mirror of
https://github.com/ckolivas/lrzip.git
synced 2025-12-06 07:12:00 +01:00
This will increase speed of compression and generate a smaller file, but not be backward compatible. Tweak the way memory is allocated to optimise chances of success and minimise slowdown for the machine. fsync to empty dirty data before allocating large ram to increase chance of mem allocation and decrease disk thrash of write vs read. Add lots more information to verbose mode. Lots of code tidying and minor tweaks.
702 lines
18 KiB
C
702 lines
18 KiB
C
/*
|
|
Copyright (C) Andrew Tridgell 1998,
|
|
Con Kolivas 2006-2010
|
|
|
|
Modified to use flat hash, memory limit and variable hash culling
|
|
by Rusty Russell copyright (C) 2003.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
/* rzip compression algorithm */
|
|
#include "rzip.h"
|
|
|
|
#define CHUNK_MULTIPLE (100 * 1024 * 1024)
|
|
#define CKSUM_CHUNK 1024*1024
|
|
#define GREAT_MATCH 1024
|
|
#define MINIMUM_MATCH 31
|
|
|
|
/* Hash table works as follows. We start by throwing tags at every
|
|
* offset into the table. As it fills, we start eliminating tags
|
|
* which don't have lower bits set to one (ie. first we eliminate all
|
|
* even tags, then all tags divisible by four, etc.). This ensures
|
|
* that on average, all parts of the file are covered by the hash, if
|
|
* sparsely. */
|
|
typedef i64 tag;
|
|
|
|
/* All zero means empty. We might miss the first chunk this way. */
|
|
struct hash_entry {
|
|
i64 offset;
|
|
tag t;
|
|
};
|
|
|
|
/* Levels control hashtable size and bzip2 level. */
|
|
static struct level {
|
|
unsigned long mb_used;
|
|
unsigned initial_freq;
|
|
unsigned max_chain_len;
|
|
} levels[10] = {
|
|
{ 1, 4, 1 },
|
|
{ 2, 4, 2 },
|
|
{ 4, 4, 2 },
|
|
{ 8, 4, 2 },
|
|
{ 16, 4, 3 },
|
|
{ 32, 4, 4 },
|
|
{ 32, 2, 6 },
|
|
{ 64, 1, 16 }, /* More MB makes sense, but need bigger test files */
|
|
{ 64, 1, 32 },
|
|
{ 64, 1, 128 },
|
|
};
|
|
|
|
struct rzip_state {
|
|
void *ss;
|
|
struct level *level;
|
|
tag hash_index[256];
|
|
struct hash_entry *hash_table;
|
|
i64 hash_bits;
|
|
i64 hash_count;
|
|
i64 hash_limit;
|
|
tag minimum_tag_mask;
|
|
i64 tag_clean_ptr;
|
|
uchar *last_match;
|
|
i64 chunk_size;
|
|
char chunk_bytes;
|
|
uint32_t cksum;
|
|
int fd_in, fd_out;
|
|
struct {
|
|
i64 inserts;
|
|
i64 literals;
|
|
i64 literal_bytes;
|
|
i64 matches;
|
|
i64 match_bytes;
|
|
i64 tag_hits;
|
|
i64 tag_misses;
|
|
} stats;
|
|
};
|
|
|
|
static inline void put_u8(void *ss, int stream, uchar b)
|
|
{
|
|
if (write_stream(ss, stream, &b, 1) != 0)
|
|
fatal("Failed to put_u8\n");
|
|
}
|
|
|
|
static inline void put_u32(void *ss, int stream, uint32_t s)
|
|
{
|
|
if (write_stream(ss, stream, (uchar *)&s, 4))
|
|
fatal("Failed to put_u32\n");
|
|
}
|
|
|
|
/* Put a variable length of bytes dependant on how big the chunk is */
|
|
static inline void put_vchars(void *ss, int stream, i64 s, int length)
|
|
{
|
|
int bytes;
|
|
|
|
for (bytes = 0; bytes < length; bytes++) {
|
|
int bits = bytes * 8;
|
|
uchar sb = (s >> bits) & (i64)0XFF;
|
|
|
|
put_u8(ss, stream, sb);
|
|
}
|
|
}
|
|
|
|
static void put_header(void *ss, uchar head, i64 len)
|
|
{
|
|
put_u8(ss, 0, head);
|
|
put_vchars(ss, 0, len, 2);
|
|
}
|
|
|
|
