the following link:

https://dotnet.microsoft.com/download/dotnet/6.0

1. Create a subdirectory/folder in the Chapter07 folder named ControlSDK.

2. On Windows, start Command Prompt or Windows Terminal. On macOS, start Terminal. If

you are using Visual Studio Code, then you can use the integrated terminal.

Good Practice: If you need to create types that use new features in .NET 7.0, as well as

types that only use .NET Standard 2.0 features, then you can create two separate class

libraries: one targeting .NET Standard 2.0 and one targeting .NET 7.0.

Chapter 7 325

3. In the ControlSDK folder, at the command prompt or terminal, enter a command to list the

installed .NET SDKs, as shown in the following command:

dotnet --list-sdks

4. Note the results and the version number of the latest .NET 6 SDK installed, as shown in the

following output:

3.1.416 [C:\Program Files\dotnet\sdk]
6.0.200 [C:\Program Files\dotnet\sdk]
7.0.100 [C:\Program Files\dotnet\sdk]

5. Create a global.json fi le that forces the use of the latest .NET Core 6.0 SDK that you have

installed (which might be later than mine), as shown in the following command:

dotnet new globaljson --sdk-version 6.0.200

6. Open the global.json fi le and review its contents, as shown in the following markup:

{
 "sdk": {
 "version": "6.0.200"
 }
}

7. In the ControlSDK folder, at the command prompt or terminal, enter a command to create a

class library project, as shown in the following command:

dotnet new classlib

8. If you do not have the .NET 6.0 SDK installed then you will see an error, as shown in the fol-

lowing output:

Could not execute because the application was not found or a compatible
.NET SDK is not installed.

9. If you do have the .NET 6.0 SDK installed, then a class library project will be created that tar-

gets .NET 6.0 by default.

 Publishing your code for deployment
If you write a novel and you want other people to read it, you must publish it.

Most developers write code for other developers to use in their own projects, or for users to run as

an app. To do so, you must publish your code as packaged class libraries or executable applications.

There are three ways to publish and deploy a .NET application. They are:

• Framework-dependent deployment (FDD)

• Framework-dependent executable (FDE)

• Self-contained

Packaging and Distributing .NET Types326

If you choose to deploy your application and its package dependencies, but not .NET itself, then you

rely on .NET already being on the target computer. This works well for web applications deployed to

a server because .NET and lots of other web applications are likely already on the server.

Framework-dependent deployment (FDD) means you deploy a DLL that must be executed by the

dotnet command-line tool. Framework-dependent executables (FDE) means you deploy an EXE that

can be run directly from the command line. Both require the appropriate version of the .NET runtime

to be already installed on the system.

Sometimes, you want to be able to give someone a USB stick containing your application and know

that it can execute on their computer. You want to perform a self-contained deployment. While the

size of the deployment fi les will be larger, you’ll know that it will work.

 Creating a console app to publish
Let’s explore how to publish a console app:

1. Use your preferred code editor to add a new Console App/console project named

DotNetEverywhere to the Chapter07 solution/workspace:

• In Visual Studio Code, select DotNetEverywhere as the active OmniSharp project. When

you see the pop-up warning message saying that required assets are missing, click Yes

to add them.

2. Modify the project fi le to statically import the System.Console class in all C# fi les.

3. In Program.cs, delete the existing statements and then add a statement to output a message

saying the console app can run everywhere and some information about the operating system,

as shown in the following code:

WriteLine("I can run everywhere!");
WriteLine($"OS Version is {Environment.OSVersion}.");

if (OperatingSystem.IsMacOS())
{
 WriteLine("I am macOS.");
}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10, build:
22000))
{
 WriteLine("I am Windows 11.");
}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10))
{
 WriteLine("I am Windows 10.");
}
else
{
 WriteLine("I am some other mysterious OS.");

Chapter 7 327

}
WriteLine("Press ENTER to stop me.");
ReadLine();

4. Run the console app and note the results when run on Windows 11, as shown in the following

output:

I can run everywhere!
OS Version is Microsoft Windows NT 10.0.22000.0.
I am Windows 11.
Press ENTER to stop me.

5. Open DotNetEverywhere.csproj and add the runtime identifi ers to target three operating

systems inside the <PropertyGroup> element, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <RuntimeIdentifiers>
 win10-x64;osx-x64;osx.11.0-arm64;linux-x64;linux-arm64
 </RuntimeIdentifiers>
 </PropertyGroup>

</Project>

The highlighted items are as follows:

• The win10-x64 RID value means Windows 10 or Windows Server 2016 64-bit. You could

also use the win10-arm64 RID value to deploy to a Microsoft Surface Pro X, Surface Pro

9 (SQ 3), or Windows Dev Kit 2023.

• The osx-x64 RID value means macOS Sierra 10.12 or later. You can also specify ver-

sion-specifi c RID values like osx.10.15-x64 (Catalina), osx.13.0-x64 (Ventura on Intel),

or osx.13.0-arm64 (Ventura on Apple Silicon).

• The linux-x64 RID value means most desktop distributions of Linux, like Ubuntu,

CentOS, Debian, or Fedora. Use linux-arm for Raspbian or Raspberry Pi OS 32-bit. Use

linux-arm64 for a Raspberry Pi running Ubuntu 64-bit.

There are two elements that you can use to specify runtime identifiers. Use

<RuntimeIdentifier> if you only need to specify one. Use <RuntimeIdentifiers> if

you need to specify multiple, as we did in the preceding example. If you use the wrong

one, then the compiler will give an error and it can be diffi cult to understand why with

only one character diff erence!

Packaging and Distributing .NET Types328

 Understanding dotnet commands
When you install the .NET SDK, it includes a command-line interface (CLI) named dotnet.

 Creating new projects
The .NET CLI has commands that work on the current folder to create a new project using templates:

1. On Windows, start Command Prompt or Windows Terminal. On macOS, start Terminal. If

you are using Visual Studio Code, then you can use the integrated terminal.

2. Enter the dotnet new list (.NET 7), or dotnet new --list or dotnet new -l (.NET 6) com-

mand to list your currently installed templates, as shown in Figure 7.2:

Figure 7.2: A list of installed dotnet new project templates

Most dotnet command-line switches have a long and a short version, for example, --list or -l. The

short ones are quicker to type but more likely to be misinterpreted by you or other humans. Some-

times more typing is clearer.

 Getting information about .NET and its environment
It is useful to see what .NET SDKs and runtimes are currently installed, alongside information about

the operating system, as shown in the following command:

dotnet --info

Chapter 7 329

Note the results, as shown in the following partial output:

.NET SDK (reflecting any global.json):
 Version: 7.0.100
 Commit: 129d2465c8

Runtime Environment:
 OS Name: Windows
 OS Version: 10.0.22000
 OS Platform: Windows
 RID: win10-x64
 Base Path: C:\Program Files\dotnet\sdk\7.0.100\

Host (useful for support):
 Version: 7.0.0
 Commit: 405337939c

.NET SDKs installed:
 3.1.416 [C:\Program Files\dotnet\sdk]
 5.0.405 [C:\Program Files\dotnet\sdk]
 6.0.200 [C:\Program Files\dotnet\sdk]
 7.0.100 [C:\Program Files\dotnet\sdk]

.NET runtimes installed:
 Microsoft.AspNetCore.App 3.1.22 [...\dotnet\shared\Microsoft.AspNetCore.All]
...

 Managing projects
The .NET CLI has the following commands that work on the project in the current folder, to manage

the project:

• dotnet help: Shows the command line help.

• dotnet new: Create a new .NET project or fi le.

• dotnet tool: Install or manage tools that extend the .NET experience.

• dotnet workload: Manage optional workloads like .NET MAUI.

• dotnet restore: This downloads dependencies for the project.

• dotnet build: This builds, aka compiles, a .NET project.

• dotnet build-server: Interact with servers started by a build.

• dotnet msbuild: This runs MS Build Engine commands.

• dotnet clean: This removes the temporary outputs from a build.

• dotnet test: This builds and then runs unit tests for the project.

• dotnet run: This builds and then runs the project.

• dotnet pack: This creates a NuGet package for the project.

Packaging and Distributing .NET Types330

• dotnet publish: This builds and then publishes the project, either with dependencies or as

a self-contained application.

• dotnet add: This adds a reference to a package or class library to the project.

• dotnet remove: This removes a reference to a package or class library from the project.

• dotnet list: This lists the package or class library references for the project.

 Publishing a self-contained app
Now that you have seen some example dotnet tool commands, we can publish our cross-platform

console app:

1. At the command line, make sure that you are in the DotNetEverywhere folder.

2. Enter a command to build and publish the self-contained release version of the console appli-

cation for Windows 10, as shown in the following command:

dotnet publish -c Release -r win10-x64 --self-contained

3. Note the build engine restores any needed packages, compiles the project source code into an

assembly DLL, and creates a publish folder, as shown in the following output:

MSBuild version 17.4.0+14c24b2d3 for .NET
 Determining projects to restore...
 All projects are up-to-date for restore.
 DotNetEverywhere -> C:\cs11dotnet7\Chapter07\DotNetEverywhere\bin\
Release\net7.0\win10-x64\DotNetEverywhere.dll
 DotNetEverywhere -> C:\cs11dotnet7\Chapter07\DotNetEverywhere\bin\
Release\net7.0\win10-x64\publish\

4. Enter the following commands to build and publish the release versions for macOS and Linux

variants:

dotnet publish -c Release -r osx-x64 --self-contained
dotnet publish -c Release -r osx.11.0-arm64 --self-contained
dotnet publish -c Release -r linux-x64 --self-contained
dotnet publish -c Release -r linux-arm64 --self-contained

5. Open Windows File Explorer or a macOS Finder window, navigate to DotNetEverywhere\bin\
Release\net7.0, and note the output folders for the fi ve operating systems.

6. In the win10-x64 folder, select the publish folder, and note all the supporting assemblies like

Microsoft.CSharp.dll.

Good Practice: You could automate these commands by using a scripting language

like PowerShell and execute the script fi le on any operating system using the

cross-platform PowerShell Core. Just create a fi le with the extension .ps1 with

the fi ve commands in it. Then execute the fi le. Learn more about PowerShell

at the following link: https://github.com/markjprice/cs11dotnet7/tree/
main/docs/powershell.

Chapter 7 331

7. Select the DotNetEverywhere executable fi le, and note it is 149 KB, as shown in Figure 7.3:

Figure 7.3: The DotNetEverywhere executable file for Windows 10 64-bit

8. If you are on Windows, then double-click to execute the program and note the result, as shown

in the following output:

I can run everywhere!
OS Version is Microsoft Windows NT 10.0.22000.0.
I am Windows 11.
Press ENTER to stop me.

9. Press Enter to close the console app and its window.

10. Note that the total size of the publish folder and all its fi les is about 70 MB.

11. In the osx.11.0-arm64 folder, select the publish folder, note all the supporting assemblies,

and then select the DotNetEverywhere executable fi le. Note that the executable is 126 KB, and

the publish folder is about 76 MB.

If you copy any of those publish folders to the appropriate operating system, the console app will run;

this is because it is a self-contained deployable .NET application. For example, here it is on macOS

Big Sur with Intel:

I can run everywhere!
OS Version is Unix 11.2.3
I am macOS.
Press ENTER to stop me.

This example used a console app, but you could just as easily create an ASP.NET Core website or web

service, or a Windows Forms or WPF app. Of course, you can only deploy Windows desktop apps to

Windows computers, not Linux or macOS.

