MMDVM/IO.cpp
LucaMarche IZ1MLT 694b83123a
Update 48k version
In to NXDN possible problem on sinc filter anc isinc filter, think they must be recalculated but do not know how to do it. On D-STAR, DMR, C4FM and P25 it work.
2018-05-30 08:54:45 +02:00

587 lines
16 KiB
C++

/*
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2015 by Jim Mclaughlin KI6ZUM
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "IO.h"
// Generated using [b, a] = butter(1, 0.0005) in MATLAB
static q31_t DC_FILTER[] = {1685306, 0, 1685306, 0, 2144113034, 0}; // {b0, 0, b1, b2, -a1, -a2}
const uint32_t DC_FILTER_STAGES = 1U; // One Biquad stage
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {284, 198, 73, -78, -240, -393, -517, -590, -599, -533, -391, -181, 79, 364, 643, 880, 1041, 1097, 1026, 819,
483, 39, -477, -1016, -1516, -1915, -2150, -2164, -1914, -1375, -545, 557, 1886, 3376, 4946, 6502, 7946, 9184,
10134, 10731, 10935, 10731, 10134, 9184, 7946, 6502, 4946, 3376, 1886, 557, -545, -1375, -1914, -2164, -2150,
-1915, -1516, -1016, -477, 39, 483, 819, 1026, 1097, 1041, 880, 643, 364, 79, -181, -391, -533, -599, -590,
-517, -393, -240, -78, 73, 198, 284, 0};
const uint16_t RRC_0_2_FILTER_LEN = 82U;
// Generated using rcosdesign(0.2, 8, 20, 'sqrt') in MATLAB
static q15_t NXDN_0_2_FILTER[] = {201, 174, 140, 99, 52, 0, -55, -112, -170, -226, -278, -325, -365, -397, -417, -427, -424, -407, -377, -333, -277, -208,
-128, -40, 56, 156, 258, 358, 455, 544, 622, 687, 736, 766, 775, 762, 725, 664, 579, 471, 342, 193, 27, -151, -338, -528,
-718, -901, -1072, -1225, -1354, -1454, -1520, -1547, -1530, -1466, -1353, -1189, -972, -704, -385, -18, 394, 846, 1333,
1850, 2388, 2940, 3498, 4053, 4598, 5122, 5619, 6079, 6494, 6859, 7166, 7410, 7588, 7696, 7732, 7696, 7588, 7410, 7166,
6859, 6494, 6079, 5619, 5122, 4598, 4053, 3498, 2940, 2388, 1850, 1333, 846, 394, -18, -385, -704, -972, -1189, -1353,
-1466, -1530, -1547, -1520, -1454, -1354, -1225, -1072, -901, -718, -528, -338, -151, 27, 193, 342, 471, 579, 664, 725,
762, 775, 766, 736, 687, 622, 544, 455, 358, 258, 156, 56, -40, -128, -208, -277, -333, -377, -407, -424, -427, -417, -397,
-365, -325, -278, -226, -170, -112, -55, 0, 52, 99, 140, 174, 201, 0};
const uint16_t NXDN_0_2_FILTER_LEN = 162U;
static q15_t NXDN_ISINC_FILTER[] = {790, -1085, -1073, -553, 747, 2341, 3156, 2152, -893, -4915, -7834, -7536, -3102, 4441, 12354, 17394, 17394,
12354, 4441, -3102, -7536, -7834, -4915, -893, 2152, 3156, 2341, 747, -553, -1073, -1085, 790};
const uint16_t NXDN_ISINC_FILTER_LEN = 32U;
// Generated using gaussfir(0.5, 4, 10) in MATLAB
//static q15_t GAUSSIAN_0_5_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0};
//const uint16_t GAUSSIAN_0_5_FILTER_LEN = 24U;
// One symbol boxcar filter
static q15_t BOXCAR_FILTER[] = {6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 0, 0};
const uint16_t BOXCAR_FILTER_LEN = 12U;