static void put_match(struct rzip_state *st, uchar *p, uchar *buf, i64 offset, i64 len)
|
|
{
|
|
do {
|
|
i64 ofs;
|
|
i64 n = len;
|
|
if (n > 0xFFFF) n = 0xFFFF;
|
|
|
|
ofs = (p - (buf + offset));
|
|
put_header(st->ss, 1, n);
|
|
put_vchars(st->ss, 0, ofs, st->chunk_bytes);
|
|
|
|
st->stats.matches++;
|
|
st->stats.match_bytes += n;
|
|
len -= n;
|
|
p += n;
|
|
offset += n;
|
|
} while (len);
|
|
}
|
|
|
|
static void put_literal(struct rzip_state *st, uchar *last, uchar *p)
|
|
{
|
|
do {
|
|
i64 len = (i64)(p - last);
|
|
if (len > 0xFFFF) len = 0xFFFF;
|
|
|
|
st->stats.literals++;
|
|
st->stats.literal_bytes += len;
|
|
|
|
put_header(st->ss, 0, len);
|
|
|
|
if (len && write_stream(st->ss, 1, last, len) != 0)
|
|
fatal(NULL);
|
|
last += len;
|
|
} while (p > last);
|
|
}
|
|
|
|
/* Could give false positive on offset 0. Who cares. */
|
|
static int empty_hash(struct rzip_state *st, i64 h)
|
|
{
|
|
return !st->hash_table[h].offset && !st->hash_table[h].t;
|
|
}
|
|
|
|
static i64 primary_hash(struct rzip_state *st, tag t)
|
|
{
|
|
return t & ((1 << st->hash_bits) - 1);
|
|
}
|
|
|
|
static inline tag increase_mask(tag tag_mask)
|
|
{
|
|
/* Get more precise. */
|
|
return (tag_mask << 1) | 1;
|
|
}
|
|
|
|
static int minimum_bitness(struct rzip_state *st, tag t)
|
|
{
|
|
tag better_than_min = increase_mask(st->minimum_tag_mask);
|
|
|
|
if ((t & better_than_min) != better_than_min)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Is a going to be cleaned before b? ie. does a have fewer low bits
|
|
* set than b? */
|
|
static int lesser_bitness(tag a, tag b)
|
|
{
|
|
tag mask;
|
|
|
|
for (mask = 0; mask != (tag) - 1; mask = ((mask << 1) | 1)) {
|
|
if ((a & b & mask) != mask)
|
|
break;
|
|
}
|
|
return ((a & mask) < (b & mask));
|
|
}
|
|
|
|
/* If hash bucket is taken, we spill into next bucket(s). Secondary hashing
|
|
works better in theory, but modern caches make this 20% faster. */
|
|
static void insert_hash(struct rzip_state *st, tag t, i64 offset)
|
|
{
|
|
i64 h, victim_h = 0, round = 0;
|
|
/* If we need to kill one, this will be it. */
|
|
static i64 victim_round = 0;
|
|
|
|
h = primary_hash(st, t);
|
|
while (!empty_hash(st, h)) {
|
|
/* If this due for cleaning anyway, just replace it:
|
|
rehashing might move it behind tag_clean_ptr. */
|
|
if (minimum_bitness(st, st->hash_table[h].t)) {
|
|
st->hash_count--;
|
|
break;
|
|
}
|
|
/* If we are better than current occupant, we can't
|
|
jump over it: it will be cleaned before us, and
|
|
noone would then find us in the hash table. Rehash
|
|
it, then take its place. */
|
|
if (lesser_bitness(st->hash_table[h].t, t)) {
|
|
insert_hash(st, st->hash_table[h].t,
|
|
st->hash_table[h].offset);
|
|
break;
|
|
}
|
|
|
|
/* If we have lots of identical patterns, we end up
|
|
with lots of the same hash number. Discard random. */
|
|
if (st->hash_table[h].t == t) {
|
|
if (round == victim_round) {
|
|
victim_h = h;
|
|
}
|
|
if (++round == st->level->max_chain_len) {
|
|
h = victim_h;
|
|
st->hash_count--;
|
|
victim_round++;
|
|
if (victim_round == st->level->max_chain_len)
|
|
victim_round = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
}
|
|
|
|
st->hash_table[h].t = t;
|
|
st->hash_table[h].offset = offset;
|
|
}
|
|
|
|
/* Eliminate one hash entry with minimum number of lower bits set.
