mirror of
https://github.com/jankae/LibreVNA.git
synced 2025-12-06 07:12:10 +01:00
828 lines
28 KiB
C++
828 lines
28 KiB
C++
#include <HW_HAL.hpp>
|
|
#include <VNA.hpp>
|
|
#include "Si5351C.hpp"
|
|
#include "max2871.hpp"
|
|
#include "main.h"
|
|
#include "delay.hpp"
|
|
#include "FPGA/FPGA.hpp"
|
|
#include <complex>
|
|
#include "Exti.hpp"
|
|
#include "Hardware.hpp"
|
|
#include "Communication.h"
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "Util.hpp"
|
|
#include "usb.h"
|
|
#include "Trigger.hpp"
|
|
#include <cmath>
|
|
#include <array>
|
|
|
|
#define LOG_LEVEL LOG_LEVEL_INFO
|
|
#define LOG_MODULE "VNA"
|
|
#include "Log.h"
|
|
|
|
static Protocol::SweepSettings settings;
|
|
static uint16_t pointCnt;
|
|
static uint8_t stageCnt;
|
|
static uint32_t last_LO2;
|
|
static double logMultiplier, logFrequency;
|
|
static Protocol::VNADatapoint<32> data;
|
|
static bool active = false;
|
|
static bool waitingInStandby = false;
|
|
static Si5351C::DriveStrength fixedPowerLowband;
|
|
static bool adcShifted;
|
|
static uint32_t actualBandwidth;
|
|
|
|
static uint64_t firstPointTime;
|
|
static bool firstPoint;
|
|
static bool zerospan;
|
|
|
|
static constexpr uint8_t sourceHarmonic = 5;
|
|
static constexpr uint8_t LOHarmonic = 3;
|
|
|
|
static constexpr float alternativeSamplerate = 914285.7143f;
|
|
static constexpr uint8_t alternativePrescaler = 102400000UL / alternativeSamplerate;
|
|
static_assert(alternativePrescaler * alternativeSamplerate == 102400000UL, "alternative ADCSamplerate can not be reached exactly");
|
|
static constexpr uint16_t alternativePhaseInc = 4096 * HW::DefaultIF2 / alternativeSamplerate;
|
|
static_assert(alternativePhaseInc * alternativeSamplerate == 4096 * HW::DefaultIF2, "DFT can not be computed for 2.IF when using alternative samplerate");
|
|
|
|
// Constants for USB buffer overflow prevention
|
|
static constexpr uint16_t maxPointsBetweenHalts = 40;
|
|
static constexpr uint32_t reservedUSBbuffer = maxPointsBetweenHalts * (sizeof(Protocol::Datapoint) + 8 /*USB packet overhead*/);
|
|
|
|
using namespace HWHAL;
|
|
|
|
static constexpr uint8_t alternativePrescalers[] = {112, 113, 114, 115};
|
|
|
|
static uint8_t LO2_adjustment[FPGA::MaxPoints * 5 / 2];
|
|
|
|
static void setLO2Adjustment(unsigned int point, int32_t value) {
|
|
if(value >= 1L<<20) {
|
|
value = (1L<<20)-1;
|
|
} else if(value <-(1L<<20)) {
|
|
value = -(1L<<20);
|
|
}
|
|
uint16_t base = point / 2 * 5;
|
|
if(point & 0x01) {
|
|
LO2_adjustment[base+2] = (LO2_adjustment[base+2] & 0x0F) | ((value<<4) & 0xF0);
|
|
LO2_adjustment[base+3] = (value >> 4) & 0xFF;
|
|
LO2_adjustment[base+4] = (value >> 12) & 0xFF;
|
|
} else {
|
|
LO2_adjustment[base+0] = value & 0xFF;
|
|
LO2_adjustment[base+1] = (value >> 8) & 0xFF;
|
|
LO2_adjustment[base+2] = ((value >> 16) & 0x0F) | (LO2_adjustment[base+2] & 0xF0);
|
|
}
|
|
}
|
|
static int32_t getLO2Adjustment(unsigned int point) {
|
|
uint16_t base = point / 2 * 5;
|
|
uint32_t ret = 0;
|
|
if(point & 0x01) {
|
|
ret |= (LO2_adjustment[base+2] & 0xF0) >> 4;
|
|
ret |= (uint16_t) LO2_adjustment[base+3] << 4;
|
|
ret |= (uint32_t) LO2_adjustment[base+4] << 12;
|
|
} else {
|
|
ret |= LO2_adjustment[base+0];
|
|
ret |= (uint16_t) LO2_adjustment[base+1] << 8;
|
|
ret |= (uint32_t) (LO2_adjustment[base+2]&0x0F) << 16;
|
|
}
|
|
// sign extend
|
|
constexpr uint32_t m = 1U << (20 - 1);
|
|
ret = (ret ^ m) - m;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t defaultLO2;
|
|
|
|
static uint64_t getPointFrequency(uint16_t pointNum) {
|
|
if(!settings.logSweep) {
|
|
return settings.f_start + (settings.f_stop - settings.f_start) * pointNum / (settings.points - 1);
|
|
} else {
|
|
static uint16_t lastPointNum = 0;
|
|
if (pointNum == 0) {
|
|
logFrequency = settings.f_start;
|
|
