MMDVM_HS/ADF7021.cpp

1030 lines
32 KiB
C++

/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
* Copyright (C) 2017 by Danilo DB4PLE
*
* Some of the code is based on work of Guus Van Dooren PE1PLM:
* https://github.com/ki6zum/gmsk-dstar/blob/master/firmware/dvmega/dvmega.ino
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#if defined(ENABLE_ADF7021)
#include "Globals.h"
#include "IO.h"
#include "ADF7021.h"
#include <math.h>
volatile bool totx_request = false;
volatile bool torx_request = false;
volatile bool even = true;
static uint32_t last_clk = 2U;
volatile uint32_t AD7021_control_word;
uint32_t ADF7021_RX_REG0;
uint32_t ADF7021_TX_REG0;
uint32_t ADF7021_REG1;
uint32_t div2;
uint32_t f_div;
uint16_t m_dstarDev;
uint16_t m_dmrDev;
uint16_t m_ysfDev;
uint16_t m_p25Dev;
uint16_t m_nxdnDev;
static void Send_AD7021_control_shift()
{
int AD7021_counter;
for(AD7021_counter = 31; AD7021_counter >= 0; AD7021_counter--) {
if(bitRead(AD7021_control_word, AD7021_counter) == HIGH)
io.SDATA_pin(HIGH);
else
io.SDATA_pin(LOW);
io.dlybit();
io.SCLK_pin(HIGH);
io.dlybit();
io.SCLK_pin(LOW);
}
// to keep SDATA signal at defined level when idle (not required)
io.SDATA_pin(LOW);
}
static void Send_AD7021_control_slePulse()
{
io.SLE_pin(HIGH);
io.dlybit();
io.SLE_pin(LOW);
}
void Send_AD7021_control(bool doSle)
{
Send_AD7021_control_shift();
if (doSle) {
Send_AD7021_control_slePulse();
}
}
#if defined(DUPLEX)
static void Send_AD7021_control_sle2Pulse()
{
io.SLE2_pin(HIGH);
io.dlybit();
io.SLE2_pin(LOW);
}
void Send_AD7021_control2(bool doSle)
{
Send_AD7021_control_shift();
if (doSle) {
Send_AD7021_control_sle2Pulse();
}
}
#endif
#if defined(SEND_RSSI_DATA)
uint16_t CIO::readRSSI()
{
uint32_t AD7021_RB;
uint16_t RB_word = 0U;
int AD7021_counter;
uint8_t RB_code, gain_code, gain_corr;
// Register 7, readback enable, ADC RSSI mode
AD7021_RB = 0x0147;
// Send control register
for(AD7021_counter = 8; AD7021_counter >= 0; AD7021_counter--) {
if(bitRead(AD7021_RB, AD7021_counter) == HIGH)
SDATA_pin(HIGH);
else
SDATA_pin(LOW);
dlybit();
SCLK_pin(HIGH);
dlybit();
SCLK_pin(LOW);
}
SDATA_pin(LOW);
SLE_pin(HIGH);
dlybit();
// Read SREAD pin
for(AD7021_counter = 17; AD7021_counter >= 0; AD7021_counter--) {
SCLK_pin(HIGH);
dlybit();
if( (AD7021_counter != 17) && (AD7021_counter != 0) )
RB_word |= ( (SREAD_pin() & 0x01) << (AD7021_counter-1) );
SCLK_pin(LOW);
dlybit();
}
SLE_pin(LOW);
// Process RSSI code
RB_code = RB_word & 0x7f;
gain_code = (RB_word >> 7) & 0x0f;
switch(gain_code) {
case 0b1010:
gain_corr = 0U;
break;
case 0b0110:
gain_corr = 24U;
break;
case 0b0101:
gain_corr = 38U;
break;
case 0b0100:
gain_corr = 58U;
break;
case 0b0000:
gain_corr = 86U;
break;
default:
gain_corr = 0U;
break;
}
return ( 130 - (RB_code + gain_corr)/2 );
}
#endif
void CIO::ifConf(MMDVM_STATE modemState, bool reset)
{
float divider;
uint32_t ADF7021_REG2 = 0U;
uint32_t ADF7021_REG3 = 0U;
uint32_t ADF7021_REG4 = 0U;
uint32_t ADF7021_REG10 = 0U;
uint32_t ADF7021_REG13 = 0U;
int32_t AFC_OFFSET = 0;
if(modemState != STATE_CWID)
m_modemState_prev = modemState;
// Toggle CE pin for ADF7021 reset
if(reset) {
CE_pin(LOW);
delay_reset();
CE_pin(HIGH);
delay_reset();
}
// Check frequency band