|
|
Returns tag requirement for any new entries. */
|
|
static tag clean_one_from_hash(struct rzip_state *st)
|
|
{
|
|
tag better_than_min;
|
|
|
|
again:
|
|
better_than_min = increase_mask(st->minimum_tag_mask);
|
|
if (control.flags & FLAG_VERBOSITY_MAX) {
|
|
if (!st->tag_clean_ptr)
|
|
fprintf(control.msgout, "\nStarting sweep for mask %u\n", (unsigned int)st->minimum_tag_mask);
|
|
}
|
|
|
|
for (; st->tag_clean_ptr < (1U << st->hash_bits); st->tag_clean_ptr++) {
|
|
if (empty_hash(st, st->tag_clean_ptr))
|
|
continue;
|
|
if ((st->hash_table[st->tag_clean_ptr].t & better_than_min)
|
|
!= better_than_min) {
|
|
st->hash_table[st->tag_clean_ptr].offset = 0;
|
|
st->hash_table[st->tag_clean_ptr].t = 0;
|
|
st->hash_count--;
|
|
return better_than_min;
|
|
}
|
|
}
|
|
|
|
/* We hit the end: everthing in hash satisfies the better mask. */
|
|
st->minimum_tag_mask = better_than_min;
|
|
st->tag_clean_ptr = 0;
|
|
goto again;
|
|
}
|
|
|
|
static inline tag next_tag(struct rzip_state *st, uchar *p, tag t)
|
|
{
|
|
t ^= st->hash_index[p[-1]];
|
|
t ^= st->hash_index[p[-1]];
|
|
return t;
|
|
}
|
|
|
|
static inline tag full_tag(struct rzip_state *st, uchar *p)
|
|
{
|
|
tag ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < MINIMUM_MATCH; i++)
|
|
ret ^= st->hash_index[p[i]];
|
|
return ret;
|
|
}
|
|
|
|
static inline i64 match_len(struct rzip_state *st,
|
|
uchar *p0, uchar *op, uchar *buf, uchar *end, i64 *rev)
|
|
{
|
|
uchar *p = p0;
|
|
i64 len = 0;
|
|
|
|
if (op >= p0)
|
|
return 0;
|
|
|
|
while ((*p == *op) && (p < end)) {
|
|
p++;
|
|
op++;
|
|
}
|
|
len = p - p0;
|
|
|
|
p = p0;
|
|
op -= len;
|
|
|
|
end = buf;
|
|
if (end < st->last_match)
|
|
end = st->last_match;
|
|
|
|
while (p > end && op > buf && op[-1] == p[-1]) {
|
|
op--;
|
|
p--;
|
|
}
|
|
|
|
(*rev) = p0 - p;
|
|
len += p0 - p;
|
|
|
|
if (len < MINIMUM_MATCH)
|
|
return 0;
|
|
|
|
return len;
|
|
}
|
|
|
|
static i64 find_best_match(struct rzip_state *st,
|
|
tag t, uchar *p, uchar *buf, uchar *end,
|
|
i64 *offset, i64 *reverse)
|
|
{
|
|
i64 length = 0;
|
|
i64 h, best_h;
|
|
i64 rev;
|
|
|
|
rev = 0;
|
|
*reverse = 0;
|
|
|
|
/* Could optimise: if lesser goodness, can stop search. But
|
|
* chains are usually short anyway. */
|
|
h = primary_hash(st, t);
|
|
while (!empty_hash(st, h)) {
|
|
i64 mlen;
|
|
|
|
if (t == st->hash_table[h].t) {
|
|
mlen = match_len(st, p, buf+st->hash_table[h].offset,
|
|
buf, end, &rev);
|
|
|
|
if (mlen)
|
|
st->stats.tag_hits++;
|
|
else
|
|
st->stats.tag_misses++;
|
|
|
|
if (mlen >= length) {
|
|
length = mlen;
|
|
(*offset) = st->hash_table[h].offset - rev;
|
|
(*reverse) = rev;
|
|
best_h = h;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
