mirror of
https://github.com/ckolivas/lrzip.git
synced 2025-12-06 07:12:00 +01:00
lrzip was trying to malloc() enough memory to fit the entire length of file it was going to hash, instead of just the size of one chunk. This caused problems when combined with extremely large files.
1258 lines
36 KiB
C
1258 lines
36 KiB
C
/*
|
|
Copyright (C) 2006-2013 Con Kolivas
|
|
Copyright (C) 1998 Andrew Tridgell
|
|
|
|
Modified to use flat hash, memory limit and variable hash culling
|
|
by Rusty Russell copyright (C) 2003.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/* rzip compression algorithm */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include "config.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_MMAN_H
|
|
# include <sys/mman.h>
|
|
#endif
|
|
#include <sys/statvfs.h>
|
|
#ifdef HAVE_SYS_STAT_H
|
|
# include <sys/stat.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_TIME_H
|
|
# include <sys/time.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
# include <unistd.h>
|
|
#endif
|
|
#include <lzo/lzoconf.h>
|
|
#include <lzo/lzo1x.h>
|
|
#ifdef HAVE_ERRNO_H
|
|
# include <errno.h>
|
|
#endif
|
|
#ifdef HAVE_ENDIAN_H
|
|
# include <endian.h>
|
|
#elif HAVE_SYS_ENDIAN_H
|
|
# include <sys/endian.h>
|
|
#endif
|
|
#ifdef HAVE_ARPA_INET_H
|
|
# include <arpa/inet.h>
|
|
#endif
|
|
|
|
#include "md5.h"
|
|
#include "stream.h"
|
|
#include "util.h"
|
|
#include "lrzip_core.h"
|
|
/* needed for CRC routines */
|
|
#include "lzma/C/7zCrc.h"
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#define CHUNK_MULTIPLE (100 * 1024 * 1024)
|
|
#define CKSUM_CHUNK 1024*1024
|
|
#define GREAT_MATCH 1024
|
|
#define MINIMUM_MATCH 31
|
|
|
|
/* Hash table works as follows. We start by throwing tags at every
|
|
* offset into the table. As it fills, we start eliminating tags
|
|
* which don't have lower bits set to one (ie. first we eliminate all
|
|
* even tags, then all tags divisible by four, etc.). This ensures
|
|
* that on average, all parts of the file are covered by the hash, if
|
|
* sparsely. */
|
|
typedef i64 tag;
|
|
|
|
/* All zero means empty. We might miss the first chunk this way. */
|
|
struct hash_entry {
|
|
i64 offset;
|
|
tag t;
|
|
};
|
|
|
|
/* Levels control hashtable size and bzip2 level. */
|
|
static struct level {
|
|
unsigned long mb_used;
|
|
unsigned initial_freq;
|
|
unsigned max_chain_len;
|
|
} levels[10] = {
|
|
{ 1, 4, 1 },
|
|
{ 2, 4, 2 },
|
|
{ 4, 4, 2 },
|
|
{ 8, 4, 2 },
|
|
{ 16, 4, 3 },
|
|
{ 32, 4, 4 },
|
|
{ 32, 2, 6 },
|
|
{ 64, 1, 16 }, /* More MB makes sense, but need bigger test files */
|
|
{ 64, 1, 32 },
|
|
{ 64, 1, 128 },
|
|
};
|
|
|
|
struct rzip_state {
|
|
void *ss;
|
|
struct level *level;
|
|
tag hash_index[256];
|
|
struct hash_entry *hash_table;
|
|
char hash_bits;
|
|
i64 hash_count;
|
|
i64 hash_limit;
|
|
tag minimum_tag_mask;
|
|
i64 tag_clean_ptr;
|
|
i64 last_match;
|
|
i64 chunk_size;
|
|
i64 mmap_size;
|
|
char chunk_bytes;
|
|
uint32_t cksum;
|
|
int fd_in, fd_out;
|
|
char stdin_eof;
|
|
struct {
|
|
i64 inserts;
|
|
i64 literals;
|
|
i64 literal_bytes;
|
|
i64 matches;
|
|
i64 match_bytes;
|
|
i64 tag_hits;
|
|
i64 tag_misses;
|
|
} stats;
|
