mirror of
https://github.com/ckolivas/lrzip.git
synced 2025-12-06 07:12:00 +01:00
1199 lines
34 KiB
C
1199 lines
34 KiB
C
/*
|
|
Copyright (C) 2006-2012 Con Kolivas
|
|
Copyright (C) 1998 Andrew Tridgell
|
|
|
|
Modified to use flat hash, memory limit and variable hash culling
|
|
by Rusty Russell copyright (C) 2003.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/* rzip compression algorithm */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include "config.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_MMAN_H
|
|
# include <sys/mman.h>
|
|
#endif
|
|
#include <sys/statvfs.h>
|
|
#ifdef HAVE_SYS_STAT_H
|
|
# include <sys/stat.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_TIME_H
|
|
# include <sys/time.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
# include <unistd.h>
|
|
#endif
|
|
#include <lzo/lzoconf.h>
|
|
#include <lzo/lzo1x.h>
|
|
#ifdef HAVE_ERRNO_H
|
|
# include <errno.h>
|
|
#endif
|
|
#ifdef HAVE_ENDIAN_H
|
|
# include <endian.h>
|
|
#elif HAVE_SYS_ENDIAN_H
|
|
# include <sys/endian.h>
|
|
#endif
|
|
#ifdef HAVE_ARPA_INET_H
|
|
# include <arpa/inet.h>
|
|
#endif
|
|
|
|
#include "md5.h"
|
|
#include "stream.h"
|
|
#include "util.h"
|
|
#include "lrzip.h"
|
|
/* needed for CRC routines */
|
|
#include "lzma/C/7zCrc.h"
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#define CHUNK_MULTIPLE (100 * 1024 * 1024)
|
|
#define CKSUM_CHUNK 1024*1024
|
|
#define GREAT_MATCH 1024
|
|
#define MINIMUM_MATCH 31
|
|
|
|
/* Hash table works as follows. We start by throwing tags at every
|
|
* offset into the table. As it fills, we start eliminating tags
|
|
* which don't have lower bits set to one (ie. first we eliminate all
|
|
* even tags, then all tags divisible by four, etc.). This ensures
|
|
* that on average, all parts of the file are covered by the hash, if
|
|
* sparsely. */
|
|
typedef i64 tag;
|
|
|
|
/* All zero means empty. We might miss the first chunk this way. */
|
|
struct hash_entry {
|
|
i64 offset;
|
|
tag t;
|
|
};
|
|
|
|
/* Levels control hashtable size and bzip2 level. */
|
|
static struct level {
|
|
unsigned long mb_used;
|
|
unsigned initial_freq;
|
|
unsigned max_chain_len;
|
|
} levels[10] = {
|
|
{ 1, 4, 1 },
|
|
{ 2, 4, 2 },
|
|
{ 4, 4, 2 },
|
|
{ 8, 4, 2 },
|
|
{ 16, 4, 3 },
|
|
{ 32, 4, 4 },
|
|
{ 32, 2, 6 },
|
|
{ 64, 1, 16 }, /* More MB makes sense, but need bigger test files */
|
|
{ 64, 1, 32 },
|
|
{ 64, 1, 128 },
|
|
};
|
|
|
|
struct rzip_state {
|
|
void *ss;
|
|
struct level *level;
|
|
tag hash_index[256];
|
|
struct hash_entry *hash_table;
|
|
i64 hash_bits;
|
|
i64 hash_count;
|
|
i64 hash_limit;
|
|
tag minimum_tag_mask;
|
|
i64 tag_clean_ptr;
|
|
i64 last_match;
|
|
i64 chunk_size;
|
|
i64 mmap_size;
|
|
char chunk_bytes;
|
|
uint32_t cksum;
|
|
int fd_in, fd_out;
|
|
int stdin_eof;
|
|
struct {
|
|
i64 inserts;
|
|
i64 literals;
|
|
i64 literal_bytes;
|
|
i64 matches;
|
|
i64 match_bytes;
|
|
i64 tag_hits;
|
|
i64 tag_misses;
|
|
} stats;
|
|
};
|
|
|
|
static bool remap_low_sb(rzip_control *control, struct sliding_buffer *sb)
|
|
{
|
|
i64 new_offset;
|
|
|
|
new_offset = sb->offset_search;
|
|
round_to_page(&new_offset);
|
|
print_maxverbose("Sliding main buffer to offset %lld\n", new_offset);
|
|
if (unlikely(munmap(sb->buf_low, sb->size_low)))
|
|
fatal_return(("Failed to munmap in remap_low_sb\n"), false);
|
|
if (new_offset + sb->size_low > sb->orig_size)
|
|
sb->size_low = sb->orig_size - new_offset;
|
|
sb->offset_low = new_offset;
|
|
sb->buf_low = (uchar *)mmap(sb->buf_low, sb->size_low, PROT_READ, MAP_SHARED, sb->fd, sb->orig_offset + sb->offset_low);
|
|
if (unlikely(sb->buf_low == MAP_FAILED))
|
|
fatal_return(("Failed to re mmap in remap_low_sb\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static inline bool remap_high_sb(rzip_control *control, struct sliding_buffer *sb, i64 p)
|
|
{
|
|
if (unlikely(munmap(sb->buf_high, sb->size_high)))
|
|
fatal_return(("Failed to munmap in remap_high_sb\n"), false);
|
|
sb->size_high = sb->high_length; /* In case we shrunk it when we hit the end of the file */
|
|
sb->offset_high = p;
|
|
/* Make sure offset is rounded to page size of total offset */
|
|
sb->offset_high -= (sb->offset_high + sb->orig_offset) % control->page_size;
|
|
if (unlikely(sb->offset_high + sb->size_high > sb->orig_size))
|
|
sb->size_high = sb->orig_size - sb->offset_high;
|
|
sb->buf_high = (uchar *)mmap(sb->buf_high, sb->size_high, PROT_READ, MAP_SHARED, sb->fd, sb->orig_offset + sb->offset_high);
|
|
if (unlikely(sb->buf_high == MAP_FAILED))
|
|
fatal_return(("Failed to re mmap in remap_high_sb\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* We use a "sliding mmap" to effectively read more than we can fit into the
|
|
* compression window. This is done by using a maximally sized lower mmap at
|
|
* the beginning of the block which slides up once the hash search moves beyond
|
|
* it, and a 64k mmap block that slides up and down as is required for any
|
|
* offsets outside the range of the lower one. This is much slower than mmap
|
|
* but makes it possible to have unlimited sized compression windows.