 Publishing a single-file app
To publish as a “single” fi le, you can specify fl ags when publishing. With .NET 5, single-fi le apps were

primarily focused on Linux because there are limitations in both Windows and macOS that mean

true single-fi le publishing is not technically possible. With .NET 6 or later, you can now create proper

single-fi le apps on Windows.

Packaging and Distributing .NET Types332

If you can assume that .NET is already installed on the computer on which you want to run your app,

then you can use the extra fl ags when you publish your app for release to say that it does not need to

be self-contained and that you want to publish it as a single fi le (if possible), as shown in the following

command (which must be entered on a single line):

dotnet publish -r win10-x64 -c Release --no-self-contained
/p:PublishSingleFile=true

This will generate two fi les: DotNetEverywhere.exe and DotNetEverywhere.pdb. The .exe fi le is the

executable. The .pdb fi le is a program debug database fi le that stores debugging information.

There is no .exe fi le extension for published applications on macOS, so if you use osx-x64 in the

command above, the fi lename will not have an extension.

If you prefer the .pdb fi le to be embedded in the .exe fi le, for example, to ensure it is deployed with

its assembly, then add a <DebugType> element to the <PropertyGroup> element in your .csproj fi le

and set it to embedded, as shown highlighted in the following markup:

<PropertyGroup>

 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>

 <RuntimeIdentifiers>
 win10-x64;osx-x64;osx.11.0-arm64;linux-x64;linux-arm64
 </RuntimeIdentifiers>

 <DebugType>embedded</DebugType>

</PropertyGroup>

If you cannot assume that .NET is already installed on a computer, then although Linux also only

generates the two fi les, expect the following additional fi les for Windows: coreclr.dll, clrjit.dll,

clrcompression.dll, and mscordaccore.dll.

Let’s see an example for Windows:

1. At the command line, enter the command to build the self-contained release version of the

console app for Windows 10, as shown in the following command:

dotnet publish -c Release -r win10-x64 --self-contained
/p:PublishSingleFile=true

2. Navigate to the DotNetEverywhere\bin\Release\net7.0\win10-x64\publish folder and select

the DotNetEverywhere executable fi le. Note that the executable is now about 64 MB, and there

is also a .pdb fi le that is 11 KB. T he sizes on your system will vary.

Chapter 7 333

 Reducing the size of apps using app trimming
One of the problems with deploying a .NET app as a self-contained app is that the .NET libraries take

up a lot of space. One of the biggest needs is to reduce the size of Blazor WebAssembly components

because all the .NET libraries need to be downloaded to the browser.

Luckily, you can reduce this size by not packaging unused assemblies with your deployments. Intro-

duced with .NET Core 3.0, the app trimming system can identify the assemblies needed by your code

and remove those that are not needed.

With .NET 5, the trimming went further by removing individual types, and even members like meth-

ods from within an assembly if they are not used. For example, with a Hello World console app, the

System.Console.dll assembly is trimmed from 61.5 KB to 31.5 KB. For .NET 5, this is an experimental

feature, so it is disabled by default.

With .NET 6, Microsoft added annotations to their libraries to indicate how they can be safely trimmed

so the trimming of types and members was made the default. This is known as link trim mode.

The catch is how well the trimming identifi es unused assemblies, types, and members. If your code is

dynamic, perhaps using refl ection, then it might not work correctly, so Microsoft also allows manual

control.

 Enabling assembly-level trimming
There are two ways to enable assembly-level trimming.

The fi rst way is to add an element in the project fi le, as shown in the following markup:

<PublishTrimmed>true</PublishTrimmed>

The second way is to add a fl ag when publishing, as shown highlighted in the following command:

dotnet publish ... -p:PublishTrimmed=True

 Enabling type-level and member-level trimming
There are two ways to enable type-level and member-level trimming.

The fi rst way is to add two elements in the project fi le, as shown in the following markup:

<PublishTrimmed>true</PublishTrimmed>
<TrimMode>Link</TrimMode>

The second way is to add two fl ags when publishing, as shown highlighted in the following command:

dotnet publish ... -p:PublishTrimmed=True -p:TrimMode=Link

For .NET 6, link trim mode is the default, so you only need to specify the switch if you want to set an

alternative trim mode, like copyused, which means assembly-level trimming.

Packaging and Distributing .NET Types334

 Decompiling .NET assemblies
One of the best ways to learn how to code for .NET is to see how professionals do it.

 Decompiling using the ILSpy extension for Visual Studio 2022
For learning purposes, you can decompile any .NET assembly with a tool like ILSpy:

1. In Visual Studio 2022 for Windows, navigate to Extensions | Manage Extensions.

2. In the search box, enter ilspy.

3. For the ILSpy 2022 extension, click Download.

4. Click Close.

5. Close Visual Studio to allow the extension to install.

6. Restart Visual Studio and reopen the Chapter07 solution.

7. In Solution Explorer, right-click the DotNetEverywhere project and select Open output in ILSpy.

8. In ILSpy, in the toolbar, make sure that C# is selected in the drop-down list of languages to

decompile into.

9. In ILSpy, in the Assemblies navigation tree on the left , expand DotNetEverywhere (1.0.0.0,

.NETCoreApp, v7.0).

10. In ILSpy, in the Assemblies navigation tree on the left , expand { }.

11. In ILSpy, in the Assemblies navigation tree on the left , expand Program.

12. In ILSpy, in the Assemblies navigation tree on the left , click <Main>$(string[]) : void to show

the statements in the compiler-generated Program class and <Main>$ method to reveal how

interpolated strings work, as shown in Figure 7.4:

Figure 7.4: Revealing the <Main>$ method and how interpolated strings work using ILSpy

Good Practice: You could decompile someone else’s assemblies for non-learning purposes

like copying their code for use in your own production library or application, but remember

that you are viewing their intellectual property, so please respect that.

Chapter 7 335

13. In ILSpy, navigate to File | Open….

14. Navigate to the following folder:

cs11dotnet7/Chapter07/DotNetEverywhere/bin/Release/net7.0/linux-x64

15. Select the System.Linq.dll assembly and click Open.

16. In the Assemblies tree, expand the System.Linq (7.0.0.0, .NETCoreApp, v7.0) assembly, ex-

pand the System.Linq namespace, expand the Enumerable class, and then click the Count<T-

Source>(this IEnumerable<TSource>) : int method.

17. In the Count method, note the good practice of:

• Checking the source parameter and throwing an ArgumentNullException if it is null.

• Checking for interfaces that the source might implement with their own Count prop-

erties that would be more effi cient to read.

• The last resort of enumerating through all the items in the source and incrementing a

counter, which would be the least effi cient implementation.

This is shown in Figure 7.5:

Figure 7.5: Decompiled Count method of the Enumerable class on Linux

18. Review the C# source code for the Count method, as shown in the following code, in prepara-

tion for reviewing the same code in Intermediate Language (IL):

public static int Count<TSource>(this IEnumerable<TSource> source)
{
 if (source == null)
 {
 ThrowHelper.ThrowArgumentNullException(ExceptionArgument.source);

Packaging and Distributing .NET Types336

 }
 if (source is ICollection<TSource> collection)
 {
 return collection.Count;
 }
 if (source is IIListProvider<TSource> iIListProvider)
 {
 return iIListProvider.GetCount(onlyIfCheap: false);
 }
 if (source is ICollection collection2)
 {
 return collection2.Count;
 }
 int num = 0;
 using IEnumerator<TSource> enumerator = source.GetEnumerator();
 while (enumerator.MoveNext())
 {
 num = checked(num + 1);
 }
 return num;
}

19. In the ILSpy toolbar, click the Select language to decompile dropdown and select IL, and then

review the IL source code of the Count method, as shown in the following code:

.method public hidebysig static
 int32 Count<TSource> (
 class [System.Runtime]System.Collections.Generic.
IEnumerable'1<!!TSource> source
) cil managed
{
 .custom instance void [System.Runtime]System.Runtime.CompilerServices.
ExtensionAttribute::.ctor() = (
 01 00 00 00
)
 .param type TSource
 .custom instance void System.Runtime.CompilerServices.
NullableAttribute::.ctor(uint8) = (
 01 00 02 00 00
)
 // Method begins at RVA 0x42050
 // Header size: 12
 // Code size: 103 (0x67)
 .maxstack 2
 .locals (
 [0] class [System.Runtime]System.Collections.Generic.
ICollection'1<!!TSource>,

Chapter 7 337

 [1] class System.Linq.IIListProvider'1<!!TSource>,
 [2] class [System.Runtime]System.Collections.ICollection,
 [3] int32,
 [4] class [System.Runtime]System.Collections.Generic.
IEnumerator'1<!!TSource>
)

 IL_0000: ldarg.0
 IL_0001: brtrue.s IL_000a

 IL_0003: ldc.i4.s 16
 IL_0005: call void System.Linq.
ThrowHelper::ThrowArgumentNullException(valuetype System.Linq.
ExceptionArgument)

 IL_000a: ldarg.0
 IL_000b: isinst class [System.Runtime]System.Collections.Generic.
ICollection'1<!!TSource>
 IL_0010: stloc.0
 IL_0011: ldloc.0
 IL_0012: brfalse.s IL_001b

 IL_0014: ldloc.0
 IL_0015: callvirt instance int32 class [System.Runtime]System.
Collections.Generic.ICollection'1<!!TSource>::get_Count()
 IL_001a: ret
...
 IL_003e: ldc.i4.0
 IL_003f: stloc.3
 IL_0040: ldarg.0
 IL_0041: callvirt instance class [System.Runtime]System.Collections.
Generic.IEnumerator'1<!0> class [System.Runtime]System.Collections.
Generic.IEnumerable'1<!!TSource>::GetEnumerator()
 IL_0046: stloc.s 4
 .try
 {
 IL_0048: br.s IL_004e
 // loop start (head: IL_004e)
 IL_004a: ldloc.3
 IL_004b: ldc.i4.1
 IL_004c: add.ovf
 IL_004d: stloc.3

 IL_004e: ldloc.s 4
 IL_0050: callvirt instance bool [System.Runtime]System.Collections.
IEnumerator::MoveNext()
 IL_0055: brtrue.s IL_004a

Packaging and Distributing .NET Types338

 // end loop

 IL_0057: leave.s IL_0065
 } // end .try
 finally
 {
 IL_0059: ldloc.s 4
 IL_005b: brfalse.s IL_0064

 IL_005d: ldloc.s 4
 IL_005f: callvirt instance void [System.Runtime]System.
IDisposable::Dispose()

 IL_0064: endfinally
 } // end handler

 IL_0065: ldloc.3
 IL_0066: ret
} // end of method Enumerable::Count

20. Close ILSpy.

 Viewing source links with Visual Studio 2022
Instead of decompiling, Visual Studio 2022 has a feature that allows you to view the original source

code using source links. Let’s see how it works:

1. Use your preferred code editor to add a new Console App/console project to the Chapter07

solution/workspace named SourceLinks.

2. In Program.cs, delete the existing statements. Add statements to declare a string variable

and then output its value and the number of characters it has, as shown in the following code:

string name = "Timothée Chalamet";
int length = name.Count();

Good Practice: The IL code is not especially useful unless you get very advanced

with C# and .NET development, when knowing how the C# compiler translates

your source code into IL code can be important. The much more useful edit win-

dows contain the equivalent C# source code written by Microsoft experts. You can

learn a lot of good practices from seeing how professionals implement types. For

example, the Count method shows how to check arguments for null.

You can learn how to use the ILSpy extension for Visual Studio Code at the following link:

https://github.com/markjprice/cs11dotnet7/blob/main/docs/code-editors/
vscode.md#decompiling-using-the-ilspy-extension-for-visual-studio-code.