if( (m_frequency_tx >= VHF1_MIN) && (m_frequency_tx < VHF1_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_VHF1; // VHF1, external VCO
div2 = 1U;
}
else if( (m_frequency_tx >= VHF2_MIN) && (m_frequency_tx < VHF2_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_VHF2; // VHF1, external VCO
div2 = 1U;
}
else if( (m_frequency_tx >= UHF1_MIN)&&(m_frequency_tx < UHF1_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_UHF1; // UHF1, internal VCO
div2 = 1U;
}
else if( (m_frequency_tx >= UHF2_MIN)&&(m_frequency_tx < UHF2_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_UHF2; // UHF2, internal VCO
div2 = 2U;
}
else {
ADF7021_REG1 = ADF7021_REG1_UHF1; // UHF1, internal VCO
div2 = 1U;
}
if(div2 == 1U)
f_div = 2U;
else
f_div = 1U;
switch (modemState) {
case STATE_DSTAR:
AFC_OFFSET = 0;
break;
case STATE_DMR:
case STATE_CWID:
AFC_OFFSET = AFC_OFFSET_DMR;
break;
case STATE_YSF:
AFC_OFFSET = AFC_OFFSET_YSF;
break;
case STATE_P25:
AFC_OFFSET = AFC_OFFSET_P25;
break;
case STATE_NXDN:
AFC_OFFSET = AFC_OFFSET_NXDN;
break;
default:
break;
}
if( div2 == 1U )
divider = (m_frequency_rx - 100000 + AFC_OFFSET) / (ADF7021_PFD / 2U);
else
divider = (m_frequency_rx - 100000 + (2*AFC_OFFSET)) / ADF7021_PFD;
m_RX_N_divider = floor(divider);
divider = (divider - m_RX_N_divider) * 32768;
m_RX_F_divider = floor(divider + 0.5);
ADF7021_RX_REG0 = (uint32_t) 0b0000;
#if defined(BIDIR_DATA_PIN)
ADF7021_RX_REG0 |= (uint32_t) 0b01001 << 27; // mux regulator/receive
#else
ADF7021_RX_REG0 |= (uint32_t) 0b01011 << 27; // mux regulator/uart-spi enabled/receive
#endif
ADF7021_RX_REG0 |= (uint32_t) m_RX_N_divider << 19; // frequency;
ADF7021_RX_REG0 |= (uint32_t) m_RX_F_divider << 4; // frequency;
if( div2 == 1U )
divider = m_frequency_tx / (ADF7021_PFD / 2U);
else
divider = m_frequency_tx / ADF7021_PFD;
m_TX_N_divider = floor(divider);
divider = (divider - m_TX_N_divider) * 32768;
m_TX_F_divider = floor(divider + 0.5);
ADF7021_TX_REG0 = (uint32_t) 0b0000; // register 0
#if defined(BIDIR_DATA_PIN)
ADF7021_TX_REG0 |= (uint32_t) 0b01000 << 27; // mux regulator/transmit
#else
ADF7021_TX_REG0 |= (uint32_t) 0b01010 << 27; // mux regulator/uart-spi enabled/transmit
#endif
ADF7021_TX_REG0 |= (uint32_t) m_TX_N_divider << 19; // frequency;
ADF7021_TX_REG0 |= (uint32_t) m_TX_F_divider << 4; // frequency;
#if defined(TEST_TX)
modemState = STATE_DSTAR;
#endif
switch (modemState) {
case STATE_CWID:
// CW ID base configuration: DMR
// Dev: +1 symb (variable), symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_DMR;
ADF7021_REG10 = ADF7021_REG10_DMR;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_DMR << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_DMR << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b10 << 30; // IF filter (25 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_DMR << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_cwIdTXLevel / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
break;
case STATE_DSTAR:
// Dev: 1200 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_DSTAR;
ADF7021_REG10 = ADF7021_REG10_DSTAR;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b001 << 4; // mode, GMSK
ADF7021_REG4 |= (uint32_t) 0b1 << 7;