|
|
* We use a pointer to the function we actually want to use and only enable
|
|
* the sliding mmap version if we need sliding mmap functionality as this is
|
|
* a hot function during the rzip phase */
|
|
static uchar *sliding_get_sb(rzip_control *control, i64 p)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
if (p >= sb->offset_low && p < sb->offset_low + sb->size_low)
|
|
return (sb->buf_low + p - sb->offset_low);
|
|
if (p >= sb->offset_high && p < (sb->offset_high + sb->size_high))
|
|
return (sb->buf_high + (p - sb->offset_high));
|
|
/* p is not within the low or high buffer range */
|
|
if (unlikely(!remap_high_sb(control, &control->sb, p)))
|
|
return NULL;
|
|
return (sb->buf_high + (p - sb->offset_high));
|
|
}
|
|
|
|
static uchar *single_get_sb(__maybe_unused rzip_control *control, i64 p)
|
|
{
|
|
return (control->sb.buf_low + p);
|
|
}
|
|
|
|
/* Since the sliding get_sb only allows us to access one byte at a time, we
|
|
* do the same as we did with get_sb with the memcpy since one memcpy is much
|
|
* faster than numerous memcpys 1 byte at a time */
|
|
static void single_mcpy(rzip_control *control, unsigned char *buf, i64 offset, i64 len)
|
|
{
|
|
memcpy(buf, control->sb.buf_low + offset, len);
|
|
}
|
|
|
|
static void sliding_mcpy(rzip_control *control, unsigned char *buf, i64 offset, i64 len)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
i64 i, offdiff = offset - sb->offset_low;
|
|
|
|
/* See if we fit in the low buffer first and use the faster function
|
|
* where possible */
|
|
if (offdiff >= 0 && offdiff < sb->size_low) {
|
|
i64 minlen = MIN(len, sb->size_low - offdiff);
|
|
|
|
memcpy(buf, control->sb.buf_low + offdiff, minlen);
|
|
len -= minlen;
|
|
}
|
|
|
|
/* We have no choice but to go fine-grained if there's any len left
|
|
* since we will be paging */
|
|
for (i = 0; i < len; i++)
|
|
memcpy(buf + i, sliding_get_sb(control, offset + i), 1);
|
|
}
|
|
|
|
/* All put_u8/u32/vchars go to stream 0 */
|
|
static inline bool put_u8(rzip_control *control, void *ss, uchar b)
|
|
{
|
|
if (unlikely(write_stream(control, ss, 0, &b, 1)))
|
|
fatal_return(("Failed to put_u8\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static inline bool put_u32(rzip_control *control, void *ss, uint32_t s)
|
|
{
|
|
s = htole32(s);
|
|
if (unlikely(write_stream(control, ss, 0, (uchar *)&s, 4)))
|
|
fatal_return(("Failed to put_u32\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* Put a variable length of bytes dependant on how big the chunk is */
|
|
static inline bool put_vchars(rzip_control *control, void *ss, i64 s, int length)
|
|
{
|
|
s = htole64(s);
|
|
if (unlikely(write_stream(control, ss, 0, (uchar *)&s, length)))
|
|
fatal_return(("Failed to put_vchars\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static bool put_header(rzip_control *control, void *ss, uchar head, i64 len)
|
|
{
|
|
if (unlikely(!put_u8(control, ss, head)))
|
|
return false;
|
|
if (unlikely(!put_vchars(control, ss, len, 2)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool put_match(rzip_control *control, struct rzip_state *st, i64 p, i64 offset, i64 len)
|
|
{
|
|
do {
|
|
i64 ofs;
|
|
i64 n = len;
|
|
if (n > 0xFFFF)
|
|
n = 0xFFFF;
|
|
|
|
ofs = (p - offset);
|
|
if (unlikely(!put_header(control, st->ss, 1, n)))
|
|
return false;
|
|
if (unlikely(!put_vchars(control, st->ss, ofs, st->chunk_bytes)))
|
|
return false;
|
|
|
|
st->stats.matches++;
|
|
st->stats.match_bytes += n;
|
|
len -= n;
|
|
p += n;
|
|
offset += n;
|
|
} while (len);
|
|
return true;
|
|
}
|
|
|
|
/* write some data to a stream mmap encoded. Return -1 on failure */
|
|
static int write_sbstream(rzip_control *control, void *ss, int stream, i64 p, i64 len)
|
|
{
|
|
struct stream_info *sinfo = ss;
|
|
|
|
while (len) {
|
|
i64 n = MIN(sinfo->bufsize - sinfo->s[stream].buflen, len);
|
|
|
|
control->do_mcpy(control, sinfo->s[stream].buf + sinfo->s[stream].buflen, p, n);
|
|
|
|
sinfo->s[stream].buflen += n;
|
|
p += n;
|
|
len -= n;
|
|
|
|
if (sinfo->s[stream].buflen == sinfo->bufsize)
|
|
if (unlikely(!flush_buffer(control, sinfo, stream)))
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool put_literal(rzip_control *control, struct rzip_state *st, i64 last, i64 p)
|
|
{
|
|
do {
|
|
i64 len = p - last;
|
|
if (len > 0xFFFF)
|
|
len = 0xFFFF;
|
|
|
|
st->stats.literals++;
|
|
st->stats.literal_bytes += len;
|
|
|
|
if (unlikely(!put_header(control, st->ss, 0, len)))
|
|
return false;
|
|
|
|
if (unlikely(len && write_sbstream(control, st->ss, 1, last, len)))