const uint16_t DC_OFFSET = 2048U;
CIO::CIO() :
m_started(false),
m_rxBuffer(RX_RINGBUFFER_SIZE),
m_txBuffer(TX_RINGBUFFER_SIZE),
m_rssiBuffer(RX_RINGBUFFER_SIZE),
m_dcFilter(),
m_dcState(),
m_rrcFilter(),
//m_gaussianFilter(),
m_boxcarFilter(),
m_nxdnFilter(),
m_nxdnISincFilter(),
m_rrcState(),
//m_gaussianState(),
m_boxcarState(),
m_nxdnState(),
m_nxdnISincState(),
m_pttInvert(false),
m_rxLevel(128 * 128),
m_cwIdTXLevel(128 * 128),
m_dstarTXLevel(128 * 128),
m_dmrTXLevel(128 * 128),
m_ysfTXLevel(128 * 128),
m_p25TXLevel(128 * 128),
m_nxdnTXLevel(128 * 128),
m_rxDCOffset(DC_OFFSET),
m_txDCOffset(DC_OFFSET),
m_ledCount(0U),
m_ledValue(true),
m_detect(false),
m_adcOverflow(0U),
m_dacOverflow(0U),
m_watchdog(0U),
m_lockout(false)
{
::memset(m_rrcState, 0x00U, 140U * sizeof(q15_t));
// ::memset(m_gaussianState, 0x00U, 80U * sizeof(q15_t));
::memset(m_boxcarState, 0x00U, 60U * sizeof(q15_t));
::memset(m_nxdnState, 0x00U, 220U * sizeof(q15_t));
::memset(m_nxdnISincState, 0x00U, 60U * sizeof(q15_t));
::memset(m_dcState, 0x00U, 4U * sizeof(q31_t));
m_dcFilter.numStages = DC_FILTER_STAGES;
m_dcFilter.pState = m_dcState;
m_dcFilter.pCoeffs = DC_FILTER;
m_dcFilter.postShift = 0;
m_rrcFilter.numTaps = RRC_0_2_FILTER_LEN;
m_rrcFilter.pState = m_rrcState;
m_rrcFilter.pCoeffs = RRC_0_2_FILTER;
// m_gaussianFilter.numTaps = GAUSSIAN_0_5_FILTER_LEN;
// m_gaussianFilter.pState = m_gaussianState;
// m_gaussianFilter.pCoeffs = GAUSSIAN_0_5_FILTER;
m_boxcarFilter.numTaps = BOXCAR_FILTER_LEN;
m_boxcarFilter.pState = m_boxcarState;
m_boxcarFilter.pCoeffs = BOXCAR_FILTER;
m_nxdnFilter.numTaps = NXDN_0_2_FILTER_LEN;
m_nxdnFilter.pState = m_nxdnState;
m_nxdnFilter.pCoeffs = NXDN_0_2_FILTER;
m_nxdnISincFilter.numTaps = NXDN_ISINC_FILTER_LEN;
m_nxdnISincFilter.pState = m_nxdnISincState;
m_nxdnISincFilter.pCoeffs = NXDN_ISINC_FILTER;
initInt();
selfTest();
}
void CIO::selfTest()
{
bool ledValue = false;
for (uint8_t i = 0; i < 6; i++) {
ledValue = !ledValue;
// We exclude PTT to avoid trigger the transmitter
setLEDInt(ledValue);
setCOSInt(ledValue);
#if defined(ARDUINO_MODE_PINS)
setDStarInt(ledValue);
setDMRInt(ledValue);
setYSFInt(ledValue);
setP25Int(ledValue);
setNXDNInt(ledValue);
#endif
delayInt(250);
}
#if defined(ARDUINO_MODE_PINS)
setDStarInt(true);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(true);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(false);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
#endif
}
void CIO::start()
{
if (m_started)
return;
startInt();
m_started = true;
setMode();
}
void CIO::process()
{
m_ledCount++;
if (m_started) {
// Two seconds timeout
if (m_watchdog >= 96000U) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF || m_modemState == STATE_P25 || m_modemState == STATE_NXDN) {
if (m_modemState == STATE_DMR && m_tx)
dmrTX.setStart(false);
m_modemState = STATE_IDLE;
setMode();
}
m_watchdog = 0U;
}