ADF7021_REG4 |= (uint32_t) 0b10 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_DSTAR << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_DSTAR << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_DSTAR << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b00 << 28; // clock normal
ADF7021_REG2 |= (uint32_t) (m_dstarDev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b001 << 4; // modulation (GMSK)
break;
case STATE_DMR:
// Dev: +1 symb 648 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_DMR;
ADF7021_REG10 = ADF7021_REG10_DMR;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_DMR << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_DMR << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b10 << 30; // IF filter (25 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_DMR << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_dmrDev / div2) << 19; // deviation
#if defined(ADF7021_DISABLE_RC_4FSK)
ADF7021_REG2 |= (uint32_t) 0b011 << 4; // modulation (4FSK)
#else
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
#endif
break;
case STATE_YSF:
// Dev: +1 symb 900 Hz, symb rate = 4800
ADF7021_REG3 = (m_LoDevYSF ? ADF7021_REG3_YSF_L : ADF7021_REG3_YSF_H);
ADF7021_REG10 = ADF7021_REG10_YSF;
// K=28
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) (m_LoDevYSF ? ADF7021_DISC_BW_YSF_L : ADF7021_DISC_BW_YSF_H) << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_YSF << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b10 << 30; // IF filter (25 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) (m_LoDevYSF ? ADF7021_SLICER_TH_YSF_L : ADF7021_SLICER_TH_YSF_H) << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_ysfDev / div2) << 19; // deviation
#if defined(ADF7021_DISABLE_RC_4FSK)
ADF7021_REG2 |= (uint32_t) 0b011 << 4; // modulation (4FSK)
#else
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
#endif
break;
case STATE_P25:
// Dev: +1 symb 600 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_P25;
ADF7021_REG10 = ADF7021_REG10_P25;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_P25 << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_P25 << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_P25 << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_p25Dev / div2) << 19; // deviation
#if defined(ENABLE_P25_WIDE) || defined(ADF7021_DISABLE_RC_4FSK)
ADF7021_REG2 |= (uint32_t) 0b011 << 4; // modulation (4FSK)
#else
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
#endif
break;
case STATE_NXDN:
// Dev: +1 symb 350 Hz, symb rate = 2400
ADF7021_REG3 = ADF7021_REG3_NXDN;
ADF7021_REG10 = ADF7021_REG10_NXDN;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_NXDN << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_NXDN << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_NXDN << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_nxdnDev / div2) << 19; // deviation
#if defined(ADF7021_DISABLE_RC_4FSK)
ADF7021_REG2 |= (uint32_t) 0b011 << 4; // modulation (4FSK)
#else
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
#endif
break;
default:
break;
}
// VCO/OSCILLATOR (REG1)
AD7021_control_word = ADF7021_REG1;
Send_AD7021_control();
// TX/RX CLOCK (3)
AD7021_control_word = ADF7021_REG3;
Send_AD7021_control();
// DEMOD (4)
AD7021_control_word = ADF7021_REG4;
Send_AD7021_control();
// IF fine cal (6)
AD7021_control_word = ADF7021_REG6;
Send_AD7021_control();