Chapter 7 339

Console.WriteLine($"{name} has {length} characters.");

3. Right-click in the Count method and select Go To Implementation.

4. Note the source code fi le is named Count.cs and it defi nes a partial Enumerable class with

implementations of fi ve count-related methods, as shown in Figure 7.6:

Figure 7.6: Viewing the original source file for LINQ’s Count method implementation

You can learn more from viewing source links than decompiling because they show best practices for

situations like how to divide up a class into partial classes for easier management. When we used the

ILSpy compiler, all it could do was show all the hundreds of methods of the Enumerable class.

 No, you cannot technically prevent decompilation
I sometimes get asked if there is a way to protect compiled code to prevent decompilation. The quick

answer is no, and if you think about it, you’ll see why this must be the case. You can make it harder

using obfuscation tools like Dotfuscator, but ultimately you cannot completely prevent it.

All compiled applications contain instructions to the platform, operating system, and hardware on

which it runs. Those instructions must be functionally the same as the original source code but are just

harder for a human to read. Those instructions must be readable to execute your code; they therefore

must be readable to be decompiled. If you were to protect your code from decompilation using some

custom technique, then you would also prevent your code from running!

Virtual machines simulate hardware and so can capture all interaction between your running appli-

cation and the soft ware and hardware that it thinks it is running on.

You can learn more about how source links work and how any NuGet package can support

them at the following link: https://learn.microsoft.com/en-us/dotnet/standard/
library-guidance/sourcelink.

Packaging and Distributing .NET Types340

If you could protect your code, then you would also prevent attaching to it with a debugger and step-

ping through it. If the compiled application has a pdb fi le, then you can attach a debugger and step

through the statements line-by-line. Even without the pdb fi le, you can still attach a debugger and get

some idea of how the code works.

This is true for all programming languages. Not just .NET languages like C#, Visual Basic, and F#, but

also C, C++, Delphi, and assembly language: all can be attached to for debugging or to be disassembled

or decompiled. Some tools used by professionals are shown in the following table:

Type Product Description

Virtual Machine VMware
Professionals like malware analysts always run soft ware inside a

VM.

Debugger Soft ICE Runs underneath the operating system, usually in a VM.

Debugger WinDbg
Useful for understanding Windows internals because it knows

more about Windows data structures than other debuggers.

Disassembler IDA Pro Used by professional malware analysts.

Decompiler HexRays Decompiles C apps. Plugin for IDA Pro.

Decompiler DeDe Decompiles Delphi apps.

Decompiler dotPeek .NET decompiler from JetBrains.

 Packaging your libraries for NuGet distribution
Before we learn how to create and package our own libraries, we will review how a project can use

an existing package.

 Referencing a NuGet package
Let’s say that you want to add a package created by a third-party developer, for example, Newtonsoft.
Json, a popular package for working with the JavaScript Object Notation (JSON) serialization format:

1. In the AssembliesAndNamespaces project, add a reference to the Newtonsoft.Json NuGet

package, either using the GUI for Visual Studio 2022 or the dotnet add package command

for Visual Studio Code.

2. Open the AssembliesAndNamespaces.csproj fi le and note that a package reference has been

added, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="newtonsoft.json" Version="13.0.1" />
</ItemGroup>

Good Practice: Debugging, disassembling, and decompiling someone else’s soft ware is

likely against its license agreement and illegal in many jurisdictions. Instead of trying to

protect your intellectual property with a technical solution, the law is sometimes your

only recourse.

Chapter 7 341

If you have a more recent version of the newtonsoft.json package, then it has been updated since

this chapter was written.

 Fixing dependencies
To consistently restore packages and write reliable code, it’s important that you fi x dependencies.

Fixing dependencies means you are using the same family of packages released for a specifi c version

of .NET, for example, SQLite for .NET 7.0, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="7.0.0" />
 </ItemGroup>

</Project>

To fi x dependencies, every package should have a single version with no additional qualifi ers. Addi-

tional qualifi ers include betas (beta1), release candidates (rc4), and wildcards (*).

Wildcards allow future versions to be automatically referenced and used because they always repre-

sent the most recent release. But wildcards are therefore dangerous because they could result in the

use of future incompatible packages that break your code.

This can be worth the risk while writing a book where new preview versions are released every month

and you do not want to keep updating the package references, as I did during 2022, and as shown in

the following markup:

<PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="7.0.0-preview.*" />

If you use the dotnet add package command, or Visual Studio’s Manage NuGet Packages, then it will

by default use the latest specifi c version of a package. But if you copy and paste confi guration from a

blog article or manually add a reference yourself, you might include wildcard qualifi ers.

Packaging and Distributing .NET Types342

The following dependencies are examples of NuGet package references that are not fi xed and therefore

should be avoided unless you know the implications:

<PackageReference Include="System.Net.Http" Version="4.1.0-*" />
<PackageReference Include="Newtonsoft.Json" Version="13.0.2-beta1" />

 Packaging a library for NuGet
Now, let’s package the SharedLibrary project that you created earlier:

1. In the SharedLibrary project, rename the Class1.cs fi le to StringExtensions.cs.

2. Modify its contents to provide some useful extension methods for validating various text val-

ues using regular expressions, remembering that we are targeting .NET Standard 2.0 so the

compiler is C# 8.0 by default and therefore we use older syntax for namespaces and so on, as

shown in the following code:

using System.Text.RegularExpressions;

namespace Packt.Shared
{
 public static class StringExtensions
 {
 public static bool IsValidXmlTag(this string input)
 {
 return Regex.IsMatch(input,
 @"^<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>)$");
 }

 public static bool IsValidPassword(this string input)
 {
 // minimum of eight valid characters
 return Regex.IsMatch(input, "^[a-zA-Z0-9_-]{8,}$");
 }

 public static bool IsValidHex(this string input)
 {
 // three or six valid hex number characters
 return Regex.IsMatch(input,
 "^#?([a-fA-F0-9]{3}|[a-fA-F0-9]{6})$");
 }
 }
}

Good Practice: Microsoft guarantees that if you fi xed your dependencies to what ships

with a specifi c version of .NET, for example, 6.0.0, those packages will all work together.

Almost always fi x your dependencies.

Chapter 7 343

3. In SharedLibrary.csproj, modify its contents, as shown highlighted in the following markup,

and note the following:

• PackageId must be globally unique, so you must use a diff erent value if you want to

publish this NuGet package to the https://www.nuget.org/ public feed for others to

reference and download.

• PackageLicenseExpression must be a value from https://spdx.org/licenses/, or

you could specify a custom license.

• All the other elements are self-explanatory:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <GeneratePackageOnBuild>true</GeneratePackageOnBuild>
 <PackageId>Packt.CSdotnet.SharedLibrary</PackageId>
 <PackageVersion>7.0.0.0</PackageVersion>
 <Title>C# 11 and .NET 7 Shared Library</Title>
 <Authors>Mark J Price</Authors>
 <PackageLicenseExpression>
 MS-PL
 </PackageLicenseExpression>
 <PackageProjectUrl>
 https://github.com/markjprice/cs11dotnet7
 </PackageProjectUrl>
 <PackageIcon>packt-csdotnet-sharedlibrary.png</PackageIcon>
 <PackageRequireLicenseAcceptance>true</
PackageRequireLicenseAcceptance>
 <PackageReleaseNotes>
 Example shared library packaged for NuGet.
 </PackageReleaseNotes>
 <Description>
 Three extension methods to validate a string value.
 </Description>
 <Copyright>
 Copyright © 2016-2022 Packt Publishing Limited
 </Copyright>

You will learn how to write regular expressions in Chapter 8, Working with Common

.NET Types.

Packaging and Distributing .NET Types344

 <PackageTags>string extensions packt csharp dotnet</
PackageTags>
 </PropertyGroup>

 <ItemGroup>
 <None Include="packt-csdotnet-sharedlibrary.png">
 <Pack>True</Pack>
 <PackagePath></PackagePath>
 </None>
 </ItemGroup>

</Project>

4. Download the icon fi le and save it in the SharedLibrary folder from the following link: https://
github.com/markjprice/cs11dotnet7/blob/main/vs4win/Chapter07/SharedLibrary/packt-
csdotnet-sharedlibrary.png.

5. Build the release assembly:

• In Visual Studio 2022, select Release in the toolbar, and then navigate to Build | Build

SharedLibrary.

• In Visual Studio Code, in Terminal, enter dotnet build -c Release.

If we had not set <GeneratePackageOnBuild> to true in the project fi le, then we would have

to create a NuGet package manually using the following additional steps:

• In Visual Studio 2022, navigate to Build | Pack SharedLibrary.

• In Visual Studio Code, in Terminal, enter dotnet pack -c Release.

 Publishing a package to a public NuGet feed
If you want everyone to be able to download and use your NuGet package, then you must upload it to

a public NuGet feed like Microsoft ’s:

1. Start your favorite browser and navigate to the following link: https://www.nuget.org/
packages/manage/upload.

Good Practice: Confi guration property values that are true or false values can-

not have any whitespace, so the <PackageRequireLicenseAcceptance> entry

cannot have a carriage return and indentation as shown in the preceding markup.

Chapter 7 345

2. You will need to sign up for, and then sign in with, a Microsoft account at https://www.nuget.
org/ if you want to upload a NuGet package for other developers to reference as a dependency

package.

3. Click the Browse... button and select the .nupkg fi le that was created by generating the NuGet

package. The folder path should be cs11dotnet7\Chapter07\SharedLibrary\bin\Release

and the fi le is named Packt.CSdotnet.SharedLibrary.7.0.0.nupkg.

4. Verify that the information you entered in the SharedLibrary.csproj fi le has been correctly

fi lled in, and then click Submit.

5. Wait a few seconds, and you will see a success message showing that your package has been

uploaded, as shown in Figure 7.7:

Figure 7.7: A NuGet package upload message

Good Practice: If you get an error, then review the project fi le for mistakes, or

read more information about the PackageReference format at https://docs.
microsoft.com/en-us/nuget/reference/msbuild-targets.

Packaging and Distributing .NET Types346

6. Click the Frameworks tab, and note that because we targeted .NET Standard 2.0, our class

library can be used by every .NET platform, as shown in Figure 7.8:

Figure 7.8: .NET Standard 2.0 class library NuGet packages can be used by all .NET platforms

 Publishing a package to a private NuGet feed
Organizations can host their own private NuGet feeds. This can be a handy way for many developer

teams to share work. You can read more at the following link:

https://docs.microsoft.com/en-us/nuget/hosting-packages/overview

 Exploring NuGet packages with a tool
A handy tool named NuGet Package Explorer for opening and reviewing more details about a NuGet

package was created by Uno Platform. As well as being a website, it can be installed as a cross-platform

app. Let’s see what it can do:

1. Start your favorite browser and navigate to the following link: https://nuget.info.

2. In the search box, enter Packt.CSdotnet.SharedLibrary.

3. Select the package v7.0.0 published by Mark J Price and then click the Open button.

4. In the Contents section, expand the lib folder and the netstandard2.0 folder.

Chapter 7 347

5. Select SharedLibrary.dll, and note the details, as shown in Figure 7.9:

Figure 7.9: Exploring my package using NuGet Package Explorer from Uno Platform

6. If you want to use this tool locally in the future, click the install button in your browser.

7. Close your browser.

Not all browsers support installing web apps like this. I recommend Chrome for testing and devel-

opment.