static void show_distrib(struct rzip_state *st)
|
|
{
|
|
i64 primary = 0;
|
|
i64 total = 0;
|
|
i64 i;
|
|
|
|
for (i = 0; i < (1U << st->hash_bits); i++) {
|
|
if (empty_hash(st, i))
|
|
continue;
|
|
total++;
|
|
if (primary_hash(st, st->hash_table[i].t) == i)
|
|
primary++;
|
|
}
|
|
|
|
if (total != st->hash_count)
|
|
fprintf(control.msgout, "/tWARNING: hash_count says total %lld\n", st->hash_count);
|
|
|
|
fprintf(control.msgout, "\t%lld total hashes -- %lld in primary bucket (%-2.3f%%)\n", total, primary,
|
|
primary*100.0/total);
|
|
}
|
|
|
|
static void hash_search(struct rzip_state *st, uchar *buf,
|
|
double pct_base, double pct_multiple)
|
|
{
|
|
i64 cksum_limit = 0, pct, lastpct=0;
|
|
uchar *p, *end;
|
|
tag t = 0;
|
|
struct {
|
|
uchar *p;
|
|
i64 ofs;
|
|
i64 len;
|
|
} current;
|
|
|
|
tag tag_mask = (1 << st->level->initial_freq) - 1;
|
|
|
|
if (st->hash_table) {
|
|
memset(st->hash_table, 0, sizeof(st->hash_table[0]) * (1<<st->hash_bits));
|
|
} else {
|
|
i64 hashsize = st->level->mb_used *
|
|
(1024 * 1024 / sizeof(st->hash_table[0]));
|
|
for (st->hash_bits = 0; (1U << st->hash_bits) < hashsize; st->hash_bits++);
|
|
|
|
if (control.flags & FLAG_VERBOSITY_MAX)
|
|
fprintf(control.msgout, "hashsize = %lld. bits = %lld. %luMB\n",
|
|
hashsize, st->hash_bits, st->level->mb_used);
|
|
|
|
/* 66% full at max. */
|
|
st->hash_limit = (1 << st->hash_bits) / 3 * 2;
|
|
st->hash_table = calloc(sizeof(st->hash_table[0]), (1 << st->hash_bits));
|
|
}
|
|
|
|
if (!st->hash_table)
|
|
fatal("Failed to allocate hash table in hash_search\n");
|
|
|
|
st->minimum_tag_mask = tag_mask;
|
|
st->tag_clean_ptr = 0;
|
|
st->cksum = 0;
|
|
st->hash_count = 0;
|
|
|
|
p = buf;
|
|
end = buf + st->chunk_size - MINIMUM_MATCH;
|
|
st->last_match = p;
|
|
current.len = 0;
|
|
current.p = p;
|
|
current.ofs = 0;
|
|
|
|
t = full_tag(st, p);
|
|
|
|
while (p < end) {
|
|
i64 offset = 0;
|
|
i64 mlen;
|
|
i64 reverse;
|
|
|
|
p++;
|
|
t = next_tag(st, p, t);
|
|
|
|
/* Don't look for a match if there are no tags with
|
|
this number of bits in the hash table. */
|
|
if ((t & st->minimum_tag_mask) != st->minimum_tag_mask)
|
|
continue;
|
|
|
|
mlen = find_best_match(st, t, p, buf, end, &offset, &reverse);
|
|
|
|
/* Only insert occasionally into hash. */
|
|
if ((t & tag_mask) == tag_mask) {
|
|
st->stats.inserts++;
|
|
st->hash_count++;
|
|
insert_hash(st, t, (i64)(p - buf));
|
|
if (st->hash_count > st->hash_limit)
|
|
tag_mask = clean_one_from_hash(st);
|
|
}
|
|
|
|
if (mlen > current.len) {
|
|
current.p = p - reverse;
|
|
current.len = mlen;
|
|
current.ofs = offset;
|
|
}
|
|
|
|
if ((current.len >= GREAT_MATCH || p >= current.p + MINIMUM_MATCH)
|
|
