MMDVM/FM.cpp

707 lines
18 KiB
C++
Raw Normal View History

2020-04-11 23:08:17 +02:00
/*
* Copyright (C) 2020 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "FM.h"
2020-05-08 13:30:15 +02:00
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT_AUDIO(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT_AUDIO(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
2020-04-15 16:24:01 +02:00
CFM::CFM() :
m_callsign(),
m_rfAck(),
2020-05-07 23:01:48 +02:00
m_extAck(),
2020-04-18 14:55:34 +02:00
m_ctcssRX(),
m_ctcssTX(),
2020-04-15 16:24:01 +02:00
m_timeoutTone(),
m_state(FS_LISTENING),
m_callsignAtStart(false),
m_callsignAtEnd(false),
m_callsignAtLatch(false),
2020-04-15 16:24:01 +02:00
m_callsignTimer(),
m_timeoutTimer(),
m_holdoffTimer(),
m_kerchunkTimer(),
m_ackMinTimer(),
m_ackDelayTimer(),
2020-04-23 21:16:52 +02:00
m_hangTimer(),
m_statusTimer(),
2020-04-29 20:42:20 +02:00
m_filterStage1( 724, 1448, 724, 32768, -37895, 21352),//3rd order Cheby Filter 300 to 2700Hz, 0.2dB passband ripple, sampling rate 24kHz
2020-04-24 09:10:50 +02:00
m_filterStage2(32768, 0,-32768, 32768, -50339, 19052),
2020-04-25 16:17:11 +02:00
m_filterStage3(32768, -65536, 32768, 32768, -64075, 31460),
2020-04-25 23:32:10 +02:00
m_blanking(),
2020-04-25 16:17:11 +02:00
m_useCOS(true),
2020-05-06 12:34:04 +02:00
m_cosInvert(false),
2020-04-28 21:37:06 +02:00
m_rfAudioBoost(1U),
2020-05-07 23:01:48 +02:00
m_extAudioBoost(1U),
2020-05-09 07:57:45 +02:00
m_downsampler(1200U),// 100 ms of audio
2020-05-08 21:47:03 +02:00
m_extEnabled(false),
m_rxLevel(1),
2020-05-09 14:06:32 +02:00
m_inputRFRB(4800U), // 200ms of audio
m_outputRFRB(2400U), // 100ms of audio
m_inputExtRB(2400U) // 100ms of Audio
2020-04-11 23:08:17 +02:00
{
m_statusTimer.setTimeout(1U, 0U);
insertDelay(100U);
2020-04-11 23:08:17 +02:00
}
void CFM::samples(bool cos, const q15_t* samples, uint8_t length)
2020-04-11 23:08:17 +02:00
{
2020-05-06 12:34:04 +02:00
if (m_useCOS) {
if (m_cosInvert)
cos = !cos;
} else {
cos = true;
2020-05-06 12:34:04 +02:00
}
2020-04-25 16:17:11 +02:00
2020-05-03 14:08:33 +02:00
clock(length);
uint8_t i = 0U;
for (; i < length; i++) {
// ARMv7-M has hardware integer division
2020-05-09 08:23:02 +02:00
q15_t currentRFSample = q15_t((q31_t(samples[i]) << 8) / m_rxLevel);
uint8_t ctcssState = m_ctcssRX.process(currentRFSample);
2020-04-21 23:03:30 +02:00
2020-05-10 18:13:10 +02:00
if (!m_useCOS) {
// Delay the audio by 100ms to better match the CTCSS detector output
m_inputRFRB.put(currentRFSample);
m_inputRFRB.get(currentRFSample);
}
2020-05-09 08:23:02 +02:00
q15_t currentExtSample;
bool inputExt = m_inputExtRB.get(currentExtSample);//always consume the external input data so it does not overflow
inputExt = inputExt && m_extEnabled;
if (!inputExt && (CTCSS_NOT_READY(ctcssState))) {
2020-05-10 09:07:21 +02:00
//Not enough samples to determine if you have CTCSS, just carry on. But only if we haven't any external data in the queue
continue;
} else if ((inputExt || CTCSS_READY(ctcssState))) {
//we had enough samples for CTCSS and we are in some other mode than FM
2020-04-22 15:08:34 +02:00
bool validCTCSS = CTCSS_VALID(ctcssState);
2020-05-09 08:23:02 +02:00
stateMachine(validCTCSS && cos, inputExt);
} else if ((inputExt || CTCSS_READY(ctcssState))) {
//We had enough samples for CTCSS and we are in FM mode, trigger the state machine
2020-04-22 15:08:34 +02:00
bool validCTCSS = CTCSS_VALID(ctcssState);
2020-05-09 08:23:02 +02:00
stateMachine(validCTCSS && cos, inputExt);
} else if ((inputExt || CTCSS_NOT_READY(ctcssState)) && i == length - 1) {
//Not enough samples for CTCSS but we already are in FM, trigger the state machine
//but do not trigger the state machine on every single sample, save CPU!