 Testing your class library package
You will now test your uploaded package by referencing it in the AssembliesAndNamespaces project:

1. In the AssembliesAndNamespaces project, add a reference to your (or my) package, as shown

highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="newtonsoft.json" Version="13.0.1" />
 <PackageReference Include="packt.csdotnet.sharedlibrary"
 Version="7.0.0" />
</ItemGroup>

2. Build the AssembliesAndNamespaces console app.

3. In Program.cs, import the Packt.Shared namespace.

4. In Program.cs, prompt the user to enter some string values, and then validate them using

the extension methods in the package, as shown in the following code:

Write("Enter a color value in hex: ");
string? hex = ReadLine(); // or "00ffc8"

Packaging and Distributing .NET Types348

WriteLine("Is {0} a valid color value? {1}",
 arg0: hex, arg1: hex.IsValidHex());

Write("Enter a XML element: ");
string? xmlTag = ReadLine(); // or "<h1 class=\"<\" />"
WriteLine("Is {0} a valid XML element? {1}",
 arg0: xmlTag, arg1: xmlTag.IsValidXmlTag());

Write("Enter a password: ");
string? password = ReadLine(); // or "secretsauce"
WriteLine("Is {0} a valid password? {1}",
 arg0: password, arg1: password.IsValidPassword());

5. Run the console app, enter some values as prompted, and view the results, as shown in the

following output:

Enter a color value in hex: 00ffc8
Is 00ffc8 a valid color value? True
Enter an XML element: <h1 class="<" />
Is <h1 class="<" /> a valid XML element? False
Enter a password: secretsauce
Is secretsauce a valid password? True

 Porting from .NET Framework to modern .NET
If you are an existing .NET Framework developer, then you may have existing applications that you

think you should port to modern .NET. But you should carefully consider if porting is the right choice

for your code, because sometimes, the best choice is not to port.

For example, you might have a complex website project that runs on .NET Framework 4.8 but is only

visited by a small number of users. If it works and handles the visitor traffi c on minimal hardware,

then potentially spending months porting it to a modern .NET platform could be a waste of time. But

if the website currently requires many expensive Windows servers, then the cost of porting could

eventually pay off if you can migrate to fewer, less costly Linux servers.

 Could you port?
Modern .NET has great support for the following types of applications on Windows, macOS, and Linux,

so they are good candidates for porting:

• ASP.NET Core websites, including Razor Pages and MVC

• ASP.NET Core web services (REST/HTTP), including Web APIs, Minimal APIs, and OData

• ASP.NET Core-hosted services, including gRPC, GraphQL, and SignalR

• Console App command-line interfaces

Chapter 7 349

Modern .NET has decent support for the following types of applications on Windows, so they are

potential candidates for porting:

• Windows Forms applications

• Windows Presentation Foundation (WPF) applications

Modern .NET has good support for the following types of applications on cross-platform desktop and

mobile devices:

• Xamarin apps for mobile iOS and Android

• .NET MAUI for desktop Windows and macOS, or mobile iOS and Android

Modern .NET does not support the following types of legacy Microsoft projects:

• ASP.NET Web Forms websites. These might be best reimplemented using ASP.NET Core Razor

Pages or Blazor.

• Windows Communication Foundation (WCF) services (but there is an open-source project

named CoreWCF that you might be able to use depending on requirements). WCF services

might be better reimplemented using ASP.NET Core gRPC services.

• Silverlight applications. These might be best reimplemented using Blazor or .NET MAUI.

Silverlight and ASP.NET Web Forms applications will never be able to be ported to modern .NET, but

existing Windows Forms and WPF applications could be ported to .NET on Windows to benefi t from

the new APIs and faster performance.

Legacy ASP.NET MVC web applications and ASP.NET Web API web services currently on .NET Frame-

work could be ported to modern .NET and then be hosted on Windows, Linux, or macOS.

 Should you port?
Even if you could port, should you? What benefi ts do you gain? Some common benefi ts include the

following:

• Deployment to Linux, Docker, or Kubernetes for websites and web services: These OSes are

lightweight and cost-eff ective as website and web service platforms, especially when compared

to the more costly Windows Server.

• Removal of dependency on IIS and System.Web.dll: Even if you continue to deploy to Windows

Server, ASP.NET Core can be hosted on lightweight, higher-performance Kestrel (or other)

web servers.

• Command-line tools: Tools that developers and administrators use to automate their tasks are

oft en built as console applications. The ability to run a single tool cross-platform is very useful.

Packaging and Distributing .NET Types350

 Differences between .NET Framework and modern .NET
There are three key diff erences, as shown in the following table:

Modern .NET .NET Framework

Distributed as NuGet packages, so each

application can be deployed with its own app-

local copy of the version of .NET that it needs.

Distributed as a system-wide, shared set of

assemblies (literally, in the Global Assembly

Cache (GAC)).

Split into small, layered components, so a

minimal deployment can be performed.
Single, monolithic deployment.

Removes older technologies, such as ASP.NET

Web Forms, and non-cross-platform features,

such as AppDomains, .NET Remoting, and binary

serialization.

As well as some similar technologies to those

in modern .NET like ASP.NET Core MVC, it also

retains some older technologies, such as ASP.NET

Web Forms.

 .NET Portability Analyzer
Microsoft has a useful tool that you can run against your existing applications to generate a report for

porting. You can watch a demonstration of the tool at the following link: https://learn.microsoft.
com/en-us/shows/seth-juarez/brief-look-net-portability-analyzer.

 .NET Upgrade Assistant
Microsoft ’s latest tool for upgrading legacy projects to modern .NET is the .NET Upgrade Assistant.

For my day job, I used to work for a company named Optimizely. They have an enterprise-scale Digital

Experience Platform (DXP) based on .NET comprising a Content Management System (CMS) and a

Digital Commerce platform. Microsoft needed a challenging migration project to design and test the

.NET Upgrade Assistant with, so we worked with them to build a great tool.

Currently, it supports the following .NET Framework project types and more will be added later:

• ASP.NET MVC

• Windows Forms

• WPF

• Console Application

• Class Library

It is installed as a global dotnet tool, as shown in the following command:

dotnet tool install -g upgrade-assistant

You can read more about this tool and how to use it at the following link:

https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview

Chapter 7 351

 Using non-.NET Standard libraries
Most existing NuGet packages can be used with modern .NET, even if they are not compiled for .NET

Standard or a modern version like .NET 7. If you fi nd a package that does not offi cially support .NET

Standard, as shown on its nuget.org web page, you do not have to give up. You should try it and see

if it works.

For example, there is a package of custom collections for handling matrices created by Dialect Soft ware

LLC, documented at the following link:

https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/

This package was last updated in 2013, which was long before .NET Core or .NET 7 existed, so this

package was built for .NET Framework. If an assembly package like this only uses APIs available in

.NET Standard, it can be used in a modern .NET project.

Let’s try using it and see if it works:

1. In the AssembliesAndNamespaces project, add a package reference for Dialect Soft ware’s pack-

age, as shown in the following markup:

<PackageReference
 Include="dialectsoftware.collections.matrix"
 Version="1.0.0" />

2. Build the AssembliesAndNamespaces project to restore packages.

3. In Program.cs, add statements to import the DialectSoftware.Collections and

DialectSoftware.Collections.Generics namespaces.

4. Add statements to create instances of Axis and Matrix<T>, populate them with values, and

output them, as shown in the following code:

Axis x = new("x", 0, 10, 1);
Axis y = new("y", 0, 4, 1);
Matrix<long> matrix = new(new[] { x, y });

for (int i = 0; i < matrix.Axes[0].Points.Length; i++)
{
 matrix.Axes[0].Points[i].Label = "x" + i.ToString();
}

for (int i = 0; i < matrix.Axes[1].Points.Length; i++)
{
 matrix.Axes[1].Points[i].Label = "y" + i.ToString();
}

foreach (long[] c in matrix)
{
 matrix[c] = c[0] + c[1];
}

Packaging and Distributing .NET Types352

foreach (long[] c in matrix)
{
 WriteLine("{0},{1} ({2},{3}) = {4}",
 matrix.Axes[0].Points[c[0]].Label,
 matrix.Axes[1].Points[c[1]].Label,
 c[0], c[1], matrix[c]);
}

5. Run the code, noting the warning message and the results, as shown in the following output:

warning NU1701: Package 'DialectSoftware.Collections.Matrix
1.0.0' was restored using '.NETFramework,Version=v4.6.1,
.NETFramework,Version=v4.6.2, .NETFramework,Version=v4.7,
.NETFramework,Version=v4.7.1, .NETFramework,Version=v4.7.2,
.NETFramework,Version=v4.8' instead of the project target framework
'net7.0'. This package may not be fully compatible with your project.
x0,y0 (0,0) = 0
x0,y1 (0,1) = 1
x0,y2 (0,2) = 2
x0,y3 (0,3) = 3
...

Even though this package was created before modern .NET existed, and the compiler and runtime

have no way of knowing if it will work and therefore show warnings, because it happens to only call

.NET Standard-compatible APIs, it works.

 Working with preview features
It is a challenge for Microsoft to deliver some new features that have cross-cutting eff ects across many

parts of .NET like the runtime, language compilers, and API libraries. It is the classic chicken and egg

problem. What do you do fi rst?

From a practical perspective, it means that although Microsoft might have completed most of the work

needed for a feature, the whole thing might not be ready until very late in their now annual cycle of

.NET releases, too late for proper testing in “the wild.”

So, from .NET 6 onward, Microsoft will include preview features in general availability (GA) releases.

Developers can opt into these preview features and provide Microsoft with feedback. In a later GA

release, they can be enabled for everyone.

It is important to note that this topic is about preview features. This is diff erent from a pre-

view version of .NET or a preview version of Visual Studio 2022. Microsoft releases preview

versions of Visual Studio and .NET while developing them to get feedback from developers

and then do a fi nal GA release. At GA, the feature is available for everyone. Before GA,

the only way to get the new functionality is to install a preview version. Preview features

are diff erent because they are installed with GA releases and must be optionally enabled.

Chapter 7 353

For example, when Microsoft released .NET SDK 6.0.200 in February 2022, it included the C# 11 com-

piler as a preview feature. This meant that .NET 6 developers could optionally set the language version

to preview, and then start exploring C# 11 features like raw string literals and the required keyword.

 Requiring preview features
The [RequiresPreviewFeatures] attribute is used to indicate assemblies, types, or members that use

and therefore require warnings about preview features. A code analyzer then scans for this assembly

and generates warnings if needed. If your code does not use any preview features, you will not see

any warnings. If you use any preview features, then your code should warn consumers of your code

that you use preview features.

 Enabling preview features
In the project fi le, add an element to enable preview features and an element to enable preview lan-

guage features, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <EnablePreviewFeatures>true</EnablePreviewFeatures>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>

</Project>

 Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on practice,

and exploring with deeper research into topics of this chapter.

 Exercise 7.1 – Test your knowledge
Answer the following questions:

1. What is the diff erence between a namespace and an assembly?

2. How do you reference another project in a .csproj fi le?

Good Practice: Preview features are not supported in production code. Preview features

are likely to have breaking changes before the fi nal release. Enable preview features at

your own risk.

Packaging and Distributing .NET Types354

3. What is the benefi t of a tool like ILSpy?

4. Which .NET type does the C# float alias represent?

5. When porting an application from .NET Framework to modern .NET, what tool should you run

before porting, and what tool could you run to perform much of the porting work?

6. What is the diff erence between framework-dependent and self-contained deployments of

.NET applications?

7. What is a RID?

8. What is the diff erence between the dotnet pack and dotnet publish commands?

9. What types of applications written for .NET Framework can be ported to modern .NET?

10. Can you use packages written for .NET Framework with modern .NET?

 Exercise 7.2 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/cs11dotnet7/blob/main/book-links.md#chapter-7---
packaging-and-distributing-net-types

 Exercise 7.3 – Explore PowerShell
PowerShell is Microsoft ’s scripting language for automating tasks on every operating system. Micro-

soft recommends Visual Studio Code with the PowerShell extension for writing PowerShell scripts.