// IF coarse cal (5)
AD7021_control_word = ADF7021_REG5;
Send_AD7021_control();
// Delay for filter calibration
delay_IFcal();
// Frequency RX (0)
setRX();
// MODULATION (2)
ADF7021_REG2 |= (uint32_t) 0b0010; // register 2
ADF7021_REG2 |= (uint32_t) m_power << 13; // power level
ADF7021_REG2 |= (uint32_t) 0b110001 << 7; // PA
AD7021_control_word = ADF7021_REG2;
Send_AD7021_control();
// TEST DAC (14)
#if defined(TEST_DAC)
AD7021_control_word = 0x0000001E;
#else
AD7021_control_word = 0x0000000E;
#endif
Send_AD7021_control();
// AGC (auto, defaults) (9)
AD7021_control_word = 0x000231E9;
Send_AD7021_control();
// AFC (10)
AD7021_control_word = ADF7021_REG10;
Send_AD7021_control();
// SYNC WORD DET (11)
AD7021_control_word = 0x0000003B;
Send_AD7021_control();
// SWD/THRESHOLD (12)
AD7021_control_word = 0x0000010C;
Send_AD7021_control();
// 3FSK/4FSK DEMOD (13)
AD7021_control_word = ADF7021_REG13;
Send_AD7021_control();
#if defined(TEST_TX)
PTT_pin(HIGH);
AD7021_control_word = ADF7021_TX_REG0;
Send_AD7021_control();
// TEST MODE (TX carrier only) (15)
AD7021_control_word = 0x000E010F;
#else
// TEST MODE (disabled) (15)
AD7021_control_word = 0x000E000F;
#endif
Send_AD7021_control();
#if defined(DUPLEX)
if(m_duplex && (modemState != STATE_CWID))
ifConf2(modemState);
#endif
}
#if defined(DUPLEX)
void CIO::ifConf2(MMDVM_STATE modemState)
{
uint32_t ADF7021_REG2 = 0U;
uint32_t ADF7021_REG3 = 0U;
uint32_t ADF7021_REG4 = 0U;
uint32_t ADF7021_REG10 = 0U;
uint32_t ADF7021_REG13 = 0U;
switch (modemState) {
case STATE_DSTAR:
// Dev: 1200 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_DSTAR;
ADF7021_REG10 = ADF7021_REG10_DSTAR;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b001 << 4; // mode, GMSK
ADF7021_REG4 |= (uint32_t) 0b1 << 7;
ADF7021_REG4 |= (uint32_t) 0b10 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_DSTAR << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_DSTAR << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_DSTAR << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b00 << 28; // clock normal
ADF7021_REG2 |= (uint32_t) (m_dstarDev / div2)<< 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b001 << 4; // modulation (GMSK)
break;
case STATE_DMR:
// Dev: +1 symb 648 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_DMR;
ADF7021_REG10 = ADF7021_REG10_DMR;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_DMR << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_DMR << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b10 << 30; // IF filter (25 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_DMR << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_dmrDev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
break;
case STATE_YSF:
// Dev: +1 symb 900 Hz, symb rate = 4800
ADF7021_REG3 = (m_LoDevYSF ? ADF7021_REG3_YSF_L : ADF7021_REG3_YSF_H);
ADF7021_REG10 = ADF7021_REG10_YSF;
// K=28
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) (m_LoDevYSF ? ADF7021_DISC_BW_YSF_L : ADF7021_DISC_BW_YSF_H) << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_YSF << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b10 << 30; // IF filter (25 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) (m_LoDevYSF ? ADF7021_SLICER_TH_YSF_L : ADF7021_SLICER_TH_YSF_H) << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_ysfDev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