} else if(pointNum == lastPointNum) {
|
|
// nothing to do
|
|
} else if(pointNum == lastPointNum + 1) {
|
|
logFrequency *= logMultiplier;
|
|
} else {
|
|
logFrequency = settings.f_start * pow(10.0, pointNum * log10((double)settings.f_stop / settings.f_start) / (settings.points - 1));
|
|
}
|
|
lastPointNum = pointNum;
|
|
return logFrequency;
|
|
}
|
|
}
|
|
|
|
static uint32_t closestLOAlias(uint64_t LO1, uint64_t LO2, uint32_t IFBW, uint32_t ADC_Samplerate) {
|
|
constexpr uint64_t max_LO_harmonic = 2000000000;
|
|
constexpr uint32_t max_ADC_alias = 5000000;
|
|
|
|
uint32_t closestAlias = std::numeric_limits<uint32_t>::max();
|
|
|
|
for(int64_t lo1 = LO1; lo1 <= (int64_t) max_LO_harmonic; lo1 += LO1) {
|
|
// figure out which 2.LO harmonics we have to check
|
|
uint64_t lo2_min = lo1 - max_ADC_alias;
|
|
uint64_t lo2_max = lo1 + max_ADC_alias;
|
|
|
|
uint16_t lo2_min_harm = ((lo2_min + LO2 - 1) / LO2);
|
|
uint16_t lo2_max_harm = lo2_max / LO2;
|
|
|
|
if(lo2_max_harm * LO2 > max_LO_harmonic) {
|
|
lo2_max_harm = max_LO_harmonic / LO2;
|
|
}
|
|
|
|
if(lo2_min_harm > lo2_max_harm) {
|
|
// no aliasing possible, skip 2.LO loop
|
|
continue;
|
|
}
|
|
|
|
for(int64_t lo2 = LO2 * lo2_min_harm; lo2 <= (int64_t) LO2 * lo2_max_harm; lo2 += LO2) {
|
|
uint32_t mixing = llabs(lo1 - lo2);
|
|
if(mixing > max_ADC_alias) {
|
|
continue;
|
|
}
|
|
int32_t alias = Util::Alias(mixing, ADC_Samplerate);
|
|
uint32_t alias_dist = labs((int32_t) HW::getIF2() - alias);
|
|
if(alias_dist < closestAlias) {
|
|
closestAlias = alias_dist;
|
|
}
|
|
// if(abs(HW::getIF2() - alias) <= IFBW*3) {
|
|
// // we do have LO mixing products aliasing into the 2.IF
|
|
// return false;
|
|
// }
|
|
}
|
|
}
|
|
return closestAlias;
|
|
}
|
|
|
|
//static bool noLOAliasing(uint64_t LO1, uint64_t LO2, uint32_t IFBW) {
|
|
// constexpr uint64_t max_LO_harmonic = 2000000000;
|
|
// constexpr uint32_t max_ADC_alias = 5000000;
|
|
//
|
|
// for(int64_t lo1 = LO1; lo1 <= (int64_t) max_LO_harmonic; lo1 += LO1) {
|
|
// // figure out which 2.LO harmonics we have to check
|
|
// uint64_t lo2_min = lo1 - max_ADC_alias;
|
|
// uint64_t lo2_max = lo1 + max_ADC_alias;
|
|
//
|
|
// uint16_t lo2_min_harm = ((lo2_min + LO2 - 1) / LO2);
|
|
// uint16_t lo2_max_harm = lo2_max / LO2;
|
|
//
|
|
// if(lo2_max_harm * LO2 > max_LO_harmonic) {
|
|
// lo2_max_harm = max_LO_harmonic / LO2;
|
|
// }
|
|
//
|
|
// if(lo2_min_harm > lo2_max_harm) {
|
|
// // no aliasing possible, skip 2.LO loop
|
|
// continue;
|
|
// }
|
|
//
|
|
// for(int64_t lo2 = LO2 * lo2_min_harm; lo2 <= (int64_t) LO2 * lo2_max_harm; lo2 += LO2) {
|
|
// uint32_t mixing = llabs(lo1 - lo2);
|
|
// if(mixing > max_ADC_alias) {
|
|
// continue;
|
|
// }
|
|
// int32_t alias = Util::Alias(mixing, HW::getADCRate());
|
|
// if(abs(HW::getIF2() - alias) <= IFBW*3) {
|
|
// // we do have LO mixing products aliasing into the 2.IF
|
|
// return false;
|
|
// }
|
|
// }
|
|
// }
|
|
// // all good, no aliasing
|
|
// return true;
|
|
//}
|
|
|
|
static void setPLLFrequencies(uint64_t f, uint32_t current2LO, uint32_t IFBW, uint32_t *new2LO) {
|
|
uint64_t actualSource;
|
|
// set the source, this will never change
|
|
if (f > HW::Info.limits_maxFreq) {
|
|
Source.SetFrequency(f / sourceHarmonic);
|
|
actualSource = Source.GetActualFrequency() * sourceHarmonic;
|
|
} else if (f >= HW::BandSwitchFrequency) {
|
|
Source.SetFrequency(f);
|
|
actualSource = Source.GetActualFrequency();
|
|
} else {
|
|
// source will be set in sweep halted interrupt
|
|
actualSource = f;
|
|
}
|
|
|
|
// set the 1.LO
|
|
uint64_t actual1LO;
|
|
if(f > HW::Info.limits_maxFreq) {
|
|
LO1.SetFrequency((f + HW::getIF1()) / LOHarmonic);
|
|
actual1LO = LO1.GetActualFrequency() * LOHarmonic;
|
|
} else {
|
|
LO1.SetFrequency(f + HW::getIF1());
|
|