Since PowerShell is its own extensive language, there is not enough space in this book to cover it.

Instead, I have created some supplementary pages on the book’s GitHub repository to introduce you

to some key concepts and show some examples:

https://github.com/markjprice/cs11dotnet7/tree/main/docs/powershell

 Summary
In this chapter, we:

• Reviewed the journey to .NET 7 for Base Class Library functionality.

• Explored the relationship between assemblies and namespaces.

• Learned how to decompile .NET assemblies for educational purposes.

• Saw options for publishing an app for distribution to multiple operating systems.

• Packaged and distributed a class library.

• Discussed options for porting existing .NET Framework code bases.

• Learned how to activate preview features.

In the next chapter, you will learn about some common Base Class Library types that are included

with modern .NET.

12
 Introducing Web Development
Using ASP.NET Core

The third and fi nal part of this book is about web development using ASP.NET Core. You will learn

how to build cross-platform projects such as websites, web services, and web browser apps.

Microsoft calls platforms for building applications app models or workloads.

I recommend that you work through this and subsequent chapters sequentially because later chapters

will reference projects in earlier chapters, and you will build up suffi cient knowledge and skills to

tackle the trickier problems in later chapters.

In this chapter, we will cover the following topics:

• Understanding ASP.NET Core

• New features in ASP.NET Core

• Structuring projects

• Building an entity model for use in the rest of the book

• Understanding web development

 Understanding ASP.NET Core
Since this book is about C# and .NET, we will learn about app models that use them to build the prac-

tical applications that we will encounter in the remaining chapters of this book.

Learn More: Microsoft has extensive guidance for implementing app models in its .NET

Application Architecture Guidance documentation, which you can read at the following

link: https://www.microsoft.com/net/learn/architecture.

Introducing Web Development Using ASP.NET Core532

Microsoft ASP.NET Core is part of a history of Microsoft technologies used to build websites and ser-

vices that have evolved over the years:

• Active Server Pages (ASP) was released in 1996 and was Microsoft ’s fi rst attempt at a platform

for dynamic server-side execution of website code. ASP fi les contain a mix of HTML and code

that executes on the server written in the VBScript language.

• ASP.NET Web Forms was released in 2002 with the .NET Framework and was designed to enable

non-web developers, such as those familiar with Visual Basic, to quickly create websites by

dragging and dropping visual components and writing event-driven code in Visual Basic or C#.

Web Forms should be avoided for new .NET Framework web projects in favor of ASP.NET MVC.

• Windows Communication Foundation (WCF) was released in 2006 and enables developers to

build SOAP and REST services. SOAP is powerful but complex, so it should be avoided unless

you need advanced features, such as distributed transactions and complex messaging topologies.

• ASP.NET MVC was released in 2009 to cleanly separate the concerns of web developers between

the models, which temporarily store the data; the views, which present the data using various

formats in the UI; and the controllers, which fetch the model and pass it to a view. This sepa-

ration enables improved reuse and unit testing.

• ASP.NET Web API was released in 2012 and enables developers to create HTTP services (aka

REST services) that are simpler and more scalable than SOAP services.

• ASP.NET SignalR was released in 2013 and enables real-time communication in websites by

abstracting underlying technologies and techniques, such as WebSockets and long polling.

This enables website features such as live chat or updates to time-sensitive data such as stock

prices across a wide variety of web browsers, even when they do not support an underlying

technology such as WebSockets.

• ASP.NET Core was released in 2016 and combines modern implementations of .NET Frame-

work technologies such as MVC, Web API, and SignalR, with newer technologies such as Razor

Pages, gRPC, and Blazor, all running on modern .NET. Therefore, it can execute cross-platform.

ASP.NET Core has many project templates to get you started with its supported technologies.

 Classic ASP.NET versus modern ASP.NET Core
Until modern .NET, ASP.NET was built on top of a large assembly in .NET Framework named System.
Web.dll and it was tightly coupled to Microsoft ’s Windows-only web server named Internet Information

Services (IIS). Over the years, this assembly has accumulated a lot of features, many of which are not

suitable for modern cross-platform development.

ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.Web.dll

assembly and IIS and is composed of modular lightweight packages, just like the rest of modern .NET.

Using IIS as the web server is still supported by ASP.NET Core, but there is a better option.

Good Practice: Choose ASP.NET Core to develop websites and web services because it

includes web-related technologies that are modern and cross-platform.

Chapter 12 533

You can develop and run ASP.NET Core applications cross-platform on Windows, macOS, and Linux.

Microsoft has even created a cross-platform, super-performant web server named Kestrel, and the

entire stack is open source.

ASP.NET Core 2.2 or later projects default to the new in-process hosting model. This gives a 400% per-

formance improvement when hosting in Microsoft IIS, but Microsoft still recommends using Kestrel

for even better performance.

 Building websites using ASP.NET Core
Websites are made up of multiple web pages loaded statically from the fi lesystem or generated dy-

namically by a server-side technology such as ASP.NET Core. A web browser makes GET requests using

Uniform Resource Locators (URLs) that identify each page and can manipulate data stored on the

server using POST, PUT, and DELETE requests.

With many websites, the web browser is treated as a presentation layer, with almost all the processing

performed on the server side. Some JavaScript might be used on the client side to implement form

validation warnings and some presentation features, such as carousels.

ASP.NET Core provides multiple technologies for building websites:

• ASP.NET Core Razor Pages and Razor class libraries are ways to dynamically generate HTML

for simple websites. You will learn about them in detail in Chapter 13, Building Websites Using

ASP.NET Core Razor Pages.

• ASP.NET Core MVC is an implementation of the Model-View-Controller (MVC) design pattern

that is popular for developing complex websites. You will learn about it in detail in Chapter 14,

Building Websites Using the Model-View-Controller Pattern.

• Blazor lets you build user interface components using C# and .NET instead of a JavaScript-based

UI framework like Angular, React, and Vue. Blazor WebAssembly runs your code in the brows-

er like a JavaScript-based framework would. Blazor Server runs your code on the server and

updates the web page dynamically. You will learn about Blazor in detail in Chapter 16, Building

User Interfaces Using Blazor. Blazor is not just for building websites; it can also be used to create

hybrid mobile and desktop apps by being hosted inside a .NET MAUI app.

 Building websites using a content management system
Most websites have a lot of content, and if developers had to be involved every time some content need-

ed to be changed, that would not scale well. A Content Management System (CMS) enables developers

to defi ne content structure and templates to provide consistency and good design while making it easy

for a non-technical content owner to manage the actual content. They can create new pages or blocks

of content, and update existing content, knowing it will look great for visitors with minimal eff ort.

There is a multitude of CMSs available for all web platforms, like WordPress for PHP or Django CMS

for Python. CMSs that support modern .NET include Optimizely Content Cloud, Piranha CMS, and

Orchard Core.

Introducing Web Development Using ASP.NET Core534

The key benefi t of using a CMS is that it provides a friendly content management user interface. Con-

tent owners log in to the website and manage the content themselves. The content is then rendered

and returned to visitors using ASP.NET Core MVC controllers and views, or via web service endpoints,

known as a headless CMS, to provide that content to “heads” implemented as mobile or desktop apps,

in-store touchpoints, or clients built with JavaScript frameworks or Blazor.

This book does not cover .NET CMSs, so I have included links where you can learn more about them

in the GitHub repository:

https://github.com/markjprice/cs11dotnet7/blob/main/book-links.md#net-content-
management-systems

 Building web applications using SPA frameworks
Web applications are oft en built using technologies known as Single-Page Applications (SPAs) frame-

works, such as Blazor WebAssembly, Angular, React, Vue, or a proprietary JavaScript library. They can

make requests to a backend web service for getting more data when needed and posting updated data

using common serialization formats such as XML and JSON. The canonical examples are Google web

apps like Gmail, Maps, and Docs.

With a web application, the client side uses JavaScript frameworks or Blazor WebAssembly to implement

sophisticated user interactions, but most of the important processing and data access still happens on

the server side, because the web browser has limited access to local system resources.

JavaScript is loosely typed and is not designed for complex projects, so most JavaScript libraries these

days use TypeScript, which adds strong typing to JavaScript and is designed with many modern lan-

guage features for handling complex implementations.

.NET SDK has project templates for JavaScript and TypeScript-based SPAs, but we will not spend any

time learning how to build JavaScript- and TypeScript-based SPAs in this book, even though they are

commonly used with ASP.NET Core as the backend, because this book is about C#; it is not about

other languages.

In summary, C# and .NET can be used on both the server side and the client side to build websites,

as shown in Figure 12.1:

Figure 12.1: The use of C# and .NET to build websites on both the server side and the client side

Chapter 12 535

 Building web and other services
Although we will not learn about JavaScript- and TypeScript-based SPAs, we will learn how to build

a web service using the ASP.NET Core Web API, and then call that web service from the server-side

code in our ASP.NET Core websites. Later, we will call that web service from Blazor WebAssembly

components and cross-platform mobile and desktop apps.

There are no formal defi nitions, but services are sometimes described based on their complexity:

• Service: All functionality needed by a client app in one monolithic service.

• Microservice: Multiple services that each focus on a smaller set of functionalities.

• Nanoservice: A single function provided as a service. Unlike services and microservices that are

hosted 24/7/365, nanoservices are oft en inactive until called upon to reduce resources and costs.

 New features in ASP.NET Core
Over the past few years, Microsoft has rapidly expanded the capabilities of ASP.NET Core. You should

note which .NET platforms are supported, as shown in the following list:

• ASP.NET Core 1.0 to 2.2 runs on either .NET Core or .NET Framework.

• ASP.NET Core 3.0 or later only runs on .NET Core 3.0 or later.

 ASP.NET Core 1.0
ASP.NET Core 1.0 was released in June 2016 and focused on implementing a minimum API suitable

for building modern cross-platform web apps and services for Windows, macOS, and Linux.

 ASP.NET Core 1.1
ASP.NET Core 1.1 was released in November 2016 and focused on bug fi xes and general improvements

to features and performance.

 ASP.NET Core 2.0
ASP.NET Core 2.0 was released in August 2017 and focused on adding new features such as Razor Pages,

bundling assemblies into a Microsoft.AspNetCore.All metapackage, targeting .NET Standard 2.0,

providing a new authentication model and performance improvements.

The biggest new features introduced with ASP.NET Core 2.0 are ASP.NET Core Razor Pages, which

is covered in Chapter 13, Building Websites Using ASP.NET Core Razor Pages, and ASP.NET Core OData

support. OData is covered in my other book, Apps and Services with .NET 7.

 ASP.NET Core 2.1
ASP.NET Core 2.1 was released in May 2018 and was a Long Term Support (LTS) release, meaning it

was supported for three years until August 21, 2021 (LTS designation was not offi cially assigned to it

until August 2018 with version 2.1.3).

