LibreVNA/Software/PC_Application/LibreVNA-GUI/Tools/parameters.h
Jan Käberich 0205ab494d Improve de-embedding
- Add Z parameters with general conversion from and to S parameters
- Implement impedance renormalization over general Z parameters
- Fix crash after taking de-embedding measurement
- Fix various small bugs with new parameter implementation
2025-02-21 12:37:39 +01:00

168 lines
4.9 KiB
C++

#ifndef TPARAM_H
#define TPARAM_H
#include "savable.h"
#include <complex>
#include "Eigen/Dense"
using Type = std::complex<double>;
class Parameters : public Savable {
public:
Parameters(Type m11);
Parameters(Type m11, Type m12, Type m21, Type m22);
Parameters(int num_ports);
Parameters() : Parameters(2){}
Eigen::MatrixXcd data;
unsigned int ports() const { return data.cols();}
// Access to elements is usually off-by-one (mostly 1-based indexing in literature but Eigen uses 0-based indexing)
Type get(unsigned int row, unsigned int col) const {return data(row-1, col-1);}
void set(unsigned int row, unsigned int col, Type t) { data(row-1, col-1) = t;}
nlohmann::json toJSON() override;
void fromJSON(nlohmann::json j) override;
};
// forward declaration of parameter classes
class Sparam;
class Zparam;
class Tparam;
class ABCDparam;
class Sparam : public Parameters {
public:
using Parameters::Parameters;
Sparam(const Tparam &t);
Sparam(const ABCDparam &a, Type Z01, Type Z02);
Sparam(const ABCDparam &a, Type Z0);
Sparam(const Zparam &Z, std::vector<Type> Z0n);
Sparam(const Zparam &Z, Type Z0);
Sparam operator+(const Sparam &r) const {
Sparam p(ports());
p.data = data+r.data;
return p;
}
Sparam operator*(const Type &r) const {
Sparam p(ports());
p.data = data * r;
return p;
}
void swapPorts(unsigned int p1, unsigned int p2);
// reduces the S parameter matrix to specified ports.
// Example: 4 port S parameters as an input but we want the 2 port data from the original ports 1 and 3
// Call: S.reduceTo(1, 3)
// Result: 2 port S parameters (S11, S12, S21, S22) which are set to the original (S11, S13, S31, S33)
Sparam reduceTo(std::vector<unsigned int> ports) const;
};
class Zparam : public Parameters {
public:
using Parameters::Parameters;
Zparam(int num_ports) : Parameters(num_ports){}
Zparam(const Sparam &S, std::vector<Type> Z0n);
Zparam(const Sparam &S, Type Z0);
};
class ABCDparam : public Parameters {
public:
using Parameters::Parameters;
ABCDparam() : Parameters(2){}
ABCDparam(const Sparam &s, Type Z01, Type Z02);
ABCDparam(const Sparam &s, Type Z0);
ABCDparam operator*(const ABCDparam &r) {
ABCDparam p;
// ABCD parameters can be multiplied by matrix multiplication
p.data = data * r.data;
return p;
}
ABCDparam inverse() {
ABCDparam i;
// by hand, this is faster because the Eigen matrix is using dynamic size
Type det = data(0,0)*data(1,1) - data(0,1)*data(1,0);
i.data(0,0) = data(1,1) / det;
i.data(0,1) = -data(0,1) / det;
i.data(1,0) = -data(1,0) / det;
i.data(1,1) = data(0,0) / det;
return i;
}
ABCDparam operator*(const Type &r) const {
ABCDparam p;
p.data = data * r;
return p;
}
ABCDparam root() {
// calculate root of 2x2 matrix, according to https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix (choose positive roots)
auto tau = data(0,0) + data(1,1);
auto sigma = data(0,0)*data(1,1) - data(0,1)*data(1,0);
auto s = sqrt(sigma);
auto t = sqrt(tau + 2.0*s);
ABCDparam r = *this;
r.data(0,0) += s;
r.data(1,1) += s;
r.data = r.data * (1.0/t);
return r;
}
};
class Tparam : public Parameters {
public:
using Parameters::Parameters;
Tparam(const Sparam &s);
Tparam operator*(const Tparam &r) {
Tparam p;
// T parameters can be multiplied by matrix multiplication
p.data = data * r.data;
return p;
}
Tparam operator+(const Tparam &r) {
Tparam p;
p.data = data + r.data;
return p;
}
Tparam inverse() {
Tparam i;
Type det = data(0,0)*data(1,1) - data(0,1)*data(1,0);
i.data(0,0) = data(1,1) / det;
i.data(0,1) = -data(0,1) / det;
i.data(1,0) = -data(1,0) / det;
i.data(1,1) = data(0,0) / det;
return i;
}
Tparam operator*(const Type &r) {
Tparam p;
p.data = data * r;
return p;
}
Tparam operator*(const double &r) {
Tparam p;
p.data = data * r;
return p;
}
Tparam root() {
// calculate root of 2x2 matrix, according to https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix (choose positive roots)
auto tau = data(0,0) + data(1,1);
auto sigma = data(0,0)*data(1,1) - data(0,1)*data(1,0);
auto s = sqrt(sigma);
auto t = sqrt(tau + 2.0*s);
Tparam r = *this;
r.data(0,0) += s;
r.data(1,1) += s;
r = r * (1.0/t);
return r;
}
};
class Yparam : public Parameters {
public:
using Parameters::Parameters;
Yparam(const Sparam &s, Type Z01, Type Z02);
Yparam(const Sparam &s, Type Z0);
};
#endif // TPARAM_H