&& current.len >= MINIMUM_MATCH) {
|
|
if (st->last_match < current.p)
|
|
put_literal(st, st->last_match, current.p);
|
|
put_match(st, current.p, buf, current.ofs, current.len);
|
|
st->last_match = current.p + current.len;
|
|
current.p = p = st->last_match;
|
|
current.len = 0;
|
|
t = full_tag(st, p);
|
|
}
|
|
|
|
if ((control.flags & FLAG_SHOW_PROGRESS) && (p - buf) % 100 == 0) {
|
|
pct = pct_base + (pct_multiple * (100.0 * (p - buf)) /
|
|
st->chunk_size);
|
|
if (pct != lastpct) {
|
|
struct stat s1, s2;
|
|
|
|
fstat(st->fd_in, &s1);
|
|
fstat(st->fd_out, &s2);
|
|
fprintf(control.msgout, "%2lld%%\r", pct);
|
|
fflush(control.msgout);
|
|
lastpct = pct;
|
|
}
|
|
}
|
|
|
|
if (p - buf > (i64)cksum_limit) {
|
|
i64 n = st->chunk_size - (p - buf);
|
|
st->cksum = CrcUpdate(st->cksum, buf + cksum_limit, n);
|
|
cksum_limit += n;
|
|
}
|
|
}
|
|
|
|
|
|
if (control.flags & FLAG_VERBOSITY_MAX)
|
|
show_distrib(st);
|
|
|
|
if (st->last_match < buf + st->chunk_size)
|
|
put_literal(st, st->last_match, buf + st->chunk_size);
|
|
|
|
if (st->chunk_size > cksum_limit) {
|
|
i64 n = st->chunk_size - cksum_limit;
|
|
st->cksum = CrcUpdate(st->cksum, buf+cksum_limit, n);
|
|
cksum_limit += n;
|
|
}
|
|
|
|
put_literal(st, NULL, 0);
|
|
put_u32(st->ss, 0, st->cksum);
|
|
}
|
|
|
|
|
|
static void init_hash_indexes(struct rzip_state *st)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
st->hash_index[i] = ((random() << 16) ^ random());
|
|
}
|
|
|
|
/* compress a chunk of an open file. Assumes that the file is able to
|
|
be mmap'd and is seekable */
|
|
static void rzip_chunk(struct rzip_state *st, int fd_in, int fd_out, i64 offset,
|
|
double pct_base, double pct_multiple, i64 limit)
|
|
{
|
|
uchar *buf;
|
|
|
|
/* Malloc'ing first will tell us if we can allocate this much ram
|
|
* faster than slowly reading in the file and then failing. Filling
|
|
* it with zeroes has a defragmenting effect on ram before the real
|
|
* read in. */
|
|
if (control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "Preallocating ram...\n");
|
|
buf = malloc(st->chunk_size);
|
|
if (!buf)
|
|
fatal("Failed to premalloc in rzip_chunk\n");
|
|
if (!memset(buf, 0, st->chunk_size))
|
|
fatal("Failed to memset in rzip_chunk\n");
|
|
free(buf);
|
|
if (control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "Reading file into mmapped ram...\n");
|
|
buf = (uchar *)mmap(buf, st->chunk_size, PROT_READ, MAP_SHARED, fd_in, offset);
|
|
if (buf == (uchar *)-1)
|
|
fatal("Failed to map buffer in rzip_chunk\n");
|
|
|
|
st->ss = open_stream_out(fd_out, NUM_STREAMS, limit);
|
|
if (!st->ss)
|
|
fatal("Failed to open streams in rzip_chunk\n");
|
|
hash_search(st, buf, pct_base, pct_multiple);
|
|