Introducing Web Development Using ASP.NET Core536

It focused on adding new features such as SignalR for real-time communication, Razor class libraries

for reusing web components, ASP.NET Core Identity for authentication, and better support for HTTPS

and the European Union’s General Data Protection Regulation (GDPR), including the topics listed in

the following table:

Feature Chapter Topic

Razor class libraries 13 Using Razor class libraries

GDPR support 14
Creating and exploring an ASP.NET Core MVC

website

Identity UI library and scaff olding 14 Exploring an ASP.NET Core MVC website

Integration tests 14 Testing an ASP.NET Core MVC website

[ApiController], ActionResult<T> 15 Creating an ASP.NET Core Web API project

Problem details 15 Implementing a Web API controller

IHttpClientFactory 15
Confi guring HTTP clients using

HttpClientFactory

 ASP.NET Core 2.2
ASP.NET Core 2.2 was released in December 2018 and focused on improving the building of RESTful

HTTP APIs, updating the project templates to Bootstrap 4 and Angular 6, an optimized confi guration

for hosting in Azure, and performance improvements, including the topics listed in the following table:

Feature Chapter Topic

HTTP/2 in Kestrel 13 Classic ASP.NET versus modern ASP.NET Core

In-process hosting model 13 Creating an ASP.NET Core project

Endpoint routing 13 Understanding endpoint routing

Health Checks Middleware 15 Implementing health checks

Open API analyzers 15 Implementing Open API analyzers and conventions

 ASP.NET Core 3.0
ASP.NET Core 3.0 was released in September 2019 and focused on fully leveraging .NET Core 3.0 and

.NET Standard 2.1, which meant it could not support .NET Framework, and it added useful refi nements,

including the topics listed in the following table:

Feature Chapter Topic

Static assets in Razor class libraries 13 Using Razor class libraries

New options for MVC service registration 14 Understanding ASP.NET Core MVC startup

Blazor Server 16 Building components using Blazor Server

Chapter 12 537

 ASP.NET Core 3.1
ASP.NET Core 3.1 was released in December 2019 and is an LTS release, meaning it will be supported

until December 13, 2022. It focused on refi nements like partial class support for Razor components

and a new <component> tag helper.

 Blazor WebAssembly 3.2
Blazor WebAssembly 3.2 was released in May 2020. It was a Current (now known as Standard) release,

meaning that projects had to be upgraded to the .NET 5 version within three months of the .NET 5

release, that is, by February 10, 2021. Microsoft fi nally delivered on the promise of full-stack web

development with .NET, and both Blazor Server and Blazor WebAssembly are covered in Chapter 16,

Building User Interfaces Using Blazor.

 ASP.NET Core 5.0
ASP.NET Core 5.0 was released in November 2020 and focused on bug fi xes, performance improve-

ments, using caching for certifi cate authentication, HPACK dynamic compression of HTTP/2 response

headers in Kestrel, nullable annotations for ASP.NET Core assemblies, and a reduction in container

image sizes, including the topics listed in the following table:

Feature Chapter Topic

Extension method to allow anonymous access to

an endpoint
15 Securing web services

JSON extension methods for HttpRequest and

HttpResponse
15

Getting customers as JSON in the

controller

 ASP.NET Core 6.0
ASP.NET Core 6.0 was released in November 2021 and focused on productivity improvements like min-

imizing code to implement basic websites and services, support for .NET Hot Reload, and new hosting

options for Blazor, like hybrid apps using .NET MAUI, including the topics listed in the following table:

Feature Chapter Topic

New empty web project template 13 Understanding the empty web template

Minimal APIs 15 Implementing Minimal Web APIs

Blazor WebAssembly AOT 16
Enabling Blazor WebAssembly ahead-of-time

compilation

Introducing Web Development Using ASP.NET Core538

 ASP.NET Core 7.0
ASP.NET Core 7.0 was released in November 2022 and focused on fi lling well-known gaps in function-

ality like HTTP/3 support, output caching, and many quality-of-life improvements to Blazor, including

the topics listed in the following table:

Feature Chapter Topic

HTTP request

decompression
13 Enabling request decompression support

HTTP/3 support 13 Enabling HTTP/3 support

Output caching 14 Using a fi lter to cache output

W3C log additional headers 15
Support for logging additional request headers in

W3CLogger

HTTP/3 client support 15 Enabling HTTP/3 support for HttpClient

Blazor Empty templates 16 Comparing Blazor project templates

Location change support 16 Enabling location change event handling

 Structuring projects
How should you structure your projects? So far, we have built small individual console apps to illustrate

language or library features. In the rest of this book, we will build multiple projects using diff erent

technologies that work together to provide a single solution.

With large, complex solutions, it can be diffi cult to navigate through all the code. So, the primary

reason to structure your projects is to make it easier to fi nd components. It is good to have an overall

name for your solution or workspace that refl ects the application or solution.

We will build multiple projects for a fi ctional company named Northwind. We will name the solution

or workspace PracticalApps and use the name Northwind as a prefi x for all the project names.

There are many ways to structure and name projects and solutions, for example, using a folder hierar-

chy as well as a naming convention. If you work in a team, make sure you know how your team does it.

 Structuring projects in a solution or workspace
It is good to have a naming convention for your projects in a solution or workspace so that any devel-

oper can tell what each one does instantly. A common choice is to use the type of project, for example,

class library, console app, website, and so on, as shown in the following table:

You can read the full ASP.NET Core Roadmap for .NET 7 at the following link: https://
github.com/dotnet/aspnetcore/issues/39504.

Chapter 12 539

Name Description

Northwind.Common A class library project for common types like interfaces, enums,

classes, records, and structs, used across multiple projects.

Northwind.Common.EntityModels

A class library project for common EF Core entity models.

Entity models are oft en used on both the server and client

side, so it is best to separate dependencies on specifi c database

providers.

Northwind.Common.DataContext A class library project for the EF Core database context with

dependencies on specifi c database providers.

Northwind.Web An ASP.NET Core project for a simple website that uses a

mixture of static HTML fi les and dynamic Razor Pages.

Northwind.Razor.Component A class library project for Razor Pages used in multiple projects.

Northwind.Mvc An ASP.NET Core project for a complex website that uses the

MVC pattern and can be more easily unit tested.

Northwind.WebApi
An ASP.NET Core project for an HTTP API service. A good

choice for integrating with websites because it can use any

JavaScript library or Blazor to interact with the service.

Northwind.BlazorServer An ASP.NET Core Blazor Server project.

Northwind.BlazorWasm.Client An ASP.NET Core Blazor WebAssembly client-side project.

Northwind.BlazorWasm.Server An ASP.NET Core Blazor WebAssembly server-side project.

 Building an entity model for use in the rest of the book
Practical applications usually need to work with data in a relational database or another data store. In

this chapter, we will defi ne an entity data model for the Northwind database stored in SQL Server or

SQLite. It will be used in most of the apps that we create in subsequent chapters.

The Northwind4SQLServer.sql and Northwind4SQLite.sql script fi les are diff erent. The script for

SQL Server creates 13 tables as well as related views and stored procedures. The script for SQLite is a

simplifi ed version that only creates 10 tables because SQLite does not support as many features. The

main projects in this book only need those 10 tables so you can complete every task in this book with

either database.

Instructions to install SQLite can be found in Chapter 10, Working with Data Using Entity Framework

Core. In that chapter, you will also fi nd instructions for installing the dotnet-ef tool, which you will

use to scaff old an entity model from an existing database.

Instructions to install SQL Server can be found in the GitHub repository for the book at the following

link: https://github.com/markjprice/cs11dotnet7/blob/main/docs/sql-server/README.md.

Introducing Web Development Using ASP.NET Core540

 Creating a class library for entity models using SQLite
You will now defi ne entity data models in a class library so that they can be reused in other types of

projects including client-side app models. If you are not using SQL Server, you will need to create this

class library for SQLite. If you are using SQL Server, then you can create both a class library for SQLite

and one for SQL Server and then switch between them as you choose.

We will automatically generate some entity models using the EF Core command-line tool:

1. Use your preferred code editor to create a new project, as defi ned in the following list:

• Project template: Class Library/classlib

• Project fi le and folder: Northwind.Common.EntityModels.Sqlite

• Workspace/solution fi le and folder: PracticalApps

2. In the Northwind.Common.EntityModels.Sqlite project, add package references for the SQLite

database provider and EF Core design-time support, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite" Version="7.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.0">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
 buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

3. Delete the Class1.cs fi le.

4. Build the project.

5. Create the Northwind.db fi le for SQLite by copying the Northwind4SQLite.sql fi le into the

PracticalApps folder (not the project folder!), and then enter the following command at a

command prompt or terminal:

sqlite3 Northwind.db -init Northwind4SQLite.sql

6. Be patient because this command might take a while to create the database structure, as shown

in the following output:

-- Loading resources from Northwind4SQLite.sql
SQLite version 3.35.5 2022-04-19 14:49:49
Enter ".help" for usage hints.
sqlite>

Good Practice: You should create a separate class library project for your entity data

models. This allows easier sharing between backend web servers and frontend desktop,

mobile, and Blazor WebAssembly clients.

Chapter 12 541

7. To exit SQLite command mode, press Ctrl + C on Windows or Cmd + D on macOS.

8. Open a command prompt or terminal for the Northwind.Common.EntityModels.Sqlite folder.

9. At the command line, generate entity class models for all tables, as shown in the following

commands:

dotnet ef dbcontext scaffold "Filename=../Northwind.db" Microsoft.
EntityFrameworkCore.Sqlite --namespace Packt.Shared --data-annotations

Note the following:

• The command to perform: dbcontext scaffold

• The connection strings. "Filename=../Northwind.db"

• The database provider: Microsoft.EntityFrameworkCore.Sqlite

• The namespace: --namespace Packt.Shared

• To use data annotations as well as the Fluent API: --data-annotations

10. Note the build messages and warnings, as shown in the following output:

Build started...
Build succeeded.
To protect potentially sensitive information in your connection string,
you should move it out of source code. You can avoid scaffolding the
connection string by using the Name= syntax to read it from configuration
- see https://go.microsoft.com/fwlink/?linkid=2131148. For more
guidance on storing connection strings, see http://go.microsoft.com/
fwlink/?LinkId=723263.

 Improving the class-to-table mapping
The dotnet-ef command-line tool generates diff erent code for SQL Server and SQLite because they

support diff erent levels of functionality.

For example, SQL Server text columns can have limits on the number of characters. SQLite does not

support this. So, dotnet-ef will generate validation attributes to ensure string properties are limited

to a specifi ed number of characters for SQL Server but not for SQLite, as shown in the following code:

// SQLite database provider-generated code
[Column(TypeName = "nvarchar (15)")]
public string CategoryName { get; set; } = null!;

// SQL Server database provider-generated code
[StringLength(15)]
public string CategoryName { get; set; } = null!;

Neither database provider will mark non-nullable string properties as required:

// no runtime validation of non-nullable property
public string CategoryName { get; set; } = null!;

// nullable property

Introducing Web Development Using ASP.NET Core542

public string? Description { get; set; }

// decorate with attribute to perform runtime validation
[Required]
public string CategoryName { get; set; } = null!;

We will make some small changes to improve the entity model mapping and validation rules for SQLite.

First, we will add a regular expression to validate that a CustomerId value is exactly fi ve uppercase

letters. Second, we will add string length requirements to validate that multiple properties throughout

the entity models know the maximum length allowed for their text values:

1. In Customer.cs, add a regular expression to validate its primary key value to only allow up-

percase Western characters, as shown highlighted in the following code:

[Key]
[Column(TypeName = "nchar (5)")]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

2. Activate your code editor’s fi nd and replace feature (in Visual Studio 2022, navigate to Edit |

Find and Replace | Quick Replace), toggle on Use Regular Expressions, and then type a regular

expression in the fi nd box, as shown in Figure 12.2 and in the following expression:

\[Column\(TypeName = "(nchar|nvarchar) \((.*)\)"\)\]

3. In the replace box, type a replacement regular expression, as shown in the following expression:

$&\n [StringLength($2)]

Aft er the newline character, \n, I have included four space characters to indent correctly on

my system, which uses two space characters per indentation level. You can insert as many as

you wish.