actual1LO = LO1.GetActualFrequency();
|
|
}
|
|
// adjust 2.LO if necessary
|
|
*new2LO = current2LO;
|
|
uint32_t actualFirstIF = actual1LO - actualSource;
|
|
uint32_t actualFinalIF = actualFirstIF - *new2LO;
|
|
uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
|
|
if(IFdeviation > IFBW / 2) {
|
|
*new2LO = actualFirstIF - HW::getIF2();
|
|
}
|
|
}
|
|
|
|
static bool findBestADCRate(uint64_t LO1, uint32_t LO2, uint32_t IFBW, FPGA::ADCSamplerate &bestRate) {
|
|
|
|
const std::array<uint8_t, 5> ADC_prescalers = { HW::DefaultADCprescaler,
|
|
alternativePrescalers[0], alternativePrescalers[1],
|
|
alternativePrescalers[2], alternativePrescalers[3] };
|
|
const std::array<FPGA::ADCSamplerate, 5> returnArray = {
|
|
FPGA::ADCSamplerate::Default, FPGA::ADCSamplerate::Alt1,
|
|
FPGA::ADCSamplerate::Alt2, FPGA::ADCSamplerate::Alt3,
|
|
FPGA::ADCSamplerate::Alt4 };
|
|
|
|
uint8_t maxIndex = ADC_prescalers.size();
|
|
|
|
if(!settings.suppressPeaks) {
|
|
maxIndex = 1;
|
|
}
|
|
|
|
uint8_t bestIndex = 0;
|
|
uint32_t furthestAliasDistance = 0;
|
|
|
|
for(uint8_t i = 0;i<maxIndex;i++) {
|
|
// LOG_ERR("Checking F=%lu, SRC=%lu, LO1=%lu", (uint32_t) f, (uint32_t) actualSource, (uint32_t) actual1LO);
|
|
|
|
uint32_t rate = FPGA::Clockrate / ADC_prescalers[i];
|
|
|
|
auto closest_alias = closestLOAlias(LO1, LO2, IFBW, rate);
|
|
if(closest_alias > IFBW * 3) {
|
|
// no need to look further, chose this option
|
|
bestRate = returnArray[i];
|
|
return true;
|
|
} else if(closest_alias > furthestAliasDistance) {
|
|
bestIndex = i;
|
|
furthestAliasDistance = closest_alias;
|
|
}
|
|
|
|
// // check if LO mixing product aliases into the ADC
|
|
// if(noLOAliasing(actual1LO, *new2LO, IFBW)) {
|
|
// // found an IF that can be used without problems
|
|
// if(shift != 0) {
|
|
//// LOG_WARN("Shifting IF for f=%lu, LO1=%lu, LO2= %lu", (uint32_t) f, (uint32_t) actual1LO, *new2LO);
|
|
// }
|
|
// return true;
|
|
// }
|
|
}
|
|
// all available IF shifts result in aliasing in the ADC
|
|
// LOG_ERR("Failed to shift IF for f=%lu", (uint32_t) f);
|
|
// no perfect option, use best shift
|
|
// auto shift = IF_shifts[bestIndex];
|
|
// // set the 1.LO
|
|
// uint64_t actual1LO;
|
|
// if(f > HW::Info.limits_maxFreq) {
|
|
// LO1.SetFrequency((f + HW::getIF1() + shift) / LOHarmonic);
|
|
// actual1LO = LO1.GetActualFrequency() * LOHarmonic;
|
|
// } else {
|
|
// LO1.SetFrequency(f + HW::getIF1() + shift);
|
|
// actual1LO = LO1.GetActualFrequency();
|
|
// }
|
|
// // adjust 2.LO if necessary
|
|
// *new2LO = current2LO;
|
|
// uint32_t actualFirstIF = actual1LO - actualSource;
|
|
// uint32_t actualFinalIF = actualFirstIF - *new2LO;
|
|
// uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
|
|
// if(IFdeviation > IFBW / 2) {
|
|
// *new2LO = actualFirstIF - HW::getIF2();
|
|
// }
|
|
bestRate = returnArray[bestIndex];
|
|
return false;
|
|
}
|
|
|
|
static bool shift1IF(uint64_t f, uint32_t current2LO, uint32_t IFBW, uint32_t *new2LO, uint32_t ADC_rate) {
|
|
const std::array<uint32_t, 21> IF_shifts = {0, IFBW * 2, IFBW * 3,
|
|
IFBW * 5, IFBW * 7, IFBW * 7 / 10, IFBW * 11 / 10, IFBW * 13
|
|
/ 10, IFBW * 17 / 10, IFBW * 19 / 10, IFBW, IFBW * 23 / 10,
|
|
IFBW * 29 / 10, IFBW * 31 / 10, IFBW * 37 / 10, IFBW * 41 / 10, IFBW
|
|
* 43 / 10, IFBW * 47 / 10, IFBW * 53 / 10, IFBW * 59 / 10,
|
|
IFBW * 61 / 10 };
|
|
|
|
// const std::array<uint32_t, 8> IF_shifts = {0, 10, 33, 100, 330, 1000, 3300, 10000};
|
|
|
|
uint64_t actualSource;
|
|
// set the source, this will never change
|
|
if (f > HW::Info.limits_maxFreq) {
|
|
actualSource = Source.GetActualFrequency() * sourceHarmonic;
|
|
} else if (f >= HW::BandSwitchFrequency) {
|
|
actualSource = Source.GetActualFrequency();
|
|
} else {
|
|
// source will be set in sweep halted interrupt