|
|
fatal_return(("Failed to write_stream in put_literal\n"), false);
|
|
last += len;
|
|
} while (p > last);
|
|
return true;
|
|
}
|
|
|
|
/* Could give false positive on offset 0. Who cares. */
|
|
static inline bool empty_hash(struct hash_entry *he)
|
|
{
|
|
return !(he->offset | he->t);
|
|
}
|
|
|
|
static i64 primary_hash(struct rzip_state *st, tag t)
|
|
{
|
|
return t & ((1 << st->hash_bits) - 1);
|
|
}
|
|
|
|
static inline tag increase_mask(tag tag_mask)
|
|
{
|
|
/* Get more precise. */
|
|
return (tag_mask << 1) | 1;
|
|
}
|
|
|
|
static bool minimum_bitness(struct rzip_state *st, tag t)
|
|
{
|
|
tag better_than_min = increase_mask(st->minimum_tag_mask);
|
|
|
|
if ((t & better_than_min) != better_than_min)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Is a going to be cleaned before b? ie. does a have fewer low bits
|
|
* set than b? */
|
|
static inline bool lesser_bitness(tag a, tag b)
|
|
{
|
|
a ^= 0xffffffffffffffff;
|
|
b ^= 0xffffffffffffffff;
|
|
return (ffsll(a) < ffsll(b));
|
|
}
|
|
|
|
/* If hash bucket is taken, we spill into next bucket(s). Secondary hashing
|
|
works better in theory, but modern caches make this 20% faster. */
|
|
static void insert_hash(struct rzip_state *st, tag t, i64 offset)
|
|
{
|
|
i64 h, victim_h = 0, round = 0;
|
|
/* If we need to kill one, this will be it. */
|
|
static i64 victim_round = 0;
|
|
struct hash_entry *he;
|
|
|
|
h = primary_hash(st, t);
|
|
he = &st->hash_table[h];
|
|
while (!empty_hash(he)) {
|
|
/* If this due for cleaning anyway, just replace it:
|
|
rehashing might move it behind tag_clean_ptr. */
|
|
if (minimum_bitness(st, he->t)) {
|
|
st->hash_count--;
|
|
break;
|
|
}
|
|
/* If we are better than current occupant, we can't
|
|
jump over it: it will be cleaned before us, and
|
|
noone would then find us in the hash table. Rehash
|
|
it, then take its place. */
|
|
if (lesser_bitness(he->t, t)) {
|
|
insert_hash(st, he->t,
|
|
he->offset);
|
|
break;
|
|
}
|
|
|
|
/* If we have lots of identical patterns, we end up
|
|
with lots of the same hash number. Discard random. */
|
|
if (he->t == t) {
|
|
if (round == victim_round)
|
|
victim_h = h;
|
|
if (++round == st->level->max_chain_len) {
|
|
h = victim_h;
|
|
he = &st->hash_table[h];
|
|
st->hash_count--;
|
|
victim_round++;
|
|
if (victim_round == st->level->max_chain_len)
|
|
victim_round = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
he = &st->hash_table[h];
|
|
}
|
|
|
|
he->t = t;
|
|
he->offset = offset;
|
|
}
|
|
|
|
/* Eliminate one hash entry with minimum number of lower bits set.
|
|
Returns tag requirement for any new entries. */
|
|
static tag clean_one_from_hash(rzip_control *control, struct rzip_state *st)
|
|
{
|
|
struct hash_entry *he;
|
|
tag better_than_min;
|
|
|
|
again:
|
|
better_than_min = increase_mask(st->minimum_tag_mask);
|
|
if (!st->tag_clean_ptr)
|
|
print_maxverbose("Starting sweep for mask %u\n", (unsigned int)st->minimum_tag_mask);
|
|
|
|
for (; st->tag_clean_ptr < (1U << st->hash_bits); st->tag_clean_ptr++) {
|
|
he = &st->hash_table[st->tag_clean_ptr];
|
|
if (empty_hash(he))
|
|
continue;
|
|
if ((he->t & better_than_min) != better_than_min) {
|
|
he->offset = 0;
|
|
he->t = 0;
|
|
st->hash_count--;
|
|
return better_than_min;
|
|
}
|
|
}
|
|
|
|
/* We hit the end: everthing in hash satisfies the better mask. */
|
|
st->minimum_tag_mask = better_than_min;
|
|
st->tag_clean_ptr = 0;
|
|
goto again;
|
|
}
|
|
|
|
static inline void next_tag(rzip_control *control, struct rzip_state *st, i64 p, tag *t)
|
|
{
|
|
uchar *u;
|
|
|
|
u = control->get_sb(control, p - 1);
|
|
*t ^= st->hash_index[*u];
|
|
u = control->get_sb(control, p + MINIMUM_MATCH - 1);
|
|
*t ^= st->hash_index[*u];
|
|
}
|
|
|
|
static inline tag full_tag(rzip_control *control, struct rzip_state *st, i64 p)
|
|
{
|
|
tag ret = 0;
|
|
int i;
|
|
uchar *u;
|
|
|
|
for (i = 0; i < MINIMUM_MATCH; i++) {
|
|
u = control->get_sb(control, p + i);
|
|
if (unlikely(!u))
|
|
return -1;
|
|
ret ^= st->hash_index[*u];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline i64 match_len(rzip_control *control, struct rzip_state *st, i64 p0, i64 op, i64 end,
|
|
i64 *rev)
|
|
{
|
|
uchar *(*csb)(rzip_control *, i64);
|
|
i64 p, len;
|
|
|
|
if (op >= p0)
|
|
return 0;
|
|
|
|
p = p0;
|
|
csb = control->get_sb;
|
|
while (p < end && (*csb(control, p) == *csb(control, op))) {
|
|
p++;
|
|
op++;
|
|
}
|
|
len = p - p0;
|
|
p = p0;
|
|
op -= len;
|
|
|
|
end = MAX(0, st->last_match);