4. Set the fi nd and replace to search fi les in the current project.

5. Execute the search and replace to replace all, as shown in Figure 12.2:

Remember that all code is available in the GitHub repository for the book. Although you

will learn more by typing code yourself, you never have to. Go to the following link and

press . to get a live code editor in your browser: https://github.com/markjprice/
cs11dotnet7.

Chapter 12 543

Figure 12.2: Search and replace all matches using regular expressions in Visual Studio 2022

6. Change any date/time properties, for example, in Employee.cs, to use a nullable DateTime

instead of an array of bytes, as shown in the following code:

// before
[Column(TypeName = "datetime")]
public byte[]? BirthDate { get; set; }

// after
[Column(TypeName = "datetime")]
public DateTime? BirthDate { get; set; }

7. Change any money properties, for example, in Order.cs, to use a nullable decimal instead of

an array of bytes, as shown in the following code:

// before
[Column(TypeName = "money")]
public byte[]? Freight { get; set; }

// after
[Column(TypeName = "money")]
public decimal? Freight { get; set; }

Use your code editor’s fi nd feature to search for "datetime" to fi nd all the prop-

erties that need changing.

Introducing Web Development Using ASP.NET Core544

8. In Product.cs, make the Discontinued property a bool instead of an array of bytes and remove

the initializer that sets the default value to null, as shown in the following code:

[Column(TypeName = "bit")]
public bool Discontinued { get; set; }

9. In Category.cs, make the CategoryId property an int, as shown highlighted in the following

code:

[Key]
public int CategoryId { get; set; }

10. In Category.cs, make the CategoryName property required, as shown highlighted in the fol-

lowing code:

[Required]
[Column(TypeName = "nvarchar (15)")]
[StringLength(15)]
public string CategoryName { get; set; }

11. In Customer.cs, make the CompanyName property required, as shown highlighted in the fol-

lowing code:

[Required]
[Column(TypeName = "nvarchar (40)")]
[StringLength(40)]
public string CompanyName { get; set; }

12. In Employee.cs, make the:

• EmployeeId property an int instead of a long.

• FirstName and LastName properties required.

• ReportsTo property an int? instead of a long?.

13. In EmployeeTerritory.cs, make the:

• EmployeeId property an int instead of a long.

• TerritoryId property required.

14. In Order.cs:

• Make the OrderId property an int instead of a long.

• Decorate the CustomerId property with a regular expression to enforce fi ve uppercase

characters.

Use your code editor’s fi nd feature to search for "money" to fi nd all the properties

that need changing.

Chapter 12 545

• Make the EmployeeId property an int? instead of a long?.

• Make the ShipVia property an int? instead of a long?.

15. In OrderDetail.cs, make the:

• OrderId property an int instead of a long.

• ProductId property an int instead of a long.

• Quantity property a short instead of a long.

16. In Product.cs, make the:

• ProductId property an int instead of a long.

• ProductName property required.

• SupplierId and CategoryId properties an int? instead of a long?.

• UnitsInStock, UnitsOnOrder, and ReorderLevel properties a short? instead of a long?.

17. In Shipper.cs, make the:

• ShipperId property an int instead of a long.

• CompanyName property required.

18. In Supplier.cs, make the:

• SupplierId property an int instead of a long.

• CompanyName property required.

19. In Territory.cs, make the:

• RegionId property an int instead of a long.

• TerritoryId and TerritoryDescription properties required.

Now that we have a class library for the entity classes, we can create a class library for the database

context.

 Creating a class library for a Northwind database context
You will now defi ne a database context class library:

1. Add a new project to the solution/workspace, as defi ned in the following list:

• Project template: Class Library/classlib

• Project fi le and folder: Northwind.Common.DataContext.Sqlite

• Workspace/solution fi le and folder: PracticalApps

2. In Visual Studio, set the startup project for the solution to the current selection. In Visual

Studio Code, select Northwind.Common.DataContext.Sqlite as the active OmniSharp project.

Introducing Web Development Using ASP.NET Core546

3. In the Northwind.Common.DataContext.Sqlite project, add a project reference to the

Northwind.Common.EntityModels.Sqlite project and add a package reference to the EF Core

data provider for SQLite, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SQLite" Version="7.0.0" />
</ItemGroup>

<ItemGroup>
 <ProjectReference Include=
 "..\Northwind.Common.EntityModels.Sqlite\Northwind.Common
.EntityModels.Sqlite.csproj" />
</ItemGroup>

4. In the Northwind.Common.DataContext.Sqlite project, delete the Class1.cs class fi le.

5. Build the Northwind.Common.DataContext.Sqlite project.

6. Move the NorthwindContext.cs fi le from the Northwind.Common.EntityModels.Sqlite project/

folder to the Northwind.Common.DataContext.Sqlite project/folder.

7. In NorthwindContext.cs, in the OnConfiguring method, remove the compiler #warning about

the connection string.

Warning! The path to the project reference should not have a line break in your

project fi le.

In Visual Studio Solution Explorer, if you drag and drop a fi le between projects it

will be copied. If you hold down Shift while dragging and dropping, it will be moved.

In Visual Studio Code EXPLORER, if you drag and drop a fi le between projects it

will be moved. If you hold down Ctrl while dragging and dropping, it will be copied.

Good Practice: We will override the default database connection string in any

projects such as websites that need to work with the Northwind database, so the

class derived from DbContext must have a constructor with a DbContextOptions

parameter for this to work, and the generated fi le does this correctly, as shown

in the following code:

public NorthwindContext(DbContextOptions<NorthwindContext>
options)
 : base(options)
{
}

Chapter 12 547

8. In NorthwindContext.cs, in the OnConfiguring method, add statements to check the end of the

current directory to adjust for when running in Visual Studio 2022 compared to the command

line and Visual Studio Code, as shown highlighted in the following code:

protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
{
 if (!optionsBuilder.IsConfigured)
 {
 string dir = Environment.CurrentDirectory;
 string path = string.Empty;

 if (dir.EndsWith("net7.0"))
 {
 // Running in the <project>\bin\<Debug|Release>\net7.0 directory.
 path = Path.Combine("..", "..", "..", "..", "Northwind.db");
 }
 else
 {
 // Running in the <project> directory.
 path = Path.Combine("..", "Northwind.db");
 }

 optionsBuilder.UseSqlite($"Filename={path}");
 }
}

9. In the OnModelCreating method, remove all Fluent API statements that call the

ValueGeneratedNever method, like the one shown in the following code. This will confi gure

primary key properties like SupplierId to never generate a value automatically or call the

HasDefaultValueSql method:

modelBuilder.Entity<Supplier>(entity =>
{
 entity.Property(e => e.SupplierId).ValueGeneratedNever();
});

10. For the Product entity, tell SQLite that the UnitPrice can be converted from decimal to double.

The OnModelCreating method should now be much simplifi ed, as shown in the following code:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

If we do not remove the confi guration like the statements above, then when we

add new suppliers, the SupplierId value will always be 0 and we will only be able

to add one supplier with that value; all other attempts will throw an exception.

Introducing Web Development Using ASP.NET Core548

 modelBuilder.Entity<OrderDetail>(entity =>
 {
 entity.HasKey(e => new { e.OrderId, e.ProductId });

 entity.HasOne(d => d.Order)
 .WithMany(p => p.OrderDetails)
 .HasForeignKey(d => d.OrderId)
 .OnDelete(DeleteBehavior.ClientSetNull);

 entity.HasOne(d => d.Product)
 .WithMany(p => p.OrderDetails)
 .HasForeignKey(d => d.ProductId)
 .OnDelete(DeleteBehavior.ClientSetNull);
 });
 modelBuilder.Entity<Product>()
 .Property(product => product.UnitPrice)
 .HasConversion<double>();

 OnModelCreatingPartial(modelBuilder);
}

11. In the Northwind.Common.DataContext.Sqlite project, add a class named

NorthwindContextExtensions.cs. Modify its contents to defi ne an extension method that

 adds the Northwind database context to a collection of dependency services, as shown in the

following code:

using Microsoft.EntityFrameworkCore; // UseSqlite
using Microsoft.Extensions.DependencyInjection; // IServiceCollection

namespace Packt.Shared;

public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the
 Sqlite database provider.
 /// </summary>
 /// <param name="services"></param>
 /// <param name="relativePath">Set to override the default of ".."
 </param>
 /// <returns>An IServiceCollection that can be used to add more services.
 </returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services, string relativePath = "..")
 {
 string databasePath = Path.Combine(relativePath, "Northwind.db");

Chapter 12 549

 services.AddDbContext<NorthwindContext>(options =>
 {
 options.UseSqlite($"Data Source={databasePath}");

 options.LogTo(WriteLine, // Console
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 });

 return services;
 }
}

12. Build the two class libraries and fi x any compiler errors.

 Creating a class library for entity models using SQL Server
To use SQL Server, you will not need to do anything if you already set up the Northwind database in

Chapter 10, Working with Data Using Entity Framework Core. But you will now create the entity models

using the dotnet-ef tool:

1. Add a new project, as defi ned in the following list:

• Project template: Class Library/classlib

• Project fi le and folder: Northwind.Common.EntityModels.SqlServer

• Workspace/solution fi le and folder: PracticalApps

2. In the Northwind.Common.EntityModels.SqlServer project, add package references for the

SQL Server database provider and EF Core design-time support, as shown in the following

markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" Version="7.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.0">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
 buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

3. Delete the Class1.cs fi le.

4. Build the project.

5. Open a command prompt or terminal for the Northwind.Common.EntityModels.SqlServer

folder.

Introducing Web Development Using ASP.NET Core550

6. At the command line, generate entity class models for all tables, as shown in the following

commands:

dotnet ef dbcontext scaffold "Data Source=.;Initial
Catalog=Northwind;Integrated Security=true;" Microsoft.
EntityFrameworkCore.SqlServer --namespace Packt.Shared --data-annotations

Note the following:

• The command to perform: dbcontext scaffold

• The connection strings. "Data Source=.;Initial Catalog=Northwind;Integrated
Security=true;"

• The database provider: Microsoft.EntityFrameworkCore.SqlServer

• The namespace: --namespace Packt.Shared

• To use data annotations as well as the Fluent API: --data-annotations

7. In Customer.cs, add a regular expression to validate its primary key value to only allow up-

percase Western characters, as shown highlighted in the following code:

[Key]
[StringLength(5)]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

8. In Customer.cs, make the CustomerId and CompanyName properties required.

9. Add a new project, as defi ned in the following list:

• Project template: Class Library/classlib

• Project fi le and folder: Northwind.Common.DataContext.SqlServer

• Workspace/solution fi le and folder: PracticalApps

• In Visual Studio Code, select Northwind.Common.DataContext.SqlServer as the active

OmniSharp project

10. In the Northwind.Common.DataContext.SqlServer project, add a project reference to the

Northwind.Common.EntityModels.SqlServer project and add a package reference to the EF

Core data provider for SQL Server, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" Version="7.0.0" />
</ItemGroup>

<ItemGroup>
 <ProjectReference Include=
 "..\Northwind.Common.EntityModels.SqlServer\Northwind.Common
.EntityModels.SqlServer.csproj" />
</ItemGroup>

Chapter 12 551

11. In the Northwind.Common.DataContext.SqlServer project, delete the Class1.cs fi le.

12. Build the Northwind.Common.DataContext.SqlServer project.

13. Move the NorthwindContext.cs fi le from the Northwind.Common.EntityModels.SqlServer

project/folder to the Northwind.Common.DataContext.SqlServer project/folder.

14. In the Northwind.Common.DataContext.SqlServer project, in NorthwindContext.cs, remove

the compiler warning about the connection string.