break;
case STATE_P25:
// Dev: +1 symb 600 Hz, symb rate = 4800
ADF7021_REG3 = ADF7021_REG3_P25;
ADF7021_REG10 = ADF7021_REG10_P25;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_P25 << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_P25 << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_P25 << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_p25Dev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
break;
case STATE_NXDN:
// Dev: +1 symb 350 Hz, symb rate = 2400
ADF7021_REG3 = ADF7021_REG3_NXDN;
ADF7021_REG10 = ADF7021_REG10_NXDN;
// K=32
ADF7021_REG4 = (uint32_t) 0b0100 << 0; // register 4
ADF7021_REG4 |= (uint32_t) 0b011 << 4; // mode, 4FSK
ADF7021_REG4 |= (uint32_t) 0b0 << 7;
ADF7021_REG4 |= (uint32_t) 0b11 << 8;
ADF7021_REG4 |= (uint32_t) ADF7021_DISC_BW_NXDN << 10; // Disc BW
ADF7021_REG4 |= (uint32_t) ADF7021_POST_BW_NXDN << 20; // Post dem BW
ADF7021_REG4 |= (uint32_t) 0b00 << 30; // IF filter (12.5 kHz)
ADF7021_REG13 = (uint32_t) 0b1101 << 0; // register 13
ADF7021_REG13 |= (uint32_t) ADF7021_SLICER_TH_NXDN << 4; // slicer threshold
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_nxdnDev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
break;
default:
break;
}
// VCO/OSCILLATOR (1)
AD7021_control_word = ADF7021_REG1;
Send_AD7021_control2();
// TX/RX CLOCK (3)
AD7021_control_word = ADF7021_REG3;
Send_AD7021_control2();
// DEMOD (4)
AD7021_control_word = ADF7021_REG4;
Send_AD7021_control2();
// IF fine cal (6)
AD7021_control_word = ADF7021_REG6;
Send_AD7021_control2();
// IF coarse cal (5)
AD7021_control_word = ADF7021_REG5;
Send_AD7021_control2();
// Delay for coarse IF filter calibration
delay_IFcal();
// Frequency RX (0) and set to RX only
AD7021_control_word = ADF7021_RX_REG0;
Send_AD7021_control2();
// MODULATION (2)
ADF7021_REG2 |= (uint32_t) 0b0010; // register 2
ADF7021_REG2 |= (uint32_t) (m_power & 0x3F) << 13; // power level
ADF7021_REG2 |= (uint32_t) 0b110001 << 7; // PA
AD7021_control_word = ADF7021_REG2;
Send_AD7021_control2();
// TEST DAC (14)
AD7021_control_word = 0x0000000E;
Send_AD7021_control2();
// AGC (auto, defaults) (9)
AD7021_control_word = 0x000231E9;
Send_AD7021_control2();
// AFC (10)
AD7021_control_word = ADF7021_REG10;
Send_AD7021_control2();
// SYNC WORD DET (11)
AD7021_control_word = 0x0000003B;
Send_AD7021_control2();
// SWD/THRESHOLD (12)
AD7021_control_word = 0x0000010C;
Send_AD7021_control2();
// 3FSK/4FSK DEMOD (13)
AD7021_control_word = ADF7021_REG13;
Send_AD7021_control2();
// TEST MODE (disabled) (15)
AD7021_control_word = 0x000E000F;
Send_AD7021_control2();
}
#endif
void CIO::interrupt()
{
uint8_t bit = 0U;
if (!m_started)
return;
uint8_t clk = CLK_pin();
// this is to prevent activation by spurious interrupts
// which seem to happen if you send out an control word
// needs investigation
// this workaround will fail if only rising or falling edge
// is used to trigger the interrupt !!!!
// TODO: figure out why sending the control word seems to issue interrupts
// possibly this is a design problem of the RF7021 board or too long wires
// on the breadboard build
// but normally this will not hurt too much