|
|
|
|
while (p > end && op > 0 && *csb(control, op - 1) == *csb(control, p - 1)) {
|
|
op--;
|
|
p--;
|
|
}
|
|
|
|
len += *rev = p0 - p;
|
|
if (len < MINIMUM_MATCH)
|
|
return 0;
|
|
|
|
return len;
|
|
}
|
|
|
|
static i64 find_best_match(rzip_control *control, struct rzip_state *st, tag t, i64 p, i64 end,
|
|
i64 *offset, i64 *reverse)
|
|
{
|
|
struct hash_entry *he;
|
|
i64 length = 0;
|
|
i64 rev;
|
|
i64 h;
|
|
|
|
rev = 0;
|
|
*reverse = 0;
|
|
|
|
/* Could optimise: if lesser goodness, can stop search. But
|
|
* chains are usually short anyway. */
|
|
h = primary_hash(st, t);
|
|
he = &st->hash_table[h];
|
|
while (!empty_hash(he)) {
|
|
i64 mlen;
|
|
|
|
if (t == he->t) {
|
|
mlen = match_len(control, st, p, he->offset, end,
|
|
&rev);
|
|
|
|
if (mlen)
|
|
st->stats.tag_hits++;
|
|
else
|
|
st->stats.tag_misses++;
|
|
|
|
if (mlen >= length) {
|
|
length = mlen;
|
|
(*offset) = he->offset - rev;
|
|
(*reverse) = rev;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
he = &st->hash_table[h];
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
static void show_distrib(rzip_control *control, struct rzip_state *st)
|
|
{
|
|
struct hash_entry *he;
|
|
i64 primary = 0;
|
|
i64 total = 0;
|
|
i64 i;
|
|
|
|
for (i = 0; i < (1U << st->hash_bits); i++) {
|
|
he = &st->hash_table[i];
|
|
if (empty_hash(he))
|
|
continue;
|
|
total++;
|
|
if (primary_hash(st, he->t) == i)
|
|
primary++;
|
|
}
|
|
|
|
if (total != st->hash_count)
|
|
print_err("WARNING: hash_count says total %lld\n", st->hash_count);
|
|
|
|
print_output("%lld total hashes -- %lld in primary bucket (%-2.3f%%)\n", total, primary,
|
|
primary * 100.0 / (total ? : 1));
|
|
}
|
|
|
|
/* Perform all checksumming in a separate thread to speed up the hash search. */
|
|
static void *cksumthread(void *data)
|
|
{
|
|
rzip_control *control = (rzip_control *)data;
|
|
|
|
pthread_detach(pthread_self());
|
|
|
|
*control->checksum.cksum = CrcUpdate(*control->checksum.cksum, control->checksum.buf, control->checksum.len);
|
|
if (!NO_MD5)
|
|
md5_process_bytes(control->checksum.buf, control->checksum.len, &control->ctx);
|
|
free(control->checksum.buf);
|
|
unlock_mutex(control, &control->cksumlock);
|
|
return NULL;
|
|
}
|
|
|
|
static void cksum_update(rzip_control *control)
|
|
{
|
|
pthread_t thread;
|
|
|
|
create_pthread(control, &thread, NULL, cksumthread, control);
|
|
}
|
|
|
|
static bool hash_search(rzip_control *control, struct rzip_state *st, double pct_base, double pct_multiple)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
int lastpct = 0, last_chunkpct = 0;
|
|
i64 cksum_limit = 0, p, end;
|
|
tag t = 0;
|
|
struct {
|
|
i64 p;
|
|
i64 ofs;
|
|
i64 len;
|
|
} current;
|
|
|
|
tag tag_mask = (1 << st->level->initial_freq) - 1;
|
|
|
|
if (st->hash_table)
|
|
memset(st->hash_table, 0, sizeof(st->hash_table[0]) * (1<<st->hash_bits));
|
|
else {
|
|
i64 hashsize = st->level->mb_used *
|
|
(1024 * 1024 / sizeof(st->hash_table[0]));
|
|
for (st->hash_bits = 0; (1U << st->hash_bits) < hashsize; st->hash_bits++);
|
|
|
|
print_maxverbose("hashsize = %lld. bits = %lld. %luMB\n",
|
|
hashsize, st->hash_bits, st->level->mb_used);
|
|
|
|
/* 66% full at max. */
|
|
st->hash_limit = (1 << st->hash_bits) / 3 * 2;
|
|
st->hash_table = calloc(sizeof(st->hash_table[0]), (1 << st->hash_bits));
|
|
}
|
|
|
|
if (unlikely(!st->hash_table))
|
|
fatal_return(("Failed to allocate hash table in hash_search\n"), false);
|
|
|
|
st->minimum_tag_mask = tag_mask;
|
|
st->tag_clean_ptr = 0;
|
|
st->cksum = 0;
|
|
st->hash_count = 0;
|
|
|
|
p = 0;
|
|
end = st->chunk_size - MINIMUM_MATCH;
|
|
st->last_match = p;
|
|
current.len = 0;
|
|
current.p = p;
|
|
current.ofs = 0;
|
|
|
|
if (likely(end > 0)) {
|
|
t = full_tag(control, st, p);
|
|
if (unlikely(t == -1))
|
|
return false;
|
|
}
|
|
|
|
while (p < end) {
|
|
i64 reverse, mlen, offset = 0;
|
|
|
|
p++;
|
|
sb->offset_search = p;
|
|
if (unlikely(sb->offset_search > sb->offset_low + sb->size_low))
|
|
remap_low_sb(control, &control->sb);
|
|
next_tag(control, st, p, &t);
|
|
|
|
/* Don't look for a match if there are no tags with
|
|
this number of bits in the hash table. */
|
|
if ((t & st->minimum_tag_mask) != st->minimum_tag_mask)
|
|
continue;
|
|
|
|
mlen = find_best_match(control, st, t, p, end, &offset, &reverse);
|
|
|
|
/* Only insert occasionally into hash. */
|
|
if ((t & tag_mask) == tag_mask) {
|
|
st->stats.inserts++;
|
|
st->hash_count++;
|
|
insert_hash(st, t, p);
|
|
if (st->hash_count > st->hash_limit)