15. In the Northwind.Common.DataContext.SqlServer project, add a class named

NorthwindContextExtensions.cs. Modify its contents to defi ne an extension method that

adds the Northwind database context to a collection of dependency services, as shown in the

following code:

using Microsoft.EntityFrameworkCore; // UseSqlServer
using Microsoft.Extensions.DependencyInjection; // IServiceCollection

namespace Packt.Shared;

public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the
 SqlServer database provider.
 /// </summary>
 /// <param name="services"></param>
 /// <param name="connectionString">Set to override the default.</param>
 /// <returns>An IServiceCollection that can be used to add more
 services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services,
 string connectionString = "Data Source=.;Initial Catalog=Northwind;" +
 "Integrated Security=true;MultipleActiveResultsets=true;Encrypt=false")
 {
 services.AddDbContext<NorthwindContext>(options =>
 {
 options.UseSqlServer(connectionString);

 options.LogTo(WriteLine, // Console
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });

Warning! The path to the project reference should not have a line break in your

project fi le.

Introducing Web Development Using ASP.NET Core552

 });

 return services;
 }
}

16. Build the two class libraries and fi x any compiler errors.

 Testing the class libraries
Now let’s build some unit tests to ensure the class libraries are working correctly:

1. Use your preferred coding tool to add a new xUnit Test Project [C#]/xunit project named

Northwind.Common.UnitTests to the PracticalApps workspace/solution.

2. In the Northwind.Common.UnitTests project, add a project reference to the Northwind.Common.
DataContext project for either SQLite or SQL Server, as shown highlighted in the following

confi guration:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include="..\Northwind.Common.DataContext.Sqlite\
Northwind.Common.DataContext.Sqlite.csproj" />
</ItemGroup>

3. Build the Northwind.Common.UnitTests project.

4. Rename UnitTest1.cs to EntityModelTests.cs.

5. Modify the contents of the fi le to defi ne two tests, the fi rst to connect to the database and the

second to confi rm there are eight categories in the database, as shown in the following code:

using Packt.Shared; // NorthwindContext

namespace Northwind.Common.UnitTests
{
 public class EntityModelTests
 {

Good Practice: We have provided optional arguments for the AddNorthwindContext

method so that we can override the hardcoded SQLite database fi lename path or the SQL

Server database connection string. This will allow us more fl exibility, for example, to load

these values from a confi guration fi le.

Warning! The project reference must go all on one line with no line break.

Chapter 12 553

 [Fact]
 public void DatabaseConnectTest()
 {
 using (NorthwindContext db = new())
 {
 Assert.True(db.Database.CanConnect());
 }
 }

 [Fact]
 public void CategoryCountTest()
 {
 using (NorthwindContext db = new())
 {
 int expected = 8;
 int actual = db.Categories.Count();

 Assert.Equal(expected, actual);
 }
 }
 }
}

6. Run the unit tests:

• If you are using Visual Studio 2022, then navigate to Test | Run All Tests in Test Explorer.

• If you are using Visual Studio Code, then in the Northwind.Common.UnitTests project’s

TERMINAL window, run the tests, as shown in the following command: dotnet test.

7. Note that the results should indicate that two tests ran, and both passed. If either of the two

tests fail, then fi x the issue. For example, if you are using SQLite then check the Northwind.
db fi le is in the solution directory (one up from the project directories.)

 Understanding web development
Developing for the web means developing with Hypertext Transfer Protocol (HTTP), so we will start

by reviewing this important foundational technology.

 Understanding Hypertext Transfer Protocol
To communicate with a web server, the client, also known as the user agent, makes calls over the

network using HTTP. As such, HTTP is the technical underpinning of the web. So, when we talk about

websites and web services, we mean that they use HTTP to communicate between a client (oft en a

web browser) and a server.

Introducing Web Development Using ASP.NET Core554

A client makes an HTTP request for a resource, such as a page, uniquely identifi ed by a Uniform Re-

source Locator (URL), and the server sends back an HTTP response, as shown in Figure 12.3:

Figure 12.3: An HTTP request and response

You can use Google Chrome and other browsers to record requests and responses.

 Understanding the components of a URL
A Uniform Resource Locator (URL) is made up of several components:

• Scheme: http (clear text) or https (encrypted).

• Domain: For a production website or service, the top-level domain (TLD) might be example.
com. You might have subdomains such as www, jobs, or extranet. During development, you

typically use localhost for all websites and services.

• Port number: For a production website or service, 80 for http, 443 for https. These port

numbers are usually inferred from the scheme. During development, other port numbers are

commonly used, such as 5000, 5001, and so on, to diff erentiate between websites and services

that all use the shared domain localhost.

• Path: A relative path to a resource, for example, /customers/germany.

• Query string: A way to pass parameter values, for example, ?country=Germany&searchtext
=shoes.

• Fragment: A reference to an element on a web page using its id, for example, #toc.

Good Practice: Google Chrome is currently used by about two thirds of website visitors

worldwide, and it has powerful, built-in developer tools, so it is a good fi rst choice for

testing your websites. Test your websites with Chrome and at least two other browsers,

for example, Firefox and Safari for macOS and iPhone. Microsoft Edge switched from

using Microsoft ’s own rendering engine to using Chromium in 2019, so it is less important

to test with it. If Microsoft ’s Internet Explorer is used at all, it tends to mostly be inside

organizations for intranets.

Chapter 12 555

 Assigning port numbers for projects in this book
In this book, we will use the domain localhost for all websites and web services, so we will use port

numbers to diff erentiate projects when multiple need to execute at the same time, as shown in the

following table:

Project Description Port numbers

Northwind.Web ASP.NET Core Razor Pages website 5000 HTTP, 5001 HTTPS

Northwind.Mvc ASP.NET Core MVC website 5000 HTTP, 5001 HTTPS

Northwind.WebApi ASP.NET Core Web API service 5002 HTTPS

Minimal.WebApi ASP.NET Core Web API (minimal) 5003 HTTPS

Northwind.BlazorServer ASP.NET Core Blazor Server 5004 HTTP, 5005 HTTPS

Northwind.BlazorWasm ASP.NET Core Blazor WebAssembly 5006 HTTP, 5007 HTTPS

 Using Google Chrome to make HTTP requests
Let’s explore how to use Google Chrome to make HTTP requests:

1. Start Google Chrome.

2. Navigate to More tools | Developer tools.

3. Click the Network tab, and Chrome should immediately start recording the network traffi c

between your browser and any web servers (note the red circle), as shown in Figure 12.4:

Figure 12.4: Chrome Developer Tools recording network traff ic

URL is a subset of Uniform Resource Identifi er (URI). A URL specifi es where a resource

is located and how to get it. A URI identifi es a resource either by URL or URN (Uniform

Resource Name).

Introducing Web Development Using ASP.NET Core556

4. In Chrome’s address box, enter the address of Microsoft ’s website for learning ASP.NET, as

shown in the following URL:

https://dotnet.microsoft.com/learn/aspnet

5. In Developer Tools, in the list of recorded requests, scroll to the top and click on the fi rst entry,

the row where the Type is document, as shown in Figure 12.5:

Figure 12.5: Recorded requests in Developer Tools

6. On the right-hand side, click on the Headers tab, and you will see details about Request Headers

and Response Headers, as shown in Figure 12.6:

Figure 12.6: Request and response headers

Chapter 12 557

Note the following aspects:

• Request Method is GET. Other HTTP methods that you could see here include POST,

PUT, DELETE, HEAD, and PATCH.

• Status Code is 200 OK. This means that the server found the resource that the browser

requested and has returned it in the body of the response. Other status codes that

you might see in response to a GET request include 301 Moved Permanently, 400 Bad
Request, 401 Unauthorized, and 404 Not Found.

• Request Headers sent by the browser to the web server include:

• accept, which lists what formats the browser accepts. In this case, the browser is saying

it understands HTML, XHTML, XML, and some image formats, but it will accept all other

fi les (*/*). Default weightings, also known as quality values, are 1.0. XML is specifi ed

with a quality value of 0.9 so it is preferred less than HTML or XHTML. All other fi le

types are given a quality value of 0.8 so are least preferred.

• accept-encoding, which lists what compression algorithms the browser understands,

in this case, GZIP, DEFLATE, and Brotli.

• accept-language, which lists the human languages it would prefer the content to use.

In this case, US English, which has a default quality value of 1.0, then any dialect of

English that has an explicitly specifi ed quality value of 0.9, and then any dialect of

Swedish that has an explicitly specifi ed quality value of 0.8.

• Response Headers, content-encoding, which tells me the server has sent back the

HTML web page response compressed using the GZIP algorithm because it knows that

 the client can decompress that format. (This is not visible in Figure 12.6 because there

is not enough space to expand the Response Headers section.)

7. Close Chrome.

 Understanding client-side web development technologies
When building websites, a developer needs to know more than just C# and .NET. On the client (that

is, in the web browser), you will use a combination of the following technologies:

• HTML5: This is used for the content and structure of a web page.

• CSS3: This is used for the styles applied to elements on the web page.

• JavaScript: This is used to code any business logic needed on the web page, for example, vali-

dating form input or making calls to a web service to fetch more data needed by the web page.

Although HTML5, CSS3, and JavaScript are the fundamental components of frontend web development,

there are many additional technologies that can make frontend web development more productive,

including:

• Bootstrap, the world’s most popular frontend open-source toolkit.

• SASS and LESS, CSS preprocessors for styling.

• Microsoft ’s TypeScript language for writing more robust code.

• JavaScript libraries such as Angular, jQuery, React, and Vue.

Introducing Web Development Using ASP.NET Core558

All these higher-level technologies ultimately translate or compile to the underlying three core tech-

nologies, so they work across all modern browsers.

As part of the build and deploy process, you will likely use technologies such as:

• Node.js, a framework for server-side development using JavaScript.

• Node Package Manager (npm) and Yarn, both client-side package managers.

• Webpack, a popular module bundler, a tool for compiling, transforming, and bundling website

source fi les.

 Practicing and exploring
Test your knowledge and understanding by answering some questions and exploring this chapter’s

topics with deeper research.

 Exercise 12.1 – Test your knowledge
Answer the following questions:

1. What was the name of Microsoft fi rst dynamic server-side executed web page technology and

why is it still useful to know this history today?

2. What are the names of two Microsoft web servers?

3. What are some diff erences between a microservice and a nanoservice?

4. What is Blazor?

5. What was the fi rst version of ASP.NET Core that could not be hosted on .NET Framework?

6. What is a user agent?

7. What impact does the HTTP request-response communication model have on web developers?

8. Name and describe four components of a URL.

9. What capabilities does Developer Tools give you?

10. What are the three main client-side web development technologies and what do they do?

 Exercise 12.2 – Know your webbreviations
What do the following web abbreviations stand for and what do they do?

1. URI

2. URL

3. WCF

4. TLD

5. API

6. SPA

7. CMS

8. Wasm

Chapter 12 559

9. SASS

10. REST

 Exercise 12.3 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/cs11dotnet7/blob/main/book-links.md#chapter-12---
introducing-web-development-using-aspnet-core

 Summary
In this chapter, you have:

• Been introduced to some of the app models and workloads that you can use to build websites

and web services using C# and .NET.

• Created two to four class libraries to defi ne an entity data model for working with the North-

wind database using either SQLite or SQL Server or both.

In the following chapters, you will learn the details about how to build the following:

• Simple websites using static HTML pages and dynamic Razor Pages.

• Complex websites using the Model-View-Controller (MVC) design pattern.

• Web services that can be called by any platform that can make an HTTP request, and client

websites that call those web services.

• Blazor user interface components that can be hosted on a web server, in the browser, or on

hybrid web-native mobile and desktop apps.