2020-04-28 21:37:06 +02:00
bool validCTCSS = CTCSS_VALID(ctcssState);
2020-05-09 08:23:02 +02:00
stateMachine(validCTCSS && cos, inputExt);
}
2020-04-28 22:35:06 +02:00
2020-05-09 08:23:02 +02:00
q15_t currentSample = currentRFSample;
2020-05-09 08:29:31 +02:00
q15_t currentBoost = m_rfAudioBoost;
if(m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT){
2020-05-09 08:23:02 +02:00
currentSample = currentExtSample;
2020-05-09 08:29:31 +02:00
currentBoost = m_extAudioBoost;
}
2020-05-09 08:23:02 +02:00
// Only let RF audio through when relaying RF audio
2020-05-09 08:29:31 +02:00
if (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF || m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT) {
currentSample = m_blanking.process(currentSample);
2020-05-09 08:29:31 +02:00
if (m_extEnabled && (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF))
m_downsampler.addSample(currentSample);
2020-05-09 08:29:31 +02:00
currentSample *= currentBoost;
2020-04-29 21:59:48 +02:00
} else {
2020-04-29 22:51:12 +02:00
currentSample = 0;
2020-04-29 21:59:48 +02:00
}
2020-04-25 16:17:11 +02:00
if (!m_callsign.isRunning() && !m_extAck.isRunning())
2020-04-22 23:10:34 +02:00
currentSample += m_rfAck.getHighAudio();
if (!m_callsign.isRunning() && !m_rfAck.isRunning())
currentSample += m_extAck.getHighAudio();
if (!m_rfAck.isRunning() && !m_extAck.isRunning()) {
2020-04-22 23:10:34 +02:00
if (m_state == FS_LISTENING)
currentSample += m_callsign.getHighAudio();
else
currentSample += m_callsign.getLowAudio();
}
2020-04-15 17:31:49 +02:00
if (!m_callsign.isRunning() && !m_rfAck.isRunning() && !m_extAck.isRunning())
2020-04-21 22:00:11 +02:00
currentSample += m_timeoutTone.getAudio();
2020-04-21 21:36:30 +02:00
2020-04-28 22:35:06 +02:00
currentSample = m_filterStage3.filter(m_filterStage2.filter(m_filterStage1.filter(currentSample)));
2020-04-28 21:37:06 +02:00
2020-04-21 22:00:11 +02:00
currentSample += m_ctcssTX.getAudio();
2020-04-15 17:31:49 +02:00
m_outputRFRB.put(currentSample);
}
2020-04-11 23:08:17 +02:00
}
void CFM::process()
{
2020-05-10 17:18:59 +02:00
q15_t sample;
while (io.getSpace() >= 3U && m_outputRFRB.get(sample))
io.write(STATE_FM, &sample, 1U);
uint8_t serialSample;
//write data to serial port
while (m_downsampler.getPackedData(serialSample))
serial.writeFMData(&serialSample, 1U);
2020-04-11 23:08:17 +02:00
}
void CFM::reset()
{
2020-05-02 15:47:43 +02:00
m_state = FS_LISTENING;
m_callsignTimer.stop();
m_timeoutTimer.stop();
m_kerchunkTimer.stop();
m_ackMinTimer.stop();
m_ackDelayTimer.stop();
m_hangTimer.stop();
m_statusTimer.stop();
2020-05-02 15:47:43 +02:00
2020-04-18 17:48:30 +02:00
m_ctcssRX.reset();
2020-05-02 15:47:43 +02:00
m_rfAck.stop();
m_extAck.stop();
2020-05-02 15:47:43 +02:00
m_callsign.stop();
m_timeoutTone.stop();
2020-05-09 08:00:24 +02:00
m_outputRFRB.reset();
2020-05-09 10:57:16 +02:00
m_inputExtRB.reset();
m_downsampler.reset();
2020-04-11 23:08:17 +02:00
}
2020-04-12 16:28:56 +02:00
