MMDVM_HS/IO.cpp
2018-07-15 19:12:09 -04:00

392 lines
8.7 KiB
C++

/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
* Copyright (C) 2017 by Danilo DB4PLE
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "IO.h"
uint32_t m_frequency_rx;
uint32_t m_frequency_tx;
uint32_t m_pocsag_freq_tx;
uint8_t m_power;
CIO::CIO():
m_started(false),
m_rxBuffer(RX_RINGBUFFER_SIZE),
m_txBuffer(TX_RINGBUFFER_SIZE),
m_LoDevYSF(false),
m_ledCount(0U),
m_scanEnable(false),
m_scanPauseCnt(0U),
m_scanPos(0U),
m_ledValue(true),
m_watchdog(0U)
{
Init();
CE_pin(HIGH);
LED_pin(HIGH);
PTT_pin(LOW);
DSTAR_pin(LOW);
DMR_pin(LOW);
YSF_pin(LOW);
P25_pin(LOW);
NXDN_pin(LOW);
POCSAG_pin(LOW);
COS_pin(LOW);
DEB_pin(LOW);
#if !defined(BIDIR_DATA_PIN)
TXD_pin(LOW);
#endif
SCLK_pin(LOW);
SDATA_pin(LOW);
SLE_pin(LOW);
selfTest();
m_modeTimerCnt = 0U;
}
void CIO::selfTest()
{
bool ledValue = false;
uint32_t ledCount = 0U;
uint32_t blinks = 0U;
while(true) {
ledCount++;
delay_us(1000U);
if(ledCount >= 125U) {
ledCount = 0U;
ledValue = !ledValue;
LED_pin(!ledValue);
PTT_pin(ledValue);
DSTAR_pin(ledValue);
DMR_pin(ledValue);
YSF_pin(ledValue);
P25_pin(ledValue);
NXDN_pin(ledValue);
POCSAG_pin(ledValue);
COS_pin(ledValue);
blinks++;
if(blinks > 5U)
break;
}
}
}
void CIO::process()
{
uint8_t bit;
uint32_t scantime;
uint8_t control;
m_ledCount++;
if (m_started) {
// Two seconds timeout
if (m_watchdog >= 19200U) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF || m_modemState == STATE_P25 || m_modemState == STATE_NXDN) {
m_modemState = STATE_IDLE;
setMode(m_modemState);
}
m_watchdog = 0U;
}
#if defined(CONSTANT_SRV_LED)
LED_pin(HIGH);
#elif defined(CONSTANT_SRV_LED_INVERTED)
LED_pin(LOW);
#elif defined(DISCREET_SRV_LED)
if (m_ledCount == 10000U) LED_pin(LOW);
if (m_ledCount >= 480000U) {
m_ledCount = 0U;
LED_pin(HIGH);
};
#elif defined(DISCREET_SRV_LED_INVERTED)
if (m_ledCount == 10000U) LED_pin(HIGH);
if (m_ledCount >= 480000U) {
m_ledCount = 0U;
LED_pin(LOW);
};
#else
if (m_ledCount >= 24000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
LED_pin(m_ledValue);
}
#endif
} else {
if (m_ledCount >= 240000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
LED_pin(m_ledValue);
}
return;
}
// Switch off the transmitter if needed
if (m_txBuffer.getData() == 0U && m_tx) {
if(m_cwid_state) { // check for CW ID end of transmission
m_cwid_state = false;
// Restoring previous mode
if (m_TotalModes)
io.ifConf(m_modemState_prev, true);
}
if(m_pocsag_state) { // check for POCSAG end of transmission
m_pocsag_state = false;
// Restoring previous mode
if (m_TotalModes)
io.ifConf(m_modemState_prev, true);
}
setRX(false);
}
if(m_modemState_prev == STATE_DSTAR)
scantime = SCAN_TIME;
else if(m_modemState_prev == STATE_DMR)
scantime = SCAN_TIME * 2U;
else if(m_modemState_prev == STATE_YSF)
scantime = SCAN_TIME;
else if(m_modemState_prev == STATE_P25)
scantime = SCAN_TIME;
else if(m_modemState_prev == STATE_NXDN)
scantime = SCAN_TIME;
else
scantime = SCAN_TIME;
if(m_modeTimerCnt >= scantime) {
m_modeTimerCnt = 0U;
if( (m_modemState == STATE_IDLE) && (m_scanPauseCnt == 0U) && m_scanEnable && !m_cwid_state && !m_pocsag_state) {
m_scanPos = (m_scanPos + 1U) % m_TotalModes;
#if !defined(QUIET_MODE_LEDS)
setMode(m_Modes[m_scanPos]);
#endif
io.ifConf(m_Modes[m_scanPos], true);
}
}
if (m_rxBuffer.getData() >= 1U) {
m_rxBuffer.get(bit, control);
switch (m_modemState_prev) {
case STATE_DSTAR:
dstarRX.databit(bit);
break;
case STATE_DMR:
#if defined(DUPLEX)
if (m_duplex) {
if (m_tx)
dmrRX.databit(bit, control);
else
dmrIdleRX.databit(bit);