|
|
actualSource = f;
|
|
}
|
|
|
|
uint8_t maxIndex = IF_shifts.size();
|
|
if(!settings.suppressPeaks) {
|
|
maxIndex = 1;
|
|
}
|
|
|
|
uint8_t bestIndex = 0;
|
|
uint32_t furthestAliasDistance = 0;
|
|
|
|
for(uint8_t i = 0;i<maxIndex;i++) {
|
|
auto shift = IF_shifts[i];
|
|
// set the 1.LO
|
|
uint64_t actual1LO;
|
|
if(f > HW::Info.limits_maxFreq) {
|
|
LO1.SetFrequency((f + HW::getIF1() + shift) / LOHarmonic);
|
|
actual1LO = LO1.GetActualFrequency() * LOHarmonic;
|
|
} else {
|
|
LO1.SetFrequency(f + HW::getIF1() + shift);
|
|
actual1LO = LO1.GetActualFrequency();
|
|
}
|
|
// adjust 2.LO if necessary
|
|
*new2LO = current2LO;
|
|
uint32_t actualFirstIF = actual1LO - actualSource;
|
|
uint32_t actualFinalIF = actualFirstIF - *new2LO;
|
|
uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
|
|
if(IFdeviation > IFBW / 2) {
|
|
*new2LO = actualFirstIF - HW::getIF2();
|
|
}
|
|
|
|
// LOG_ERR("Checking F=%lu, SRC=%lu, LO1=%lu", (uint32_t) f, (uint32_t) actualSource, (uint32_t) actual1LO);
|
|
|
|
auto closest_alias = closestLOAlias(actual1LO, *new2LO, IFBW, ADC_rate);
|
|
if(closest_alias > IFBW * 3) {
|
|
// no need to look further, chose this option
|
|
return true;
|
|
} else if(closest_alias > furthestAliasDistance) {
|
|
bestIndex = i;
|
|
furthestAliasDistance = closest_alias;
|
|
}
|
|
|
|
// // check if LO mixing product aliases into the ADC
|
|
// if(noLOAliasing(actual1LO, *new2LO, IFBW)) {
|
|
// // found an IF that can be used without problems
|
|
// if(shift != 0) {
|
|
//// LOG_WARN("Shifting IF for f=%lu, LO1=%lu, LO2= %lu", (uint32_t) f, (uint32_t) actual1LO, *new2LO);
|
|
// }
|
|
// return true;
|
|
// }
|
|
}
|
|
// all available IF shifts result in aliasing in the ADC
|
|
// LOG_ERR("Failed to shift IF for f=%lu", (uint32_t) f);
|
|
// no perfect option, use best shift
|
|
auto shift = IF_shifts[bestIndex];
|
|
// set the 1.LO
|
|
uint64_t actual1LO;
|
|
if(f > HW::Info.limits_maxFreq) {
|
|
LO1.SetFrequency((f + HW::getIF1() + shift) / LOHarmonic);
|
|
actual1LO = LO1.GetActualFrequency() * LOHarmonic;
|
|
} else {
|
|
LO1.SetFrequency(f + HW::getIF1() + shift);
|
|
actual1LO = LO1.GetActualFrequency();
|
|
}
|
|
// adjust 2.LO if necessary
|
|
*new2LO = current2LO;
|
|
uint32_t actualFirstIF = actual1LO - actualSource;
|
|
uint32_t actualFinalIF = actualFirstIF - *new2LO;
|
|
uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
|
|
if(IFdeviation > IFBW / 2) {
|
|
*new2LO = actualFirstIF - HW::getIF2();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//static bool needs2LOshift(uint64_t f, uint32_t current2LO, uint32_t IFBW, uint32_t *new2LO) {
|
|
// // Check if 2.LO needs to be shifted
|
|
// uint64_t actualSource, actual1LO;
|
|
// actualSource = Source.GetActualFrequency();
|
|
// actual1LO = LO1.GetActualFrequency();
|
|
// if(f > HW::Info.limits_maxFreq) {
|
|
// actualSource *= sourceHarmonic;
|
|
// actual1LO *= LOHarmonic;
|
|
// } else if(f < HW::BandSwitchFrequency) {
|
|
// // can use the lowband PLL with high frequency resolution, assume perfect frequency match
|
|
// actualSource = f;
|
|
// }
|
|
// uint32_t actualFirstIF = actual1LO - actualSource;
|
|
// uint32_t actualFinalIF = actualFirstIF - current2LO;
|
|
// uint32_t IFdeviation = abs(actualFinalIF - HW::getIF2());
|
|
// if(IFdeviation > IFBW / 2) {
|
|
// *new2LO = actualFirstIF - HW::getIF2();
|
|
// return true;
|
|
// } else {
|
|
// // no shift required
|
|
// return false;
|
|
// }
|
|
//}
|
|
|
|
bool VNA::Setup(Protocol::SweepSettings s) {
|
|
// Abort possible active sweep first
|
|
VNA::Stop();
|
|
vTaskDelay(5);
|
|
data.clear();
|
|
HW::SetMode(HW::Mode::VNA);
|
|
FPGA::SetMode(FPGA::Mode::FPGA);
|
|
// Configure the ADC prescalers
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::getADCPrescaler());