if (clk == last_clk) {
return;
} else {
last_clk = clk;
}
// we set the TX bit at TXD low, sampling of ADF7021 happens at rising clock
if (m_tx && clk == 0U) {
m_txBuffer.get(bit, m_control);
even = !even;
#if defined(BIDIR_DATA_PIN)
if(bit)
RXD_pin_write(HIGH);
else
RXD_pin_write(LOW);
#else
if(bit)
TXD_pin(HIGH);
else
TXD_pin(LOW);
#endif
// wait a brief period before raising SLE
if (totx_request == true) {
asm volatile("nop \n\t"
"nop \n\t"
"nop \n\t"
);
// SLE Pulse, should be moved out of here into class method
// according to datasheet in 4FSK we have to deliver this before 1/4 tbit == 26uS
SLE_pin(HIGH);
asm volatile("nop \n\t"
"nop \n\t"
"nop \n\t"
);
SLE_pin(LOW);
SDATA_pin(LOW);
// now do housekeeping
totx_request = false;
// first tranmittted bit is always the odd bit
even = ADF7021_EVEN_BIT;
}
}
// we sample the RX bit at rising TXD clock edge, so TXD must be 1 and we are not in tx mode
if (!m_tx && clk == 1U && !m_duplex) {
if(RXD_pin())
bit = 1U;
else
bit = 0U;
m_rxBuffer.put(bit, m_control);
}
if (torx_request == true && even == ADF7021_EVEN_BIT && m_tx && clk == 0U) {
// that is absolutely crucial in 4FSK, see datasheet:
// enable sle after 1/4 tBit == 26uS when sending MSB (even == false) and clock is low
delay_us(26U);
// SLE Pulse, should be moved out of here into class method
SLE_pin(HIGH);
asm volatile("nop \n\t"
"nop \n\t"
"nop \n\t"
);
SLE_pin(LOW);
SDATA_pin(LOW);
// now do housekeeping
m_tx = false;
torx_request = false;
// last tranmittted bit is always the even bit
// since the current bit is a transitional "don't care" bit, never transmitted
even = !ADF7021_EVEN_BIT;
}
m_watchdog++;
m_modeTimerCnt++;
if(m_scanPauseCnt >= SCAN_PAUSE)
m_scanPauseCnt = 0U;
if(m_scanPauseCnt != 0U)
m_scanPauseCnt++;
}
#if defined(DUPLEX)
void CIO::interrupt2()
{
uint8_t bit = 0U;
if(m_duplex) {
if(RXD2_pin())
bit = 1U;
else
bit = 0U;
m_rxBuffer.put(bit, m_control);
}
}
#endif
void CIO::setTX()
{
// PTT pin on (doing it earlier helps to measure timing impact)
PTT_pin(HIGH);
// Send register 0 for TX operation, but do not activate yet.
// This is done in the interrupt at the correct time
AD7021_control_word = ADF7021_TX_REG0;
Send_AD7021_control(false);
#if defined(BIDIR_DATA_PIN)
Data_dir_out(true); // Data pin output mode
#endif
totx_request = true;
while(CLK_pin());
}
void CIO::setRX(bool doSle)
{
// PTT pin off (doing it earlier helps to measure timing impact)
PTT_pin(LOW);
// Send register 0 for RX operation, but do not activate yet.
// This is done in the interrupt at the correct time
AD7021_control_word = ADF7021_RX_REG0;
Send_AD7021_control(doSle);
#if defined(BIDIR_DATA_PIN)
Data_dir_out(false); // Data pin input mode
#endif
if(!doSle) {
torx_request = true;
while(torx_request) { asm volatile ("nop"); }
}
}
void CIO::setPower(uint8_t power)
{
m_power = power >> 2;
}
void CIO::setDeviations(uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnTXLevel, bool ysfLoDev)
{
m_dstarDev = uint16_t((ADF7021_DEV_DSTAR * uint16_t(dstarTXLevel)) / 128U);
m_dmrDev = uint16_t((ADF7021_DEV_DMR * uint16_t(dmrTXLevel)) / 128U);
if (ysfLoDev)
m_ysfDev = uint16_t((ADF7021_DEV_YSF_L * uint16_t(ysfTXLevel)) / 128U);
else
m_ysfDev = uint16_t((ADF7021_DEV_YSF_H * uint16_t(ysfTXLevel)) / 128U);