if (m_ledCount >= 48000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
} else {
if (m_ledCount >= 480000U) {
m_ledCount = 0U;
m_ledValue = !m_ledValue;
setLEDInt(m_ledValue);
}
return;
}
#if defined(USE_COS_AS_LOCKOUT)
m_lockout = getCOSInt();
#endif
// Switch off the transmitter if needed
if (m_txBuffer.getData() == 0U && m_tx) {
m_tx = false;
setPTTInt(m_pttInvert ? true : false);
}
if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) {
q15_t samples[RX_BLOCK_SIZE];
uint8_t control[RX_BLOCK_SIZE];
uint16_t rssi[RX_BLOCK_SIZE];
for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) {
uint16_t sample;
m_rxBuffer.get(sample, control[i]);
m_rssiBuffer.get(rssi[i]);
// Detect ADC overflow
if (m_detect && (sample == 0U || sample == 4095U))
m_adcOverflow++;
q15_t res1 = q15_t(sample) - m_rxDCOffset;
q31_t res2 = res1 * m_rxLevel;
samples[i] = q15_t(__SSAT((res2 >> 15), 16));
}
if (m_lockout)
return;
#if defined(USE_DCBLOCKER)
q31_t q31Samples[RX_BLOCK_SIZE];
::arm_q15_to_q31(samples, q31Samples, RX_BLOCK_SIZE);
q31_t dcValues[RX_BLOCK_SIZE];
::arm_biquad_cascade_df1_q31(&m_dcFilter, q31Samples, dcValues, RX_BLOCK_SIZE);
q31_t dcLevel = 0;
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcLevel += dcValues[i];
dcLevel /= RX_BLOCK_SIZE;
q15_t offset = q15_t(__SSAT((dcLevel >> 16), 16));;
q15_t dcSamples[RX_BLOCK_SIZE];
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcSamples[i] = samples[i] - offset;
#endif
if (m_modemState == STATE_IDLE) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
if (m_p25Enable) {
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
if (m_nxdnEnable) {
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
q15_t NXDNVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
if (m_dmrEnable || m_ysfEnable) {
q15_t RRCVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrcFilter, samples, RRCVals, RX_BLOCK_SIZE);
if (m_ysfEnable)
ysfRX.samples(RRCVals, rssi, RX_BLOCK_SIZE);
if (m_dmrEnable) {
if (m_duplex)
dmrIdleRX.samples(RRCVals, RX_BLOCK_SIZE);
else
dmrDMORX.samples(RRCVals, rssi, RX_BLOCK_SIZE);
}
}
} else if (m_modemState == STATE_DSTAR) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_DMR) {
if (m_dmrEnable) {
q15_t DMRVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrcFilter, samples, DMRVals, RX_BLOCK_SIZE);
if (m_duplex) {
// If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs
if (m_tx)
dmrRX.samples(DMRVals, rssi, control, RX_BLOCK_SIZE);
else
dmrIdleRX.samples(DMRVals, RX_BLOCK_SIZE);
} else {
dmrDMORX.samples(DMRVals, rssi, RX_BLOCK_SIZE);
}
}
} else if (m_modemState == STATE_YSF) {
if (m_ysfEnable) {
q15_t YSFVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrcFilter, dcSamples, YSFVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrcFilter, samples, YSFVals, RX_BLOCK_SIZE);
#endif
ysfRX.samples(YSFVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_P25) {
if (m_p25Enable) {