|
};
|
|
|
|
static bool remap_low_sb(rzip_control *control, struct sliding_buffer *sb)
|
|
{
|
|
i64 new_offset;
|
|
|
|
new_offset = sb->offset_search;
|
|
round_to_page(&new_offset);
|
|
print_maxverbose("Sliding main buffer to offset %lld\n", new_offset);
|
|
if (unlikely(munmap(sb->buf_low, sb->size_low)))
|
|
fatal_return(("Failed to munmap in remap_low_sb\n"), false);
|
|
if (new_offset + sb->size_low > sb->orig_size)
|
|
sb->size_low = sb->orig_size - new_offset;
|
|
sb->offset_low = new_offset;
|
|
sb->buf_low = (uchar *)mmap(sb->buf_low, sb->size_low, PROT_READ, MAP_SHARED, sb->fd, sb->orig_offset + sb->offset_low);
|
|
if (unlikely(sb->buf_low == MAP_FAILED))
|
|
fatal_return(("Failed to re mmap in remap_low_sb\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static inline bool remap_high_sb(rzip_control *control, struct sliding_buffer *sb, i64 p)
|
|
{
|
|
if (unlikely(munmap(sb->buf_high, sb->size_high)))
|
|
fatal_return(("Failed to munmap in remap_high_sb\n"), false);
|
|
sb->size_high = sb->high_length; /* In case we shrunk it when we hit the end of the file */
|
|
sb->offset_high = p;
|
|
/* Make sure offset is rounded to page size of total offset */
|
|
sb->offset_high -= (sb->offset_high + sb->orig_offset) % control->page_size;
|
|
if (unlikely(sb->offset_high + sb->size_high > sb->orig_size))
|
|
sb->size_high = sb->orig_size - sb->offset_high;
|
|
sb->buf_high = (uchar *)mmap(sb->buf_high, sb->size_high, PROT_READ, MAP_SHARED, sb->fd, sb->orig_offset + sb->offset_high);
|
|
if (unlikely(sb->buf_high == MAP_FAILED))
|
|
fatal_return(("Failed to re mmap in remap_high_sb\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* We use a "sliding mmap" to effectively read more than we can fit into the
|
|
* compression window. This is done by using a maximally sized lower mmap at
|
|
* the beginning of the block which slides up once the hash search moves beyond
|
|
* it, and a 64k mmap block that slides up and down as is required for any
|
|
* offsets outside the range of the lower one. This is much slower than mmap
|
|
* but makes it possible to have unlimited sized compression windows.
|
|
* We use a pointer to the function we actually want to use and only enable
|
|
* the sliding mmap version if we need sliding mmap functionality as this is
|
|
* a hot function during the rzip phase */
|
|
static uchar *sliding_get_sb(rzip_control *control, i64 p)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
i64 sbo;
|
|
|
|
sbo = sb->offset_low;
|
|
if (p >= sbo && p < sbo + sb->size_low)
|
|
return (sb->buf_low + p - sbo);
|
|
sbo = sb->offset_high;
|
|
if (p >= sbo && p < (sbo + sb->size_high))
|
|
return (sb->buf_high + (p - sbo));
|
|
/* p is not within the low or high buffer range */
|
|
if (unlikely(!remap_high_sb(control, &control->sb, p)))
|
|
return NULL;
|
|
/* Use sb->offset_high directly since it will have changed */
|
|
return (sb->buf_high + (p - sb->offset_high));
|
|
}
|
|
|
|
static uchar *single_get_sb(__maybe_unused rzip_control *control, i64 p)
|
|
{
|
|
return (control->sb.buf_low + p);
|
|
}
|
|
|
|
/* The length of continous range of the sliding buffer,
|
|
* starting from the offset P.