|
|
tag_mask = clean_one_from_hash(control, st);
|
|
}
|
|
|
|
if (mlen > current.len) {
|
|
current.p = p - reverse;
|
|
current.len = mlen;
|
|
current.ofs = offset;
|
|
}
|
|
|
|
if ((current.len >= GREAT_MATCH || p >= current.p + MINIMUM_MATCH)
|
|
&& current.len >= MINIMUM_MATCH) {
|
|
if (st->last_match < current.p)
|
|
if (unlikely(!put_literal(control, st, st->last_match, current.p)))
|
|
return false;
|
|
if (unlikely(!put_match(control, st, current.p, current.ofs, current.len)))
|
|
return false;
|
|
st->last_match = current.p + current.len;
|
|
current.p = p = st->last_match;
|
|
current.len = 0;
|
|
t = full_tag(control, st, p);
|
|
if (unlikely(t == -1))
|
|
return false;
|
|
}
|
|
|
|
if (unlikely(p % 128 == 0)) {
|
|
int pct, chunk_pct;
|
|
|
|
pct = pct_base + (pct_multiple * (100.0 * p) /
|
|
(st->chunk_size ? : 1));
|
|
chunk_pct = p / ((end / 100) ? : 1);
|
|
if (pct != lastpct || chunk_pct != last_chunkpct) {
|
|
if (!STDIN || st->stdin_eof)
|
|
print_progress("Total: %2d%% ", pct);
|
|
print_progress("Chunk: %2d%%\r", chunk_pct);
|
|
if (control->info_cb)
|
|
control->info_cb(control->info_data,
|
|
(!STDIN || st->stdin_eof) ? pct : -1, chunk_pct);
|
|
lastpct = pct;
|
|
last_chunkpct = chunk_pct;
|
|
}
|
|
}
|
|
|
|
if (p > cksum_limit) {
|
|
/* We lock the mutex here and unlock it in the
|
|
* cksumthread. This lock protects all the data in
|
|
* control->checksum.
|
|
*/
|
|
lock_mutex(control, &control->cksumlock);
|
|
control->checksum.len = MIN(st->chunk_size - p, control->page_size);
|
|
control->checksum.buf = malloc(control->checksum.len);
|
|
if (unlikely(!control->checksum.buf))
|
|
fatal_return(("Failed to malloc ckbuf in hash_search\n"), false);
|
|
control->do_mcpy(control, control->checksum.buf, cksum_limit, control->checksum.len);
|
|
control->checksum.cksum = &st->cksum;
|
|
cksum_update(control);
|
|
cksum_limit += control->checksum.len;
|
|
}
|
|
}
|
|
|
|
if (MAX_VERBOSE)
|
|
show_distrib(control, st);
|
|
|
|
if (st->last_match < st->chunk_size)
|
|
put_literal(control, st, st->last_match, st->chunk_size);
|
|
|
|
if (st->chunk_size > cksum_limit) {
|
|
lock_mutex(control, &control->cksumlock);
|
|
control->checksum.len = st->chunk_size - cksum_limit;
|
|
control->checksum.buf = malloc(control->checksum.len);
|
|
if (unlikely(!control->checksum.buf))
|
|
fatal_return(("Failed to malloc ckbuf in hash_search\n"), false);
|
|
control->do_mcpy(control, control->checksum.buf, cksum_limit, control->checksum.len);
|
|
control->checksum.cksum = &st->cksum;
|
|
cksum_update(control);
|
|
cksum_limit += control->checksum.len;
|
|
}
|
|
|
|
wait_mutex(control, &control->cksumlock);
|
|
|
|
if (unlikely(!put_literal(control, st, 0, 0)))
|
|
return false;
|
|
if (unlikely(!put_u32(control, st->ss, st->cksum)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
static void init_hash_indexes(struct rzip_state *st)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
st->hash_index[i] = ((random() << 16) ^ random());
|
|
}
|
|
|
|
static inline void *fake_mremap(void *old_address, size_t old_size, size_t new_size, int flags __UNUSED__)
|
|
{
|
|
munmap(old_address, old_size);
|
|
return mmap(old_address, new_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
|
}
|
|
|
|
/* stdin is not file backed so we have to emulate the mmap by mapping
|
|
* anonymous ram and reading stdin into it. It means the maximum ram
|
|
* we can use will be less but we will already have determined this in
|
|
* rzip_chunk */
|
|
static bool mmap_stdin(rzip_control *control, uchar *buf, struct rzip_state *st)
|
|
{
|
|
i64 len = st->chunk_size;
|
|
uchar *offset_buf = buf;
|
|
ssize_t ret;
|
|
i64 total;
|
|
|
|
total = 0;
|
|
while (len > 0) {
|
|
ret = MIN(len, one_g);
|
|
ret = read(fileno(control->inFILE), offset_buf, (size_t)ret);
|
|
if (unlikely(ret < 0))
|
|
fatal_return(("Failed to read in mmap_stdin\n"), false);
|
|
total += ret;
|
|
if (ret == 0) {
|
|
/* Should be EOF */
|
|
print_maxverbose("Shrinking chunk to %lld\n", total);
|
|
if (likely(total)) {
|
|
buf = (uchar *)mremap(buf, st->chunk_size, total, 0);
|
|
st->mmap_size = st->chunk_size = total;
|
|
} else {
|
|
/* Empty file */
|
|
buf = (uchar *)mremap(buf, st->chunk_size, control->page_size, 0);
|
|
st->mmap_size = control->page_size;
|
|
st->chunk_size = 0;
|
|
}
|
|
if (unlikely(buf == MAP_FAILED))
|
|
fatal_return(("Failed to remap to smaller buf in mmap_stdin\n"), false);
|
|
control->eof = st->stdin_eof = 1;
|
|
break;
|
|
}
|
|
