LibreVNA/Software/PC_Application/LibreVNA-GUI/Device/devicedriver.cpp

197 lines
6.4 KiB
C++
Raw Normal View History

2023-01-29 18:02:32 +01:00
#include "devicedriver.h"
2023-01-16 00:25:29 +01:00
2023-02-06 18:06:50 +01:00
#include "LibreVNA/librevnatcpdriver.h"
#include "LibreVNA/librevnausbdriver.h"
#include "LibreVNA/Compound/compounddriver.h"
#include "SSA3000X/ssa3000xdriver.h"
2023-10-31 18:49:08 +01:00
#include "SNA5000A/sna5000adriver.h"
2023-02-06 18:06:50 +01:00
2023-01-16 00:25:29 +01:00
DeviceDriver *DeviceDriver::activeDriver = nullptr;
2023-01-25 23:07:33 +01:00
DeviceDriver::~DeviceDriver()
{
for(auto a : specificActions) {
delete a;
}
}
2023-02-06 18:06:50 +01:00
std::vector<DeviceDriver *> DeviceDriver::getDrivers()
{
static std::vector<DeviceDriver*> ret;
if (ret.size() == 0) {
// first function call
ret.push_back(new LibreVNAUSBDriver);
ret.push_back(new LibreVNATCPDriver);
ret.push_back(new CompoundDriver);
ret.push_back(new SSA3000XDriver);
2023-10-31 18:49:08 +01:00
ret.push_back(new SNA5000ADriver);
2023-02-06 18:06:50 +01:00
}
return ret;
}
bool DeviceDriver::connectDevice(QString serial, bool isIndepedentDriver)
2023-01-16 00:25:29 +01:00
{
if(!isIndepedentDriver) {
if(activeDriver && activeDriver != this) {
activeDriver->disconnect();
}
2023-01-16 00:25:29 +01:00
}
if(connectTo(serial)) {
if(!isIndepedentDriver) {
activeDriver = this;
}
2023-01-16 00:25:29 +01:00
return true;
} else {
return false;
}
}
void DeviceDriver::disconnectDevice()
{
disconnect();
activeDriver = nullptr;
}
2023-01-17 00:25:58 +01:00
unsigned int DeviceDriver::SApoints() {
if(activeDriver) {
return activeDriver->getSApoints();
} else {
// return default value instead
return 1001;
}
}
Sparam DeviceDriver::VNAMeasurement::toSparam(int ports) const
2023-01-17 00:25:58 +01:00
{
if(ports == 0) {
// determine number of ports by highest available S parameter
for(const auto &m : measurements) {
if(!m.first.startsWith("S")) {
// something else we can not handle
continue;
}
int to = m.first.mid(1,1).toUInt();
int from = m.first.mid(2,1).toUInt();
if(to > ports) {
ports = to;
}
if(from > ports) {
ports = from;
}
}
}
// create S paramters
auto S = Sparam(ports);
// fill data
for(const auto &m : measurements) {
if(!m.first.startsWith("S")) {
// something else we can not handle
continue;
}
int to = m.first.mid(1,1).toUInt();
int from = m.first.mid(2,1).toUInt();
S.set(to, from, m.second);
}
2023-01-17 00:25:58 +01:00
return S;
}
void DeviceDriver::VNAMeasurement::fromSparam(Sparam S, std::vector<unsigned int> portMapping)
2023-01-17 00:25:58 +01:00
{
if(portMapping.size() == 0) {
// set up default port mapping
for(unsigned int i=1;i<=S.ports();i++) {
portMapping.push_back(i);
}
2023-01-17 00:25:58 +01:00
}
for(unsigned int i=0;i<portMapping.size();i++) {
for(unsigned int j=0;j<portMapping.size();j++) {
QString name = "S"+QString::number(i+1)+QString::number(j+1);
if(measurements.count(name)) {
measurements[name] = S.get(portMapping[i], portMapping[j]);
}
}
2023-01-17 00:25:58 +01:00
}
}
DeviceDriver::VNAMeasurement DeviceDriver::VNAMeasurement::interpolateTo(const DeviceDriver::VNAMeasurement &to, double a)
{
VNAMeasurement ret;
ret.frequency = frequency * (1.0 - a) + to.frequency * a;
ret.dBm = dBm * (1.0 - a) + to.dBm * a;