/* unmap buffer before closing and reallocating streams */
|
|
munmap(buf, st->chunk_size);
|
|
|
|
if (close_stream_out(st->ss) != 0)
|
|
fatal("Failed to flush/close streams in rzip_chunk\n");
|
|
}
|
|
|
|
/* Windows must be the width of _SC_PAGE_SIZE for offset to work in mmap */
|
|
static void round_to_page_size(i64 *chunk)
|
|
{
|
|
unsigned long page_size = sysconf(_SC_PAGE_SIZE);
|
|
i64 pages = *chunk / page_size + 1;
|
|
|
|
*chunk = pages * page_size;
|
|
}
|
|
|
|
/* compress a whole file chunks at a time */
|
|
void rzip_fd(int fd_in, int fd_out)
|
|
{
|
|
/* add timers for ETA estimates
|
|
* Base it off the file size and number of iterations required
|
|
* depending on compression window size
|
|
* Track elapsed time and estimated time to go
|
|
* If file size < compression window, can't do
|
|
*/
|
|
struct timeval current, start, last;
|
|
struct stat s, s2;
|
|
struct rzip_state *st;
|
|
i64 len, chunk_window, last_chunk = 0;
|
|
int pass = 0, passes, bits = 8;
|
|
unsigned int eta_hours, eta_minutes, eta_seconds, elapsed_hours,
|
|
elapsed_minutes, elapsed_seconds;
|
|
double finish_time, elapsed_time, chunkmbs;
|
|
|
|
st = calloc(sizeof(*st), 1);
|
|
if (!st)
|
|
fatal("Failed to allocate control state in rzip_fd\n");
|
|
|
|
if (control.flags & FLAG_LZO_COMPRESS) {
|
|
if (lzo_init() != LZO_E_OK)
|
|
fatal("lzo_init() failed\n");
|
|
}
|
|
|
|
if (fstat(fd_in, &s))
|
|
fatal("Failed to stat fd_in in rzip_fd - %s\n", strerror(errno));
|
|
|
|
len = s.st_size;
|
|
if (control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "File size: %lld\n", len);
|
|
while (len >> bits > 0)
|
|
bits++;
|
|
st->chunk_bytes = bits / 8;
|
|
if (bits % 8)
|
|
st->chunk_bytes++;
|
|
if (control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "Byte width: %d\n", st->chunk_bytes);
|
|
|
|
chunk_window = control.window * CHUNK_MULTIPLE;
|
|
|
|
st->level = &levels[MIN(9, control.window)];
|
|
st->fd_in = fd_in;
|
|
st->fd_out = fd_out;
|
|
|
|
init_hash_indexes(st);
|
|
|
|
passes = 1 + s.st_size / chunk_window;
|
|
|
|
/* set timers and chunk counter */
|
|
last.tv_sec = last.tv_usec = 0;
|
|
gettimeofday(&start, NULL);
|
|
|
|
while (len > 0) {
|
|
double pct_base, pct_multiple;
|
|
i64 chunk, limit = 0;
|
|
|
|
/* Flushing the dirty data will decrease our chances of
|
|
* running out of memory when we allocate ram again on the
|
|
* next chunk. It will also prevent thrashing on-disk due to
|
|
* concurrent reads and writes if we're on the same device. */
|
|
if (last_chunk && control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "Flushing data to disk.\n");
|
|
fsync(fd_out);
|
|
chunk = chunk_window;
|
|
if (chunk > len)
|
|
chunk = len;
|
|
round_to_page_size(&chunk);