offset_buf += ret;
|
|
len -= ret;
|
|
}
|
|
control->st_size += total;
|
|
return true;
|
|
}
|
|
|
|
static bool init_sliding_mmap(rzip_control *control, struct rzip_state *st, int fd_in, i64 offset)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
/* Initialise the high buffer */
|
|
if (!STDIN) {
|
|
sb->high_length = 65536;
|
|
/* Round up to the next biggest page size */
|
|
if (sb->high_length % control->page_size)
|
|
sb->high_length += control->page_size - (sb->high_length % control->page_size);
|
|
sb->buf_high = (uchar *)mmap(NULL, sb->high_length, PROT_READ, MAP_SHARED, fd_in, offset);
|
|
if (unlikely(sb->buf_high == MAP_FAILED))
|
|
fatal_return(("Unable to mmap buf_high in init_sliding_mmap\n"), false);
|
|
sb->size_high = sb->high_length;
|
|
sb->offset_high = 0;
|
|
}
|
|
sb->offset_low = 0;
|
|
sb->offset_search = 0;
|
|
sb->size_low = st->mmap_size;
|
|
sb->orig_size = st->chunk_size;
|
|
sb->fd = fd_in;
|
|
return true;
|
|
}
|
|
|
|
/* compress a chunk of an open file. Assumes that the file is able to
|
|
be mmap'd and is seekable */
|
|
static bool rzip_chunk(rzip_control *control, struct rzip_state *st, int fd_in, int fd_out, i64 offset,
|
|
double pct_base, double pct_multiple)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
if (unlikely(!init_sliding_mmap(control, st, fd_in, offset)))
|
|
return false;
|
|
|
|
st->ss = open_stream_out(control, fd_out, NUM_STREAMS, st->chunk_size, st->chunk_bytes);
|
|
if (unlikely(!st->ss))
|
|
fatal_return(("Failed to open streams in rzip_chunk\n"), false);
|
|
|
|
print_verbose("Beginning rzip pre-processing phase\n");
|
|
if (unlikely(!hash_search(control, st, pct_base, pct_multiple))) {
|
|
close_stream_out(control, st->ss);
|
|
return false;
|
|
}
|
|
|
|
/* unmap buffer before closing and reallocating streams */
|
|
if (unlikely(munmap(sb->buf_low, sb->size_low))) {
|
|
close_stream_out(control, st->ss);
|
|
fatal_return(("Failed to munmap in rzip_chunk\n"), false);
|
|
}
|
|
if (!STDIN) {
|
|
if (unlikely(munmap(sb->buf_high, sb->size_high))) {
|
|
close_stream_out(control, st->ss);
|
|
fatal_return(("Failed to munmap in rzip_chunk\n"), false);
|
|
}
|
|
}
|
|
|
|
if (unlikely(close_stream_out(control, st->ss)))
|
|
fatal_return(("Failed to flush/close streams in rzip_chunk\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* compress a whole file chunks at a time */
|
|
bool rzip_fd(rzip_control *control, int fd_in, int fd_out)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
/* add timers for ETA estimates
|
|
* Base it off the file size and number of iterations required
|
|
* depending on compression window size
|
|
* Track elapsed time and estimated time to go
|
|
* If file size < compression window, can't do
|
|
*/
|
|
struct timeval current, start, last;
|
|
i64 len = 0, last_chunk = 0;
|
|
int pass = 0, passes, j;
|
|
struct rzip_state *st;
|
|
struct statvfs fbuf;
|
|
struct stat s, s2;
|
|
double chunkmbs;
|
|
i64 free_space;
|
|
|
|
if (!NO_MD5)
|
|
md5_init_ctx(&control->ctx);
|
|
init_mutex(control, &control->cksumlock);
|
|
|
|
st = calloc(sizeof(*st), 1);
|
|
if (unlikely(!st))
|
|
fatal_return(("Failed to allocate control state in rzip_fd\n"), false);
|
|
|
|
if (LZO_COMPRESS) {
|
|
if (unlikely(lzo_init() != LZO_E_OK)) {
|
|
free(st);
|
|
fatal_return(("lzo_init() failed\n"), false);
|
|
}
|
|
}
|
|
|
|
if (unlikely(fstat(fd_in, &s))) {
|
|
free(st);
|
|
fatal_return(("Failed to stat fd_in in rzip_fd\n"), false);
|
|
}
|
|
|
|
if (!STDIN) {
|
|
len = control->st_size = s.st_size;
|
|
print_verbose("File size: %lld\n", len);
|
|
} else
|
|
control->st_size = 0;
|
|
|
|
if (!STDOUT) {
|
|
/* Check if there's enough free space on the device chosen to fit the
|
|
* compressed file, based on the compressed file being as large as the
|
|
* uncompressed file. */
|
|
if (unlikely(fstatvfs(fd_out, &fbuf))) {
|
|
free(st);
|
|
fatal_return(("Failed to fstatvfs in compress_file\n"), false);
|
|
}
|
|
free_space = (i64)fbuf.f_bsize * (i64)fbuf.f_bavail;
|
|
if (free_space < control->st_size) {
|
|
if (FORCE_REPLACE)
|
|
print_err("Warning, possibly inadequate free space detected, but attempting to compress due to -f option being used.\n");
|
|
else {
|
|
free(st);
|
|
failure_return(("Possibly inadequate free space to compress file, use -f to override.\n"), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Optimal use of ram involves using no more than 2/3 of it, so we
|
|
* allocate 1/3 of it to the main buffer and use a sliding mmap
|
|