} else
dmrDMORX.databit(bit);
#else
dmrDMORX.databit(bit);
#endif
break;
case STATE_YSF:
ysfRX.databit(bit);
break;
case STATE_P25:
p25RX.databit(bit);
break;
case STATE_NXDN:
nxdnRX.databit(bit);
break;
default:
break;
}
}
}
void CIO::start()
{
m_TotalModes = 0U;
if(m_dstarEnable) {
m_Modes[m_TotalModes] = STATE_DSTAR;
m_TotalModes++;
}
if(m_dmrEnable) {
m_Modes[m_TotalModes] = STATE_DMR;
m_TotalModes++;
}
if(m_ysfEnable) {
m_Modes[m_TotalModes] = STATE_YSF;
m_TotalModes++;
}
if(m_p25Enable) {
m_Modes[m_TotalModes] = STATE_P25;
m_TotalModes++;
}
if(m_nxdnEnable) {
m_Modes[m_TotalModes] = STATE_NXDN;
m_TotalModes++;
}
#if defined(ENABLE_SCAN_MODE)
if(m_TotalModes > 1U)
m_scanEnable = true;
else {
m_scanEnable = false;
setMode(m_modemState);
}
#else
m_scanEnable = false;
setMode(m_modemState);
#endif
if (m_started)
return;
startInt();
m_started = true;
}
void CIO::write(uint8_t* data, uint16_t length, const uint8_t* control)
{
if (!m_started)
return;
for (uint16_t i = 0U; i < length; i++) {
if (control == NULL)
m_txBuffer.put(data[i], MARK_NONE);
else
m_txBuffer.put(data[i], control[i]);
}
// Switch the transmitter on if needed
if (!m_tx) {
setTX();
m_tx = true;
}
}
uint16_t CIO::getSpace() const
{
return m_txBuffer.getSpace();
}
bool CIO::hasTXOverflow()
{
return m_txBuffer.hasOverflowed();
}
bool CIO::hasRXOverflow()
{
return m_rxBuffer.hasOverflowed();
}
uint8_t CIO::setFreq(uint32_t frequency_rx, uint32_t frequency_tx, uint8_t rf_power, uint32_t pocsag_freq_tx)
{
// Configure power level
setPower(rf_power);
// Check frequency ranges
if( !( ((frequency_rx >= VHF1_MIN)&&(frequency_rx < VHF1_MAX)) || ((frequency_tx >= VHF1_MIN)&&(frequency_tx < VHF1_MAX)) || \
((frequency_rx >= UHF1_MIN)&&(frequency_rx < UHF1_MAX)) || ((frequency_tx >= UHF1_MIN)&&(frequency_tx < UHF1_MAX)) || \
((frequency_rx >= VHF2_MIN)&&(frequency_rx < VHF2_MAX)) || ((frequency_tx >= VHF2_MIN)&&(frequency_tx < VHF2_MAX)) || \
((frequency_rx >= UHF2_MIN)&&(frequency_rx < UHF2_MAX)) || ((frequency_tx >= UHF2_MIN)&&(frequency_tx < UHF2_MAX)) ) )
return 4U;
if( !( ((pocsag_freq_tx >= VHF1_MIN)&&(pocsag_freq_tx < VHF1_MAX)) || \
((pocsag_freq_tx >= UHF1_MIN)&&(pocsag_freq_tx < UHF1_MAX)) || \
((pocsag_freq_tx >= VHF2_MIN)&&(pocsag_freq_tx < VHF2_MAX)) || \
((pocsag_freq_tx >= UHF2_MIN)&&(pocsag_freq_tx < UHF2_MAX)) ) )
return 4U;
// Configure frequency
m_frequency_rx = frequency_rx;
m_frequency_tx = frequency_tx;
m_pocsag_freq_tx = pocsag_freq_tx;
return 0U;
}
void CIO::setMode(MMDVM_STATE modemState)
{
#if defined(USE_ALTERNATE_POCSAG_LEDS)
if (modemState != STATE_POCSAG) {
#endif
DSTAR_pin(modemState == STATE_DSTAR);
DMR_pin(modemState == STATE_DMR);
#if defined(USE_ALTERNATE_POCSAG_LEDS)
}
#endif
#if defined(USE_ALTERNATE_NXDN_LEDS)
if (modemState != STATE_NXDN) {
#endif
YSF_pin(modemState == STATE_YSF);
P25_pin(modemState == STATE_P25);
#if defined(USE_ALTERNATE_NXDN_LEDS)
}
#endif
#if defined(USE_ALTERNATE_NXDN_LEDS)
if (modemState != STATE_YSF && modemState != STATE_P25) {
#endif
NXDN_pin(modemState == STATE_NXDN);
#if defined(USE_ALTERNATE_NXDN_LEDS)
}
#endif
#if defined(USE_ALTERNATE_POCSAG_LEDS)
if (modemState != STATE_DSTAR && modemState != STATE_DMR) {
#endif
POCSAG_pin(modemState == STATE_POCSAG);
#if defined(USE_ALTERNATE_POCSAG_LEDS)
}
#endif
}
void CIO::setDecode(bool dcd)
{
if (dcd != m_dcd) {
m_scanPauseCnt = 1U;
COS_pin(dcd ? true : false);
}
m_dcd = dcd;
}
void CIO::setLoDevYSF(bool on)
{
m_LoDevYSF = on;
}
void CIO::resetWatchdog()
{
m_watchdog = 0U;
}
uint32_t CIO::getWatchdog()
{
return m_watchdog;
}