/* * Copyright (C) 2015, 2016 by Jonathan Naylor G4KLX * Copyright (C) 2016, 2017 by Andy Uribe CA6JAU * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #include "Globals.h" #include "IO.h" #if defined(ADF7021) #include "ADF7021.h" #endif uint32_t m_frequency_rx; uint32_t m_frequency_tx; uint8_t m_power; CIO::CIO(): m_started(false), m_rxBuffer(RX_RINGBUFFER_SIZE), m_txBuffer(TX_RINGBUFFER_SIZE) { Init(); LED_pin(HIGH); PTT_pin(LOW); DSTAR_pin(LOW); DMR_pin(LOW); YSF_pin(LOW); P25_pin(LOW); COS_pin(LOW); DEB_pin(LOW); TXD_pin(LOW); SCLK_pin(LOW); SDATA_pin(LOW); SLE_pin(LOW); } void CIO::process() { uint8_t bit; // Switch off the transmitter if needed if (m_txBuffer.getData() == 0U && m_tx) { m_tx = false; setRX(); } if (m_rxBuffer.getData() >= 1U) { m_rxBuffer.get(bit); if(m_dstarEnable) dstarRX.databit(bit); else if(m_dmrEnable) dmrDMORX.databit(bit); else if(m_ysfEnable) ysfRX.databit(bit); else if(m_p25Enable) p25RX.databit(bit); } } void CIO::interrupt() { uint8_t bit = 0; if (!m_started) return; if(m_tx) { m_txBuffer.get(bit); if(bit) TXD_pin(HIGH); else TXD_pin(LOW); } else { if(RXD_pin()) bit = 1; else bit = 0; m_rxBuffer.put(bit); } } void CIO::start() { ifConf(); if (m_started) return; delay_rx(); setRX(); startInt(); m_started = true; setMode(); } void CIO::write(uint8_t* data, uint16_t length) { if (!m_started) return; for (uint16_t i = 0U; i < length; i++) m_txBuffer.put(data[i]); // Switch the transmitter on if needed if (!m_tx) { setTX(); m_tx = true; } } uint16_t CIO::getSpace() const { return m_txBuffer.getSpace(); } bool CIO::hasTXOverflow() { return m_txBuffer.hasOverflowed(); } bool CIO::hasRXOverflow() { return m_rxBuffer.hasOverflowed(); } uint8_t CIO::setFreq(uint32_t frequency_rx, uint32_t frequency_tx) { // power level m_power = 0x20; if( !( ((frequency_rx >= VHF_MIN)&&(frequency_rx < VHF_MAX)) || ((frequency_tx >= VHF_MIN)&&(frequency_tx < VHF_MAX)) || \ ((frequency_rx >= UHF_MIN)&&(frequency_rx < UHF_MAX)) || ((frequency_tx >= UHF_MIN)&&(frequency_tx < UHF_MAX)) ) ) return 4U; m_frequency_rx = frequency_rx; m_frequency_tx = frequency_tx; return 0U; } void CIO::setMode() { DSTAR_pin(m_modemState == STATE_DSTAR); DMR_pin(m_modemState == STATE_DMR); YSF_pin(m_modemState == STATE_YSF); P25_pin(m_modemState == STATE_P25); } void CIO::setDecode(bool dcd) { if (dcd != m_dcd) COS_pin(dcd ? true : false); m_dcd = dcd; }