uint8_t CFM::setCallsign(const char* callsign, uint8_t speed, uint16_t frequency, uint8_t time, uint8_t holdoff, uint8_t highLevel, uint8_t lowLevel, bool callsignAtStart, bool callsignAtEnd, bool callsignAtLatch)
2020-04-12 16:28:56 +02:00
{
2020-04-15 16:24:01 +02:00
m_callsignAtStart = callsignAtStart;
m_callsignAtEnd = callsignAtEnd;
m_callsignAtLatch = callsignAtLatch;
2020-04-15 16:24:01 +02:00
2020-04-24 13:15:58 +02:00
uint16_t holdoffTime = holdoff * 60U;
2020-04-15 23:41:30 +02:00
uint16_t callsignTime = time * 60U;
m_holdoffTimer.setTimeout(holdoffTime, 0U);
m_callsignTimer.setTimeout(callsignTime, 0U);
2020-04-16 15:00:31 +02:00
2020-04-24 13:15:58 +02:00
if (holdoffTime > 0U)
m_holdoffTimer.start();
2020-04-22 23:10:34 +02:00
return m_callsign.setParams(callsign, speed, frequency, highLevel, lowLevel);
2020-04-12 16:28:56 +02:00
}
2020-04-16 15:00:31 +02:00
uint8_t CFM::setAck(const char* rfAck, uint8_t speed, uint16_t frequency, uint8_t minTime, uint16_t delay, uint8_t level)
2020-04-12 16:28:56 +02:00
{
2020-04-15 18:18:01 +02:00
m_ackDelayTimer.setTimeout(0U, delay);
2020-05-04 23:06:57 +02:00
if (minTime > 0U)
m_ackMinTimer.setTimeout(minTime, delay);
2020-04-16 15:00:31 +02:00
2020-04-22 23:10:34 +02:00
return m_rfAck.setParams(rfAck, speed, frequency, level, level);
2020-04-12 16:28:56 +02:00
}
2020-05-06 12:34:04 +02:00
uint8_t CFM::setMisc(uint16_t timeout, uint8_t timeoutLevel, uint8_t ctcssFrequency, uint8_t ctcssThreshold, uint8_t ctcssLevel, uint8_t kerchunkTime, uint8_t hangTime, bool useCOS, bool cosInvert, uint8_t rfAudioBoost, uint8_t maxDev, uint8_t rxLevel)
2020-04-12 16:28:56 +02:00
{
2020-05-06 12:34:04 +02:00
m_useCOS = useCOS;
m_cosInvert = cosInvert;
2020-04-28 15:43:40 +02:00
m_rfAudioBoost = q15_t(rfAudioBoost);
2020-04-25 16:17:11 +02:00
2020-04-15 18:18:01 +02:00
m_timeoutTimer.setTimeout(timeout, 0U);
m_kerchunkTimer.setTimeout(kerchunkTime, 0U);
m_hangTimer.setTimeout(hangTime, 0U);
2020-04-16 15:00:31 +02:00
m_timeoutTone.setParams(timeoutLevel);
2020-04-25 23:32:10 +02:00
m_blanking.setParams(maxDev, timeoutLevel);
2020-04-16 15:00:31 +02:00
m_rxLevel = rxLevel; //q15_t(255)/q15_t(rxLevel >> 1);
uint8_t ret = m_ctcssRX.setParams(ctcssFrequency, ctcssThreshold);
2020-04-18 14:55:34 +02:00
if (ret != 0U)
return ret;
2020-04-16 15:00:31 +02:00
2020-04-18 14:55:34 +02:00
return m_ctcssTX.setParams(ctcssFrequency, ctcssLevel);
2020-04-12 16:28:56 +02:00
}
2020-04-15 17:31:49 +02:00
2020-05-07 23:01:48 +02:00
uint8_t CFM::setExt(const char* ack, uint8_t audioBoost, uint8_t speed, uint16_t frequency, uint8_t level)
{
m_extEnabled = true;
m_extAudioBoost = q15_t(audioBoost);
return m_extAck.setParams(ack, speed, frequency, level, level);
}
void CFM::stateMachine(bool validRFSignal, bool validExtSignal)
2020-04-15 17:31:49 +02:00
{
switch (m_state) {
case FS_LISTENING:
listeningState(validRFSignal, validExtSignal);
break;
case FS_KERCHUNK_RF:
kerchunkRFState(validRFSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_RELAYING_RF:
relayingRFState(validRFSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_RELAYING_WAIT_RF:
relayingRFWaitState(validRFSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_TIMEOUT_RF:
timeoutRFState(validRFSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_TIMEOUT_WAIT_RF:
timeoutRFWaitState(validRFSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_KERCHUNK_EXT:
kerchunkExtState(validExtSignal);
break;
case FS_RELAYING_EXT:
relayingExtState(validExtSignal);
break;
case FS_RELAYING_WAIT_EXT:
relayingExtWaitState(validExtSignal);
break;
case FS_TIMEOUT_EXT:
timeoutExtState(validExtSignal);
break;
case FS_TIMEOUT_WAIT_EXT:
timeoutExtWaitState(validExtSignal);
2020-04-15 17:31:49 +02:00
break;
case FS_HANG:
hangState(validRFSignal, validExtSignal);
2020-04-15 17:31:49 +02:00
break;
default:
break;
}
}
2020-05-03 14:08:33 +02:00
void CFM::clock(uint8_t length)
{
m_callsignTimer.clock(length);
m_timeoutTimer.clock(length);
m_holdoffTimer.clock(length);
m_kerchunkTimer.clock(length);
m_ackMinTimer.clock(length);
m_ackDelayTimer.clock(length);
m_hangTimer.clock(length);
m_statusTimer.clock(length);
if (m_statusTimer.isRunning() && m_statusTimer.hasExpired()) {
serial.writeFMStatus();
m_statusTimer.start();
}
2020-05-03 14:08:33 +02:00
}
void CFM::listeningState(bool validRFSignal, bool validExtSignal)
2020-04-15 17:31:49 +02:00
{
if (validRFSignal) {
if (m_kerchunkTimer.getTimeout() > 0U) {
DEBUG1("State to KERCHUNK_RF");
m_state = FS_KERCHUNK_RF;
m_kerchunkTimer.start();
if (m_callsignAtStart && !m_callsignAtLatch)
sendCallsign();
} else {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
if (m_callsignAtStart)
sendCallsign();
}
2020-05-09 14:10:02 +02:00
insertSilence(50U);
beginRelaying();
m_callsignTimer.start();
m_statusTimer.start();
serial.writeFMStatus();
} else if (validExtSignal) {
2020-04-21 21:00:09 +02:00
if (m_kerchunkTimer.getTimeout() > 0U) {
DEBUG1("State to KERCHUNK_EXT");
m_state = FS_KERCHUNK_EXT;
2020-04-21 21:00:09 +02:00
m_kerchunkTimer.start();
if (m_callsignAtStart && !m_callsignAtLatch)
sendCallsign();
2020-04-21 21:00:09 +02:00
} else {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
2020-04-21 21:00:09 +02:00
if (m_callsignAtStart)
sendCallsign();
}
2020-04-15 17:31:49 +02:00
insertSilence(50U);
2020-04-21 21:00:09 +02:00
beginRelaying();
2020-04-15 17:31:49 +02:00
2020-04-21 21:00:09 +02:00
m_callsignTimer.start();
2020-04-15 17:31:49 +02:00
m_statusTimer.start();
serial.writeFMStatus();
2020-04-21 21:00:09 +02:00
}
2020-04-15 17:31:49 +02:00
}
void CFM::kerchunkRFState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (validSignal) {
if (m_kerchunkTimer.hasExpired()) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
2020-04-15 17:31:49 +02:00
m_kerchunkTimer.stop();
if (m_callsignAtStart && m_callsignAtLatch) {
sendCallsign();
m_callsignTimer.start();
}
2020-04-15 17:31:49 +02:00
}
} else {
2020-04-17 19:53:28 +02:00
DEBUG1("State to LISTENING");
2020-04-15 17:31:49 +02:00
m_state = FS_LISTENING;
m_kerchunkTimer.stop();