* buffer to work on 2/3 ram size, leaving enough ram for the
|
|
* compression backends */
|
|
control->max_mmap = control->maxram;
|
|
round_to_page(&control->max_mmap);
|
|
|
|
/* Set maximum chunk size to 2/3 of ram if not unlimited or specified
|
|
* by a control window. When it's smaller than the file size, round it
|
|
* to page size for efficiency. */
|
|
if (UNLIMITED)
|
|
control->max_chunk = control->st_size;
|
|
else if (control->window)
|
|
control->max_chunk = control->window * CHUNK_MULTIPLE;
|
|
else
|
|
control->max_chunk = control->ramsize / 3 * 2;
|
|
control->max_mmap = MIN(control->max_mmap, control->max_chunk);
|
|
if (control->max_chunk < control->st_size)
|
|
round_to_page(&control->max_chunk);
|
|
|
|
if (!STDIN)
|
|
st->chunk_size = MIN(control->max_chunk, len);
|
|
else
|
|
st->chunk_size = control->max_mmap;
|
|
if (st->chunk_size < len)
|
|
round_to_page(&st->chunk_size);
|
|
|
|
st->level = &levels[control->compression_level];
|
|
st->fd_in = fd_in;
|
|
st->fd_out = fd_out;
|
|
st->stdin_eof = 0;
|
|
|
|
init_hash_indexes(st);
|
|
|
|
passes = 0;
|
|
|
|
/* set timers and chunk counter */
|
|
last.tv_sec = last.tv_usec = 0;
|
|
gettimeofday(&start, NULL);
|
|
|
|
prepare_streamout_threads(control);
|
|
control->get_sb = single_get_sb;
|
|
control->do_mcpy = single_mcpy;
|
|
|
|
while (!pass || len > 0 || (STDIN && !st->stdin_eof)) {
|
|
double pct_base, pct_multiple;
|
|
i64 offset = s.st_size - len;
|
|
int bits = 8;
|
|
|
|
st->chunk_size = control->max_chunk;
|
|
st->mmap_size = control->max_mmap;
|
|
if (!STDIN) {
|
|
st->chunk_size = MIN(st->chunk_size, len);
|
|
if (likely(st->chunk_size))
|
|
st->mmap_size = MIN(st->mmap_size, len);
|
|
else
|
|
st->mmap_size = control->page_size;
|
|
}
|
|
|
|
retry:
|
|
if (STDIN) {
|
|
/* NOTE the buf is saved here for STDIN mode */
|
|
sb->buf_low = mmap(NULL, st->mmap_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
|
/* Better to shrink the window to the largest size that works than fail */
|
|
if (sb->buf_low == MAP_FAILED) {
|
|
if (unlikely(errno != ENOMEM)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Failed to mmap %s\n", control->infile), false);
|
|
}
|
|
st->mmap_size = st->mmap_size / 10 * 9;
|
|
round_to_page(&st->mmap_size);
|
|
if (unlikely(!st->mmap_size)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Unable to mmap any ram\n"), false);
|
|
}
|
|
goto retry;
|
|
}
|
|
st->chunk_size = st->mmap_size;
|
|
if (unlikely(!mmap_stdin(control, sb->buf_low, st))) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
return false;
|
|
}
|
|
} else {
|
|
/* NOTE The buf is saved here for !STDIN mode */
|
|
sb->buf_low = (uchar *)mmap(sb->buf_low, st->mmap_size, PROT_READ, MAP_SHARED, fd_in, offset);
|
|
if (sb->buf_low == MAP_FAILED) {
|
|
if (unlikely(errno != ENOMEM)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Failed to mmap %s\n", control->infile), false);
|
|
}
|
|
st->mmap_size = st->mmap_size / 10 * 9;
|
|
round_to_page(&st->mmap_size);
|
|
if (unlikely(!st->mmap_size)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Unable to mmap any ram\n"), false);
|
|
}
|
|
goto retry;
|
|
}
|
|
if (st->mmap_size < st->chunk_size) {
|
|
print_maxverbose("Enabling sliding mmap mode and using mmap of %lld bytes with window of %lld bytes\n", st->mmap_size, st->chunk_size);
|
|
control->get_sb = &sliding_get_sb;
|
|
control->do_mcpy = &sliding_mcpy;
|
|
}
|
|
}
|
|
print_maxverbose("Succeeded in testing %lld sized mmap for rzip pre-processing\n", st->mmap_size);
|
|
|
|
if (st->chunk_size > control->ramsize)
|
|
print_verbose("Compression window is larger than ram, will proceed with unlimited mode possibly much slower\n");
|
|
|
|
if (!passes && !STDIN && st->chunk_size) {
|
|
passes = s.st_size / st->chunk_size + !!(s.st_size % st->chunk_size);
|
|
if (passes == 1)
|
|
print_verbose("Will take 1 pass\n");
|
|
else
|
|
print_verbose("Will take %d passes\n", passes);
|
|
}
|
|
|
|
sb->orig_offset = offset;
|
|
print_maxverbose("Chunk size: %lld\n", st->chunk_size);
|
|
|
|
/* Determine the chunk byte width to write to the file
|
|
* This allows archives of different chunk sizes to have
|
|
* optimal byte width entries. When working with stdin we
|
|
* won't know in advance how big it is so it will always be
|
|
* rounded up to the window size. */
|
|
while (st->chunk_size >> bits > 0)
|
|
bits++;
|
|
st->chunk_bytes = bits / 8;
|
|
if (bits % 8)
|
|
st->chunk_bytes++;
|
|
print_maxverbose("Byte width: %d\n", st->chunk_bytes);
|
|
|
|
if (STDIN)