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::getDFTPhaseInc());
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescalerAlt1, alternativePrescalers[0]);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrementAlt1, alternativePrescalers[0]*10);
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescalerAlt2, alternativePrescalers[1]);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrementAlt2, alternativePrescalers[1]*10);
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescalerAlt3, alternativePrescalers[2]);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrementAlt3, alternativePrescalers[2]*10);
|
|
FPGA::WriteRegister(FPGA::Reg::ADCPrescalerAlt4, alternativePrescalers[3]);
|
|
FPGA::WriteRegister(FPGA::Reg::PhaseIncrementAlt4, alternativePrescalers[3]*10);
|
|
if(settings.points > FPGA::MaxPoints) {
|
|
settings.points = FPGA::MaxPoints;
|
|
}
|
|
settings = s;
|
|
// calculate factor between adjacent points for log sweep for faster calculation when sweeping
|
|
logMultiplier = pow((double) settings.f_stop / settings.f_start, 1.0 / (settings.points-1));
|
|
// Configure sweep
|
|
FPGA::SetNumberOfPoints(settings.points);
|
|
uint32_t samplesPerPoint = (HW::getADCRate() / s.if_bandwidth);
|
|
// round up to next multiple of 16 (16 samples are spread across 5 IF2 periods)
|
|
if(samplesPerPoint%16) {
|
|
samplesPerPoint += 16 - samplesPerPoint%16;
|
|
}
|
|
actualBandwidth = HW::getADCRate() / samplesPerPoint;
|
|
// has to be one less than actual number of samples
|
|
FPGA::SetSamplesPerPoint(samplesPerPoint);
|
|
|
|
// reset unlevel flag if it was set from a previous sweep/mode
|
|
HW::SetOutputUnlevel(false);
|
|
// Start with average level
|
|
auto cdbm = (s.cdbm_excitation_start + s.cdbm_excitation_stop) / 2;
|
|
// correct for port 1, assumes port 2 is identical
|
|
auto centerFreq = (s.f_start + s.f_stop) / 2;
|
|
// force calculation of amplitude setting for PLL, even with lower frequencies
|
|
if(centerFreq < HW::BandSwitchFrequency) {
|
|
centerFreq = HW::BandSwitchFrequency;
|
|
}
|
|
auto amplitude = HW::GetAmplitudeSettings(cdbm, centerFreq, true, false);
|
|
if(amplitude.unlevel) {
|
|
HW::SetOutputUnlevel(true);
|
|
}
|
|
|
|
uint8_t fixedAttenuatorHighband = amplitude.attenuator;
|
|
Source.SetPowerOutA(amplitude.highBandPower, true);
|
|
|
|
// amplitude calculation for lowband
|
|
amplitude = HW::GetAmplitudeSettings(cdbm, HW::BandSwitchFrequency / 2, true, false);
|
|
if(amplitude.unlevel) {
|
|
HW::SetOutputUnlevel(true);
|
|
}
|
|
uint8_t fixedAttenuatorLowband = amplitude.attenuator;
|
|
fixedPowerLowband = amplitude.lowBandPower;
|
|
|
|
FPGA::WriteMAX2871Default(Source.GetRegisters());
|
|
|
|
last_LO2 = HW::getIF1() - HW::getIF2();
|
|
defaultLO2 = last_LO2;
|
|
Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
Si5351.WaitForLock(Si5351C::PLL::B, 10);
|
|
|
|
zerospan = (s.f_start == s.f_stop) && (s.cdbm_excitation_start == s.cdbm_excitation_stop);
|
|
|
|
bool last_lowband = false;
|
|
|
|
uint16_t pointsWithoutHalt = 0;
|
|
|
|
// Transfer PLL configuration to FPGA
|
|
for (uint16_t i = 0; i < settings.points; i++) {
|
|
uint64_t freq = getPointFrequency(i);
|
|
int16_t power = s.cdbm_excitation_start + (s.cdbm_excitation_stop - s.cdbm_excitation_start) * i / (settings.points - 1);
|
|
freq = Cal::FrequencyCorrectionToDevice(freq);
|
|
|
|
bool needs_halt = false;
|
|
bool lowband = false;
|
|
if (freq < HW::BandSwitchFrequency) {
|
|
needs_halt = true;
|
|
lowband = true;
|
|
}
|
|
if(i == 0) {
|
|
// halt before first point (makes sure that the 2.LO gets configured correctly if it was shifted for the last point in
|
|
// the previous sweep
|
|
needs_halt = true;
|
|
}
|
|
// SetFrequency only manipulates the register content in RAM, no SPI communication is done.