m_timeoutTimer.stop();
m_ackMinTimer.stop();
m_callsignTimer.stop();
}
}
void CFM::relayingRFState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
2020-04-15 17:31:49 +02:00
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_timeoutTone.start();
}
} else {
DEBUG1("State to RELAYING_WAIT_RF");
m_state = FS_RELAYING_WAIT_RF;
2020-04-15 17:31:49 +02:00
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingRFWaitState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (validSignal) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
2020-04-15 17:31:49 +02:00
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
2020-04-17 19:53:28 +02:00
DEBUG1("State to HANG");
2020-04-15 17:31:49 +02:00
m_state = FS_HANG;
if (m_ackMinTimer.isRunning()) {
if (m_ackMinTimer.hasExpired()) {
DEBUG1("Send RF ack");
2020-04-15 17:31:49 +02:00
m_rfAck.start();
m_ackMinTimer.stop();
}
} else {
DEBUG1("Send RF ack");
2020-04-15 17:31:49 +02:00
m_rfAck.start();
m_ackMinTimer.stop();
}
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::kerchunkExtState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (validSignal) {
if (m_kerchunkTimer.hasExpired()) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_kerchunkTimer.stop();
if (m_callsignAtStart && m_callsignAtLatch) {
sendCallsign();
m_callsignTimer.start();
}
}
} else {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_kerchunkTimer.stop();
m_timeoutTimer.stop();
m_ackMinTimer.stop();
m_callsignTimer.stop();
}
}
void CFM::relayingExtState(bool validSignal)
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_timeoutTone.start();
}
} else {
DEBUG1("State to RELAYING_WAIT_EXT");
m_state = FS_RELAYING_WAIT_EXT;
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingExtWaitState(bool validSignal)
{
if (validSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
if (m_ackMinTimer.isRunning()) {
if (m_ackMinTimer.hasExpired()) {
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackMinTimer.stop();
}
} else {
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackMinTimer.stop();
}
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::hangState(bool validRFSignal, bool validExtSignal)
{
if (validRFSignal) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
DEBUG1("Stop ack");
m_rfAck.stop();
m_extAck.stop();
beginRelaying();
} else if (validExtSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
2020-04-17 19:53:28 +02:00
DEBUG1("Stop ack");
2020-04-15 17:31:49 +02:00
m_rfAck.stop();
m_extAck.stop();
2020-04-15 17:31:49 +02:00
beginRelaying();
} else {
if (m_hangTimer.isRunning() && m_hangTimer.hasExpired()) {
2020-04-17 19:53:28 +02:00
DEBUG1("State to LISTENING");
2020-04-15 17:31:49 +02:00
m_state = FS_LISTENING;
m_hangTimer.stop();
if (m_callsignAtEnd)
sendCallsign();
m_callsignTimer.stop();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutRFState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (!validSignal) {
DEBUG1("State to TIMEOUT_WAIT_RF");
m_state = FS_TIMEOUT_WAIT_RF;
2020-04-15 17:31:49 +02:00