|
|
pct_base = (100.0 * -len) / control->st_size;
|
|
else
|
|
pct_base = (100.0 * (control->st_size - len)) / control->st_size;
|
|
pct_multiple = ((double)st->chunk_size) / control->st_size;
|
|
pass++;
|
|
if (st->stdin_eof)
|
|
passes = pass;
|
|
|
|
gettimeofday(¤t, NULL);
|
|
/* this will count only when size > window */
|
|
if (last.tv_sec > 0) {
|
|
unsigned int eta_hours, eta_minutes, eta_seconds, elapsed_time, finish_time,
|
|
elapsed_hours, elapsed_minutes, elapsed_seconds, diff_seconds;
|
|
|
|
elapsed_time = current.tv_sec - start.tv_sec;
|
|
finish_time = elapsed_time / ((pct_base / 100.0) ? : 1);
|
|
elapsed_hours = elapsed_time / 3600;
|
|
elapsed_minutes = (elapsed_time / 60) % 60;
|
|
elapsed_seconds = elapsed_time % 60;
|
|
diff_seconds = finish_time - elapsed_time;
|
|
eta_hours = diff_seconds / 3600;
|
|
eta_minutes = (diff_seconds / 60) % 60;
|
|
eta_seconds = diff_seconds % 60;
|
|
|
|
chunkmbs = (last_chunk / 1024 / 1024) / (double)(current.tv_sec-last.tv_sec);
|
|
if (!STDIN || st->stdin_eof)
|
|
print_verbose("\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. ETA: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
|
|
pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds,
|
|
eta_hours, eta_minutes, eta_seconds, chunkmbs);
|
|
else
|
|
print_verbose("\nPass %d -- Elapsed Time: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
|
|
pass, elapsed_hours, elapsed_minutes, elapsed_seconds, chunkmbs);
|
|
}
|
|
last.tv_sec = current.tv_sec;
|
|
last.tv_usec = current.tv_usec;
|
|
|
|
if (st->chunk_size == len)
|
|
control->eof = 1;
|
|
if (unlikely(!rzip_chunk(control, st, fd_in, fd_out, offset, pct_base, pct_multiple))) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
/* st->chunk_size may be shrunk in rzip_chunk */
|
|
last_chunk = st->chunk_size;
|
|
len -= st->chunk_size;
|
|
if (unlikely(len > 0 && control->eof)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
failure_return(("Wrote EOF to file yet chunk_size was shrunk, corrupting archive.\n"), false);
|
|
}
|
|
}
|
|
|
|
if (likely(st->hash_table))
|
|
free(st->hash_table);
|
|
if (unlikely(!close_streamout_threads(control))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
if (!NO_MD5) {
|
|
/* Temporary workaround till someone fixes apple md5 */
|
|
md5_finish_ctx(&control->ctx, control->md5_resblock);
|
|
if (HASH_CHECK || MAX_VERBOSE) {
|
|
print_output("MD5: ");
|
|
for (j = 0; j < MD5_DIGEST_SIZE; j++)
|
|
print_output("%02x", control->md5_resblock[j] & 0xFF);
|
|
print_output("\n");
|
|
}
|
|
/* When encrypting data, we encrypt the MD5 value as well */
|
|
if (ENCRYPT)
|
|
if (unlikely(!lrz_encrypt(control, control->md5_resblock, MD5_DIGEST_SIZE, control->salt_pass))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
if (unlikely(write_1g(control, control->md5_resblock, MD5_DIGEST_SIZE) != MD5_DIGEST_SIZE)) {
|
|
free(st);
|
|
fatal_return(("Failed to write md5 in rzip_fd\n"), false);
|
|
}
|
|
}
|
|
|
|
if (TMP_OUTBUF)
|
|
if (unlikely(!flush_tmpoutbuf(control))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
gettimeofday(¤t, NULL);
|
|
if (STDIN)
|
|
s.st_size = control->st_size;
|
|
chunkmbs = (s.st_size / 1024 / 1024) / ((double)(current.tv_sec-start.tv_sec)? : 1);
|
|
|
|
fstat(fd_out, &s2);
|
|
|
|
print_maxverbose("matches=%u match_bytes=%u\n",
|
|
(unsigned int)st->stats.matches, (unsigned int)st->stats.match_bytes);
|
|
print_maxverbose("literals=%u literal_bytes=%u\n",
|
|
(unsigned int)st->stats.literals, (unsigned int)st->stats.literal_bytes);
|
|
print_maxverbose("true_tag_positives=%u false_tag_positives=%u\n",
|
|
(unsigned int)st->stats.tag_hits, (unsigned int)st->stats.tag_misses);
|
|
print_maxverbose("inserts=%u match %.3f\n",
|
|
(unsigned int)st->stats.inserts,
|
|
(1.0 + st->stats.match_bytes) / st->stats.literal_bytes);
|
|
|
|
if (!STDIN)
|
|
print_progress("%s - ", control->infile);
|
|
print_progress("Compression Ratio: %.3f. Average Compression Speed: %6.3fMB/s.\n",
|
|
1.0 * s.st_size / s2.st_size, chunkmbs);
|
|
|
|
free(st);
|
|
return true;
|
|
}
|
|
|
|
void rzip_control_free(rzip_control *control)
|
|
{
|
|
size_t x;
|
|
if (!control)
|
|
return;
|
|
|
|
free(control->tmpdir);
|
|
free(control->outname);
|
|
free(control->outdir);
|
|
if (control->suffix && control->suffix[0]) free(control->suffix);
|
|
|
|
for (x = 0; x < control->sinfo_idx; x++) {
|
|
free(control->sinfo_queue[x]->s);
|
|
free(control->sinfo_queue[x]);
|
|
}
|
|
free(control->sinfo_queue);
|
|
free(control);
|
|
}
|