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_NXDN) {
if (m_nxdnEnable) {
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
q15_t NXDNVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_DSTARCAL) {
q15_t GMSKVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
calDStarRX.samples(GMSKVals, RX_BLOCK_SIZE);
} else if (m_modemState == STATE_RSSICAL) {
calRSSI.samples(rssi, RX_BLOCK_SIZE);
}
}
}
void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t* control)
{
if (!m_started)
return;
if (m_lockout)
return;
// Switch the transmitter on if needed
if (!m_tx) {
m_tx = true;
setPTTInt(m_pttInvert ? false : true);
}
q15_t txLevel = 0;
switch (mode) {
case STATE_DSTAR:
txLevel = m_dstarTXLevel;
break;
case STATE_DMR:
txLevel = m_dmrTXLevel;
break;
case STATE_YSF:
txLevel = m_ysfTXLevel;
break;
case STATE_P25:
txLevel = m_p25TXLevel;
break;
case STATE_NXDN:
txLevel = m_nxdnTXLevel;
break;
default:
txLevel = m_cwIdTXLevel;
break;
}
for (uint16_t i = 0U; i < length; i++) {
q31_t res1 = samples[i] * txLevel;
q15_t res2 = q15_t(__SSAT((res1 >> 15), 16));
uint16_t res3 = uint16_t(res2 + m_txDCOffset);
// Detect DAC overflow
if (res3 > 4095U)
m_dacOverflow++;
if (control == NULL)
m_txBuffer.put(res3, MARK_NONE);
else
m_txBuffer.put(res3, control[i]);
}
}
uint16_t CIO::getSpace() const
{
return m_txBuffer.getSpace();
}
void CIO::setDecode(bool dcd)
{
if (dcd != m_dcd)
setCOSInt(dcd ? true : false);
m_dcd = dcd;
}
void CIO::setADCDetection(bool detect)
{
m_detect = detect;
}
void CIO::setMode()
{
#if defined(ARDUINO_MODE_PINS)
setDStarInt(m_modemState == STATE_DSTAR);
setDMRInt(m_modemState == STATE_DMR);
setYSFInt(m_modemState == STATE_YSF);
setP25Int(m_modemState == STATE_P25);
setNXDNInt(m_modemState == STATE_NXDN);
#endif
}
void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnTXLevel, int16_t txDCOffset, int16_t rxDCOffset)
{
m_pttInvert = pttInvert;
m_rxLevel = q15_t(rxLevel * 128);
m_cwIdTXLevel = q15_t(cwIdTXLevel * 128);
m_dstarTXLevel = q15_t(dstarTXLevel * 128);
m_dmrTXLevel = q15_t(dmrTXLevel * 128);
m_ysfTXLevel = q15_t(ysfTXLevel * 128);
m_p25TXLevel = q15_t(p25TXLevel * 128);
m_nxdnTXLevel = q15_t(nxdnTXLevel * 128);
m_rxDCOffset = DC_OFFSET + rxDCOffset;
m_txDCOffset = DC_OFFSET + txDCOffset;
if (rxInvert)
m_rxLevel = -m_rxLevel;
if (txInvert) {
m_dstarTXLevel = -m_dstarTXLevel;
m_dmrTXLevel = -m_dmrTXLevel;
m_ysfTXLevel = -m_ysfTXLevel;
m_p25TXLevel = -m_p25TXLevel;
m_nxdnTXLevel = -m_nxdnTXLevel;
}
}
void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow)
{
adcOverflow = m_adcOverflow > 0U;
dacOverflow = m_dacOverflow > 0U;
m_adcOverflow = 0U;
m_dacOverflow = 0U;
}
bool CIO::hasTXOverflow()
{
return m_txBuffer.hasOverflowed();
}
bool CIO::hasRXOverflow()
{
return m_rxBuffer.hasOverflowed();
}
void CIO::resetWatchdog()
{
m_watchdog = 0U;
}
uint32_t CIO::getWatchdog()
{
return m_watchdog;
}
bool CIO::hasLockout() const
{
return m_lockout;
}