|
|
// No mode-switch of FPGA necessary here.
|
|
uint32_t new2LO;
|
|
setPLLFrequencies(freq, last_LO2, actualBandwidth, &new2LO);
|
|
FPGA::ADCSamplerate ADC_rate;
|
|
if(!findBestADCRate(LO1.GetActualFrequency(), new2LO, actualBandwidth, ADC_rate)) {
|
|
// all available ADC rates result in a spike
|
|
uint8_t presc;
|
|
switch(ADC_rate) {
|
|
case FPGA::ADCSamplerate::Default: presc = HW::DefaultADCprescaler; break;
|
|
case FPGA::ADCSamplerate::Alt1: presc = alternativePrescalers[0]; break;
|
|
case FPGA::ADCSamplerate::Alt2: presc = alternativePrescalers[1]; break;
|
|
case FPGA::ADCSamplerate::Alt3: presc = alternativePrescalers[2]; break;
|
|
case FPGA::ADCSamplerate::Alt4: presc = alternativePrescalers[3]; break;
|
|
}
|
|
uint32_t samplerate = FPGA::Clockrate / presc;
|
|
shift1IF(freq, new2LO, actualBandwidth, &new2LO, samplerate);
|
|
}
|
|
// LOG_WARN("F %lu 1.LO: %lu 2.LO: %lu ADC: %d", (uint32_t) freq, (uint32_t) LO1.GetActualFrequency(), new2LO, (int) ADC_rate);
|
|
// vTaskDelay(10);
|
|
if(new2LO != last_LO2 && s.suppressPeaks) {
|
|
last_LO2 = new2LO;
|
|
needs_halt = true;
|
|
}
|
|
|
|
if (last_lowband && !lowband) {
|
|
// additional halt before first highband point to enable highband source
|
|
needs_halt = true;
|
|
}
|
|
|
|
// halt on regular intervals to prevent USB buffer overflow
|
|
if(!needs_halt) {
|
|
pointsWithoutHalt++;
|
|
if(pointsWithoutHalt > maxPointsBetweenHalts) {
|
|
needs_halt = true;
|
|
}
|
|
} else {
|
|
pointsWithoutHalt = 0;
|
|
}
|
|
|
|
uint8_t attenuator = freq >= HW::BandSwitchFrequency ? fixedAttenuatorHighband : fixedAttenuatorLowband;
|
|
if(!s.fixedPowerSetting) {
|
|
// adapt power level throughout the sweep
|
|
amplitude = HW::GetAmplitudeSettings(power, freq, true, false);
|
|
if(freq >= HW::BandSwitchFrequency) {
|
|
Source.SetPowerOutA(amplitude.highBandPower, true);
|
|
}
|
|
if(amplitude.unlevel) {
|
|
HW::SetOutputUnlevel(true);
|
|
}
|
|
attenuator = amplitude.attenuator;
|
|
}
|
|
|
|
// needs halt before first point to allow PLLs to settle
|
|
if (i == 0) {
|
|
needs_halt = true;
|
|
}
|
|
|
|
setLO2Adjustment(i, (int32_t) last_LO2 - defaultLO2);
|
|
FPGA::WriteSweepConfig(i, lowband, Source.GetRegisters(),
|
|
LO1.GetRegisters(), attenuator, freq, FPGA::SettlingTime::us60,
|
|
ADC_rate, needs_halt);
|
|
last_lowband = lowband;
|
|
}
|
|
// revert clk configuration to previous value (might have been changed in sweep calculation)
|
|
Si5351.SetCLK(SiChannel::RefLO2, HW::getIF1() - HW::getIF2(), Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
Si5351.WaitForLock(Si5351C::PLL::B, 10);
|
|
// Enable mixers/amplifier/PLLs
|
|
FPGA::SetWindow(FPGA::Window::Kaiser);
|
|
FPGA::Enable(FPGA::Periphery::Port1Mixer);
|
|
FPGA::Enable(FPGA::Periphery::Port2Mixer);
|
|
FPGA::Enable(FPGA::Periphery::RefMixer);
|
|
FPGA::Enable(FPGA::Periphery::Amplifier);
|
|
FPGA::Enable(FPGA::Periphery::SourceChip);
|
|
FPGA::Enable(FPGA::Periphery::SourceRF);
|
|
FPGA::Enable(FPGA::Periphery::LO1Chip);
|
|
FPGA::Enable(FPGA::Periphery::LO1RF);
|
|
FPGA::SetupSweep(s.stages, s.port1Stage, s.port2Stage, s.syncMode != 0, s.syncMaster);
|
|
Trigger::SetMode((Trigger::Mode) s.syncMode);
|
|
FPGA::Enable(FPGA::Periphery::PortSwitch);
|
|
pointCnt = 0;
|
|
stageCnt = 0;
|
|
adcShifted = false;
|
|
active = true;
|
|
// Enable new data and sweep halt interrupt
|
|
FPGA::EnableInterrupt(FPGA::Interrupt::NewData);
|
|
FPGA::EnableInterrupt(FPGA::Interrupt::SweepHalted);
|
|
// Start the sweep if not configured for standby
|
|
last_LO2 = HW::getIF1() - HW::getIF2();
|
|
firstPoint = true;
|
|
if (settings.standby) {
|
|
waitingInStandby = true;
|
|
}
|
|
else {
|
|
FPGA::StartSweep();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VNA::InitiateSweep() {
|
|
// Invoked by a host via InitiateSweep packet
|
|
if(waitingInStandby){
|
|
// make sure that SweepSettings have been configured for standby operation
|
|
FPGA::StartSweep();
|
|
waitingInStandby = false;
|
|
}
|
|
}
|
|
|
|
bool VNA::GetStandbyMode() {
|
|
return settings.standby;
|
|
}
|
|
|
|
bool VNA::IsWaitingInStandby() {
|
|
return waitingInStandby;
|
|
}
|
|
|
|
void VNA::SetWaitingInStandby(bool waiting) {
|
|
waitingInStandby = waiting;