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutRFWaitState(bool validSignal)
2020-04-15 17:31:49 +02:00
{
if (validSignal) {
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
2020-04-15 17:31:49 +02:00
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
2020-04-17 19:53:28 +02:00
DEBUG1("State to HANG");
2020-04-15 17:31:49 +02:00
m_state = FS_HANG;
m_timeoutTone.stop();
DEBUG1("Send RF ack");
2020-04-15 17:31:49 +02:00
m_rfAck.start();
m_ackDelayTimer.stop();
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutExtState(bool validSignal)
{
if (!validSignal) {
DEBUG1("State to TIMEOUT_WAIT_EXT");
m_state = FS_TIMEOUT_WAIT_EXT;
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutExtWaitState(bool validSignal)
{
if (validSignal) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
m_timeoutTone.stop();
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackDelayTimer.stop();
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
2020-04-15 17:31:49 +02:00
void CFM::sendCallsign()
{
if (m_holdoffTimer.isRunning()) {
if (m_holdoffTimer.hasExpired()) {
2020-04-17 19:53:28 +02:00
DEBUG1("Send callsign");
2020-04-15 17:31:49 +02:00
m_callsign.start();
m_holdoffTimer.start();
}
} else {
2020-04-17 19:53:28 +02:00
DEBUG1("Send callsign");
2020-04-15 17:31:49 +02:00
m_callsign.start();
}
}
void CFM::beginRelaying()
{
m_timeoutTimer.start();
m_ackMinTimer.start();
}
2020-05-07 23:07:58 +02:00
uint8_t CFM::getSpace() const
{
// The amount of free space for receiving external audio, in bytes.
2020-05-09 08:00:24 +02:00
return m_inputExtRB.getSpace();
2020-05-07 23:07:58 +02:00
}
uint8_t CFM::writeData(const uint8_t* data, uint8_t length)
{
2020-05-08 13:30:15 +02:00
for (uint8_t i = 0U; i < length; i += 3U) {
uint16_t sample1 = 0U;
uint16_t sample2 = 0U;
uint32_t MASK = 0x00000FFFU;
2020-05-08 13:30:15 +02:00
uint32_t pack = 0U;
uint8_t* packPointer = (uint8_t*)&pack;
2020-05-08 13:30:15 +02:00
packPointer[1U] = data[i];
packPointer[2U] = data[i + 1U];
packPointer[3U] = data[i + 2U];
2020-05-08 13:30:15 +02:00
sample2 = uint16_t(pack & MASK);
sample1 = uint16_t(pack >> 12);
2020-05-08 13:30:15 +02:00
2020-05-09 07:57:45 +02:00
// Convert from uint16_t (0 - +4095) to Q15 (-2048 - +2047).
// Incoming data has sample rate 8kHz, just add 2 empty samples after
// every incoming sample to upsample to 24kHz
2020-05-09 08:00:24 +02:00
m_inputExtRB.put(q15_t(sample1) - 2048);
m_inputExtRB.put(0);
m_inputExtRB.put(0);
m_inputExtRB.put(q15_t(sample2) - 2048);
m_inputExtRB.put(0);
m_inputExtRB.put(0);
2020-05-08 13:30:15 +02:00
}
// Received audio is now in Q15 format in samples, with length nSamples.
2020-05-07 23:07:58 +02:00
return 0U;
}
void CFM::insertDelay(uint16_t ms)
{
uint32_t nSamples = ms * 24U;
for (uint32_t i = 0U; i < nSamples; i++)
2020-05-09 14:06:32 +02:00
m_inputRFRB.put(0);
}
void CFM::insertSilence(uint16_t ms)
{
uint32_t nSamples = ms * 24U;
for (uint32_t i = 0U; i < nSamples; i++)
2020-05-09 08:00:24 +02:00
m_outputRFRB.put(0);
}