m_p25Dev = uint16_t((ADF7021_DEV_P25 * uint16_t(p25TXLevel)) / 128U);
m_nxdnDev = uint16_t((ADF7021_DEV_NXDN * uint16_t(nxdnTXLevel)) / 128U);
}
void CIO::updateCal()
{
uint32_t ADF7021_REG2;
float divider;
// Check frequency band
if( (m_frequency_tx >= VHF1_MIN) && (m_frequency_tx < VHF1_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_VHF1; // VHF1, external VCO
div2 = 1U;
}
else if( (m_frequency_tx >= VHF2_MIN) && (m_frequency_tx < VHF2_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_VHF2; // VHF1, external VCO
div2 = 1U;
}
else if( (m_frequency_tx >= UHF1_MIN)&&(m_frequency_tx < UHF1_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_UHF1; // UHF1, internal VCO
div2 = 1U;
}
else if( (m_frequency_tx >= UHF2_MIN)&&(m_frequency_tx < UHF2_MAX) ) {
ADF7021_REG1 = ADF7021_REG1_UHF2; // UHF2, internal VCO
div2 = 2U;
}
else {
ADF7021_REG1 = ADF7021_REG1_UHF1; // UHF1, internal VCO
div2 = 1U;
}
if(div2 == 1U)
f_div = 2U;
else
f_div = 1U;
// VCO/OSCILLATOR (REG1)
AD7021_control_word = ADF7021_REG1;
Send_AD7021_control();
ADF7021_REG2 = (uint32_t) 0b10 << 28; // invert data (and RC alpha = 0.5)
ADF7021_REG2 |= (uint32_t) (m_dmrDev / div2) << 19; // deviation
ADF7021_REG2 |= (uint32_t) 0b111 << 4; // modulation (RC 4FSK)
ADF7021_REG2 |= (uint32_t) 0b0010; // register 2
ADF7021_REG2 |= (uint32_t) m_power << 13; // power level
ADF7021_REG2 |= (uint32_t) 0b110001 << 7; // PA
AD7021_control_word = ADF7021_REG2;
Send_AD7021_control();
if( div2 == 1U )
divider = m_frequency_tx / (ADF7021_PFD / 2U);
else
divider = m_frequency_tx / ADF7021_PFD;
m_TX_N_divider = floor(divider);
divider = (divider - m_TX_N_divider) * 32768;
m_TX_F_divider = floor(divider + 0.5);
ADF7021_TX_REG0 = (uint32_t) 0b0000; // register 0
#if defined(BIDIR_DATA_PIN)
ADF7021_TX_REG0 |= (uint32_t) 0b01000 << 27; // mux regulator/transmit
#else
ADF7021_TX_REG0 |= (uint32_t) 0b01010 << 27; // mux regulator/uart-spi enabled/transmit
#endif
ADF7021_TX_REG0 |= (uint32_t) m_TX_N_divider << 19; // frequency;
ADF7021_TX_REG0 |= (uint32_t) m_TX_F_divider << 4; // frequency;
if (m_tx)
setTX();
else
setRX();
}
#if defined(ENABLE_DEBUG)
uint32_t CIO::RXfreq()
{
return (uint32_t)((float)(ADF7021_PFD / f_div) * ((float)((32768 * m_RX_N_divider) + m_RX_F_divider) / 32768.0)) + 100000;
}
uint32_t CIO::TXfreq()
{
return (uint32_t)((float)(ADF7021_PFD / f_div) * ((float)((32768 * m_TX_N_divider) + m_TX_F_divider) / 32768.0));
}
uint16_t CIO::devDSTAR()
{
return (uint16_t)((ADF7021_PFD * m_dstarDev) / (f_div * 65536));
}
uint16_t CIO::devDMR()
{
return (uint16_t)((ADF7021_PFD * m_dmrDev) / (f_div * 65536));
}
uint16_t CIO::devYSF()
{
return (uint16_t)((ADF7021_PFD * m_ysfDev) / (f_div * 65536));
}
uint16_t CIO::devP25()
{
return (uint16_t)((ADF7021_PFD * m_p25Dev) / (f_div * 65536));
}
uint16_t CIO::devNXDN()
{
return (uint16_t)((ADF7021_PFD * m_nxdnDev) / (f_div * 65536));
}
void CIO::printConf()
{
DEBUG1("MMDVM_HS FW configuration:");
DEBUG2I("TX freq (Hz):", TXfreq());
DEBUG2I("RX freq (Hz):", RXfreq());
DEBUG2("Power set:", m_power);
DEBUG2("D-Star dev (Hz):", devDSTAR());
DEBUG2("DMR +1 sym dev (Hz):", devDMR());
DEBUG2("YSF +1 sym dev (Hz):", devYSF());
DEBUG2("P25 +1 sym dev (Hz):", devP25());
DEBUG2("NXDN +1 sym dev (Hz):", devNXDN());
}
#endif
#endif