|
|
}
|
|
|
|
static void PassOnData() {
|
|
Protocol::PacketInfo info;
|
|
info.type = Protocol::PacketType::VNADatapoint;
|
|
info.VNAdatapoint = &data;
|
|
Communication::Send(info);
|
|
data.clear();
|
|
}
|
|
|
|
bool VNA::MeasurementDone(const FPGA::SamplingResult &result) {
|
|
if(!active) {
|
|
return false;
|
|
}
|
|
if(result.pointNum != pointCnt || result.stageNum != stageCnt) {
|
|
LOG_WARN("Indicated point does not match (%u != %u, %d != %d)", result.pointNum, pointCnt, result.stageNum, stageCnt);
|
|
FPGA::AbortSweep();
|
|
return false;
|
|
}
|
|
// normal sweep mode
|
|
data.addValue(result.P1I, result.P1Q, stageCnt, (int) Protocol::Source::Port1);
|
|
data.addValue(result.P2I, result.P2Q, stageCnt, (int) Protocol::Source::Port2);
|
|
data.addValue(result.RefI, result.RefQ, stageCnt, (int) Protocol::Source::Port1 | (int) Protocol::Source::Port2 | (int) Protocol::Source::Reference);
|
|
data.pointNum = pointCnt;
|
|
if(zerospan) {
|
|
uint64_t timestamp = HW::getLastISRTimestamp();
|
|
if(firstPoint) {
|
|
data.us = 0;
|
|
firstPointTime = timestamp;
|
|
firstPoint = false;
|
|
} else {
|
|
data.us = timestamp - firstPointTime;
|
|
}
|
|
} else {
|
|
// non-zero span, set frequency/power
|
|
data.frequency = getPointFrequency(pointCnt);
|
|
data.cdBm = settings.cdbm_excitation_start + (settings.cdbm_excitation_stop - settings.cdbm_excitation_start) * pointCnt / (settings.points - 1);
|
|
}
|
|
// figure out whether this sweep point is complete
|
|
stageCnt++;
|
|
if(stageCnt > settings.stages) {
|
|
// point is complete
|
|
stageCnt = 0;
|
|
STM::DispatchToInterrupt(PassOnData);
|
|
pointCnt++;
|
|
if (pointCnt >= settings.points) {
|
|
// reached end of sweep, start again
|
|
pointCnt = 0;
|
|
// request to trigger work function
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VNA::Work() {
|
|
// end of sweep
|
|
if(Trigger::GetMode() != Trigger::Mode::ExtRef) {
|
|
HW::Ref::update();
|
|
}
|
|
// Compile info packet
|
|
Protocol::PacketInfo packet;
|
|
packet.type = Protocol::PacketType::DeviceStatus;
|
|
if(HW::getStatusUpdateFlag()) {
|
|
HW::getDeviceStatus(&packet.status, true);
|
|
Communication::Send(packet);
|
|
}
|
|
// do not reset unlevel flag here, as it is calculated only once at the setup of the sweep
|
|
// Start next sweep if not configured for standby
|
|
if (settings.standby) {
|
|
waitingInStandby = true;
|
|
}
|
|
else {
|
|
FPGA::StartSweep();
|
|
}
|
|
|
|
}
|
|
|
|
void VNA::SweepHalted() {
|
|
if(!active) {
|
|
return;
|
|
}
|
|
// Resuming the halted sweep requires I2C bus operations to the Si5355. When trigger synchronization is enabled
|
|
// in the external reference mode, this might collide with the trigger input check. Instead both these actions
|
|
// are handled through the STM::DispatchToInterrupt functionality, ensuring that they do not interrupt each other
|
|
STM::DispatchToInterrupt([](){
|
|
LOG_DEBUG("Halted before point %d", pointCnt);
|
|
// bool adcShiftRequired = false;
|
|
uint64_t frequency = getPointFrequency(pointCnt);
|
|
frequency = Cal::FrequencyCorrectionToDevice(frequency);
|
|
int16_t power = settings.cdbm_excitation_start
|
|
+ (settings.cdbm_excitation_stop - settings.cdbm_excitation_start)
|
|
* pointCnt / (settings.points - 1);
|
|
if (frequency < HW::BandSwitchFrequency) {
|
|
auto driveStrength = fixedPowerLowband;
|
|
if(!settings.fixedPowerSetting) {
|
|
auto amplitude = HW::GetAmplitudeSettings(power, frequency, true, false);
|
|
// attenuator value has already been set in sweep setup
|
|
driveStrength = amplitude.lowBandPower;
|
|
}
|
|
|
|
// need the Si5351 as Source
|
|
bool freqSuccess = Si5351.SetCLK(SiChannel::LowbandSource, frequency, Si5351C::PLL::B, driveStrength);
|
|
static bool lowbandDisabled = false;
|
|
if (pointCnt == 0) {
|
|
// First point in sweep, switch to correct source
|
|
FPGA::Disable(FPGA::Periphery::SourceRF);
|
|
lowbandDisabled = true;
|
|
}
|
|
if(lowbandDisabled && freqSuccess) {
|
|
// frequency is valid, can enable lowband source now
|
|
Si5351.Enable(SiChannel::LowbandSource);
|
|
Delay::ms(10);
|
|
lowbandDisabled = false;
|
|
}
|
|
|
|
// At low frequencies the 1.LO feedthrough mixes with the 2.LO in the second mixer.