|
|
limit = chunk;
|
|
st->chunk_size = chunk;
|
|
if (control.flags & FLAG_VERBOSE)
|
|
fprintf(control.msgout, "Chunk size: %lld\n\n", chunk);
|
|
|
|
pct_base = (100.0 * (s.st_size - len)) / s.st_size;
|
|
pct_multiple = ((double)chunk) / s.st_size;
|
|
pass++;
|
|
|
|
gettimeofday(¤t, NULL);
|
|
/* this will count only when size > window */
|
|
if (last.tv_sec > 0) {
|
|
if (control.flags & FLAG_VERBOSE) {
|
|
elapsed_time = current.tv_sec - start.tv_sec;
|
|
finish_time = elapsed_time / (pct_base / 100.0);
|
|
elapsed_hours = (unsigned int)(elapsed_time) / 3600;
|
|
elapsed_minutes = (unsigned int)(elapsed_time - elapsed_hours * 3600) / 60;
|
|
elapsed_seconds = (unsigned int) elapsed_time - elapsed_hours * 60 - elapsed_minutes * 60;
|
|
eta_hours = (unsigned int)(finish_time - elapsed_time) / 3600;
|
|
eta_minutes = (unsigned int)((finish_time - elapsed_time) - eta_hours * 3600) / 60;
|
|
eta_seconds = (unsigned int)(finish_time - elapsed_time) - eta_hours * 60 - eta_minutes * 60;
|
|
chunkmbs=(last_chunk / 1024 / 1024) / (double)(current.tv_sec-last.tv_sec);
|
|
fprintf(control.msgout, "\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. ETA: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
|
|
pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds,
|
|
eta_hours, eta_minutes, eta_seconds, chunkmbs);
|
|
}
|
|
}
|
|
last.tv_sec = current.tv_sec;
|
|
last.tv_usec = current.tv_usec;
|
|
last_chunk = chunk;
|
|
rzip_chunk(st, fd_in, fd_out, s.st_size - len, pct_base, pct_multiple, limit);
|
|
len -= chunk;
|
|
}
|
|
|
|
gettimeofday(¤t, NULL);
|
|
chunkmbs = (s.st_size / 1024 / 1024) / ((double)(current.tv_sec-start.tv_sec)? : 1);
|
|
|
|
fstat(fd_out, &s2);
|
|
|
|
if (control.flags & FLAG_VERBOSITY_MAX) {
|
|
fprintf(control.msgout, "matches=%u match_bytes=%u\n",
|
|
(unsigned int)st->stats.matches, (unsigned int)st->stats.match_bytes);
|
|
fprintf(control.msgout, "literals=%u literal_bytes=%u\n",
|
|
(unsigned int)st->stats.literals, (unsigned int)st->stats.literal_bytes);
|
|
fprintf(control.msgout, "true_tag_positives=%u false_tag_positives=%u\n",
|
|
(unsigned int)st->stats.tag_hits, (unsigned int)st->stats.tag_misses);
|
|
fprintf(control.msgout, "inserts=%u match %.3f\n",
|
|
(unsigned int)st->stats.inserts,
|
|
(1.0 + st->stats.match_bytes) / st->stats.literal_bytes);
|
|
}
|
|
|
|
if (control.flags & FLAG_SHOW_PROGRESS) {
|
|
if (!(control.flags & FLAG_STDIN))
|
|
fprintf(control.msgout, "%s - ", control.infile);
|
|
fprintf(control.msgout, "Compression Ratio: %.3f. Average Compression Speed: %6.3fMB/s.\n",
|
|
1.0 * s.st_size / s2.st_size, chunkmbs);
|
|
}
|
|
|
|
if (st->hash_table)
|
|
free(st->hash_table);
|
|
free(st);
|
|
}
|