ret.Z0 = Z0 * (1.0 - a) + to.Z0 * a;
for(auto m : measurements) {
if(to.measurements.count(m.first) == 0) {
throw std::runtime_error("Nothing to interpolate to, expected measurement +\""+m.first.toStdString()+"\"");
}
ret.measurements[m.first] = measurements[m.first] * (1.0 - a) + to.measurements.at(m.first) * a;
}
return ret;
}
DeviceDriver::Info::Info()
{
firmware_version = "missing";
hardware_version = "missing";
Limits.VNA.ports = 2;
Limits.VNA.minFreq = 0;
2023-10-31 18:49:08 +01:00
Limits.VNA.maxFreq = 100000000000;
2023-01-17 00:25:58 +01:00
Limits.VNA.mindBm = -100;
Limits.VNA.maxdBm = 30;
Limits.VNA.minIFBW = 1;
2023-10-31 18:49:08 +01:00
Limits.VNA.maxIFBW = 100000000;
2023-01-17 00:25:58 +01:00
Limits.VNA.maxPoints = 65535;
2025-01-02 19:16:53 +01:00
Limits.VNA.maxDwellTime = 1;
2023-01-17 00:25:58 +01:00
Limits.Generator.ports = 2;
Limits.Generator.minFreq = 0;
2023-10-31 18:49:08 +01:00
Limits.Generator.maxFreq = 100000000000;
2023-01-17 00:25:58 +01:00
Limits.Generator.mindBm = -100;
Limits.Generator.maxdBm = 30;
Limits.SA.ports = 2;
Limits.SA.minFreq = 0;
2023-10-31 18:49:08 +01:00
Limits.SA.maxFreq = 100000000000;
2023-01-17 00:25:58 +01:00
Limits.SA.mindBm = -100;
Limits.SA.maxdBm = 30;
Limits.SA.minRBW = 1;
2023-10-31 18:49:08 +01:00
Limits.SA.maxRBW = 100000000;
2023-01-17 00:25:58 +01:00
}
void DeviceDriver::Info::subset(const DeviceDriver::Info &info)
{
if (info.firmware_version != firmware_version) {
firmware_version = "Mixed";
}
if (info.hardware_version != hardware_version) {
hardware_version = "Mixed";
}
Limits.VNA.ports += info.Limits.VNA.ports;
Limits.VNA.minFreq = std::max(Limits.VNA.minFreq, info.Limits.VNA.minFreq);
Limits.VNA.maxFreq = std::min(Limits.VNA.maxFreq, info.Limits.VNA.maxFreq);
Limits.VNA.mindBm = std::max(Limits.VNA.mindBm, info.Limits.VNA.mindBm);
Limits.VNA.maxdBm = std::min(Limits.VNA.maxdBm, info.Limits.VNA.maxdBm);
Limits.VNA.minIFBW = std::max(Limits.VNA.minIFBW, info.Limits.VNA.minIFBW);
Limits.VNA.maxIFBW = std::min(Limits.VNA.maxIFBW, info.Limits.VNA.maxIFBW);
Limits.VNA.maxPoints = std::min(Limits.VNA.maxPoints, info.Limits.VNA.maxPoints);
Limits.Generator.ports += info.Limits.Generator.ports;
Limits.Generator.minFreq = std::max(Limits.Generator.minFreq, info.Limits.Generator.minFreq);
Limits.Generator.maxFreq = std::min(Limits.Generator.maxFreq, info.Limits.Generator.maxFreq);
Limits.Generator.mindBm = std::max(Limits.Generator.mindBm, info.Limits.Generator.mindBm);
Limits.Generator.maxdBm = std::min(Limits.Generator.maxdBm, info.Limits.Generator.maxdBm);
Limits.SA.ports += info.Limits.SA.ports;
Limits.SA.minFreq = std::max(Limits.SA.minFreq, info.Limits.SA.minFreq);
Limits.SA.maxFreq = std::min(Limits.SA.maxFreq, info.Limits.SA.maxFreq);
Limits.SA.mindBm = std::max(Limits.SA.mindBm, info.Limits.SA.mindBm);
Limits.SA.maxdBm = std::min(Limits.SA.maxdBm, info.Limits.SA.maxdBm);
Limits.SA.minRBW = std::max(Limits.SA.minRBW, info.Limits.SA.minRBW);
Limits.SA.maxRBW = std::min(Limits.SA.maxRBW, info.Limits.SA.maxRBW);
std::set<Feature> intersectFeatures;
std::set_intersection(supportedFeatures.begin(), supportedFeatures.end(), info.supportedFeatures.begin(), info.supportedFeatures.end(),
std::inserter(intersectFeatures, intersectFeatures.begin()));
supportedFeatures = intersectFeatures;
}