|
|
// Depending on the stimulus frequency, the resulting mixing product might alias to the 2.IF
|
|
// in the ADC which causes a spike. Check for this and shift the ADC sampling frequency if necessary
|
|
|
|
// uint32_t LO_mixing = (HW::getIF1() + frequency) - (HW::getIF1() - HW::getIF2());
|
|
// if(abs(Util::Alias(LO_mixing, HW::getADCRate()) - HW::getIF2()) <= actualBandwidth * 2) {
|
|
// // the image is in or near the IF bandwidth and would cause a peak
|
|
// // Use a slightly different ADC sample rate if possible
|
|
// if(HW::getIF2() == HW::DefaultIF2) {
|
|
// adcShiftRequired = true;
|
|
// }
|
|
// }
|
|
} else if(!FPGA::IsEnabled(FPGA::Periphery::SourceRF)){
|
|
// first sweep point in highband is also halted, disable lowband source
|
|
Si5351.Disable(SiChannel::LowbandSource);
|
|
FPGA::Enable(FPGA::Periphery::SourceRF);
|
|
}
|
|
if(settings.suppressPeaks) {
|
|
// does not actually change PLL settings, just calculates the register values and
|
|
// is required to determine the need for a 2.LO shift
|
|
uint32_t new2LO = defaultLO2 + getLO2Adjustment(pointCnt);
|
|
// setPLLFrequencies(frequency, last_LO2, actualBandwidth, &new2LO);
|
|
if(new2LO != last_LO2) {
|
|
last_LO2 = new2LO;
|
|
Si5351.SetCLK(SiChannel::Port1LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::Port2LO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.SetCLK(SiChannel::RefLO2, last_LO2, Si5351C::PLL::B, Si5351C::DriveStrength::mA2);
|
|
Si5351.ResetPLL(Si5351C::PLL::B);
|
|
Si5351.WaitForLock(Si5351C::PLL::B, 10);
|
|
// PLL reset causes the 2.LO to turn off briefly and then ramp on back, needs delay before next point
|
|
Delay::us(1500);
|
|
}
|
|
}
|
|
|
|
if (pointCnt == 0) {
|
|
HAL_Delay(2);
|
|
}
|
|
|
|
// if(adcShiftRequired) {
|
|
// FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, alternativePrescaler);
|
|
// FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, alternativePhaseInc);
|
|
// adcShifted = true;
|
|
// } else if(adcShifted) {
|
|
// // reset to default value
|
|
// FPGA::WriteRegister(FPGA::Reg::ADCPrescaler, HW::getADCPrescaler());
|
|
// FPGA::WriteRegister(FPGA::Reg::PhaseIncrement, HW::getDFTPhaseInc());
|
|
// adcShifted = false;
|
|
// }
|
|
|
|
if(usb_available_buffer() >= reservedUSBbuffer) {
|
|
// enough space available, can resume immediately
|
|
FPGA::ResumeHaltedSweep();
|
|
} else {
|
|
// USB buffer could potentially overflow before next halted point, wait until more space is available.
|
|
uint32_t start = HAL_GetTick();
|
|
while(usb_available_buffer() < reservedUSBbuffer) {
|
|
if(HAL_GetTick() - start > 100) {
|
|
// still no buffer space after some time, something more serious must have gone wrong
|
|
// -> abort sweep and return to idle
|
|
usb_clear_buffer();
|
|
FPGA::AbortSweep();
|
|
HW::SetIdle();
|
|
return;
|
|
}
|
|
}
|
|
FPGA::ResumeHaltedSweep();
|
|
}
|
|
});
|
|
}
|
|
|
|
void VNA::Stop() {
|
|
active = false;
|
|
FPGA::AbortSweep();
|
|
}
|
|
|
|
void VNA::PrintStatus() {
|
|
HAL_Delay(10);
|
|
LOG_INFO("VNA status:");
|
|
HAL_Delay(10);
|
|
LOG_INFO("Active: %d", active);
|
|
HAL_Delay(10);
|
|
LOG_INFO("Points: %d/%d", pointCnt, settings.points);
|
|
HAL_Delay(10);
|
|
LOG_INFO("Stages: %d/%d", stageCnt, settings.stages);
|
|
HAL_Delay(10);
|
|
LOG_INFO("FPGA status: 0x%04x", FPGA::GetStatus());
|
|
}
|