|
|
*/
|
|
static inline i64 sliding_get_sb_range(rzip_control *control, i64 p)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
i64 sbo, sbs;
|
|
|
|
sbo = sb->offset_low;
|
|
sbs = sb->size_low;
|
|
if (p >= sbo && p < sbo + sbs)
|
|
return (sbs - (p - sbo));
|
|
sbo = sb->offset_high;
|
|
sbs = sb->size_high;
|
|
if (likely(p >= sbo && p < (sbo + sbs)))
|
|
return (sbs - (p - sbo));
|
|
|
|
fatal_return(("sliding_get_sb_range: the pointer is out of range\n"), 0);
|
|
}
|
|
|
|
/* Since the sliding get_sb only allows us to access one byte at a time, we
|
|
* do the same as we did with get_sb with the memcpy since one memcpy is much
|
|
* faster than numerous memcpys 1 byte at a time */
|
|
static void single_mcpy(rzip_control *control, unsigned char *buf, i64 offset, i64 len)
|
|
{
|
|
memcpy(buf, control->sb.buf_low + offset, len);
|
|
}
|
|
|
|
static void sliding_mcpy(rzip_control *control, unsigned char *buf, i64 offset, i64 len)
|
|
{
|
|
i64 n = 0;
|
|
|
|
while (n < len) {
|
|
uchar *srcbuf = sliding_get_sb(control, offset + n);
|
|
i64 m = MIN(sliding_get_sb_range(control, offset + n), len - n);
|
|
|
|
memcpy(buf + n, srcbuf, m);
|
|
n += m;
|
|
}
|
|
}
|
|
|
|
/* All put_u8/u32/vchars go to stream 0 */
|
|
static inline bool put_u8(rzip_control *control, void *ss, uchar b)
|
|
{
|
|
if (unlikely(write_stream(control, ss, 0, &b, 1)))
|
|
fatal_return(("Failed to put_u8\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static inline bool put_u32(rzip_control *control, void *ss, uint32_t s)
|
|
{
|
|
s = htole32(s);
|
|
if (unlikely(write_stream(control, ss, 0, (uchar *)&s, 4)))
|
|
fatal_return(("Failed to put_u32\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* Put a variable length of bytes dependant on how big the chunk is */
|
|
static bool put_vchars(rzip_control *control, void *ss, i64 s, i64 length)
|
|
{
|
|
s = htole64(s);
|
|
if (unlikely(write_stream(control, ss, 0, (uchar *)&s, length)))
|
|
fatal_return(("Failed to put_vchars\n"), false);
|
|
return true;
|
|
}
|
|
|
|
static bool put_header(rzip_control *control, void *ss, uchar head, i64 len)
|
|
{
|
|
if (unlikely(!put_u8(control, ss, head)))
|
|
return false;
|
|
if (unlikely(!put_vchars(control, ss, len, 2)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool put_match(rzip_control *control, struct rzip_state *st,
|
|
i64 p, i64 offset, i64 len)
|
|
{
|
|
do {
|
|
i64 ofs;
|
|
i64 n = len;
|
|
if (n > 0xFFFF)
|
|
n = 0xFFFF;
|
|
|
|
ofs = (p - offset);
|
|
if (unlikely(!put_header(control, st->ss, 1, n)))
|
|
return false;
|
|
if (unlikely(!put_vchars(control, st->ss, ofs, st->chunk_bytes)))
|
|
return false;
|
|
|
|
st->stats.matches++;
|
|
st->stats.match_bytes += n;
|
|
len -= n;
|
|
p += n;
|
|
offset += n;
|
|
} while (len);
|
|
return true;
|
|
}
|
|
|
|
/* write some data to a stream mmap encoded. Return -1 on failure */
|
|
static inline int write_sbstream(rzip_control *control, void *ss, int stream,
|
|
i64 p, i64 len)
|
|
{
|
|
struct stream_info *sinfo = ss;
|
|
|
|
while (len) {
|
|
i64 n = MIN(sinfo->bufsize - sinfo->s[stream].buflen, len);
|
|
|
|
control->do_mcpy(control, sinfo->s[stream].buf + sinfo->s[stream].buflen, p, n);
|
|
|
|
sinfo->s[stream].buflen += n;
|
|
p += n;
|
|
len -= n;
|
|
|
|
if (sinfo->s[stream].buflen == sinfo->bufsize)
|
|
if (unlikely(!flush_buffer(control, sinfo, stream)))
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool put_literal(rzip_control *control, struct rzip_state *st, i64 last, i64 p)
|
|
{
|
|
do {
|
|
i64 len = p - last;
|
|
if (len > 0xFFFF)
|
|
len = 0xFFFF;
|
|
|
|
st->stats.literals++;
|
|
st->stats.literal_bytes += len;
|
|
|
|
if (unlikely(!put_header(control, st->ss, 0, len)))
|
|
return false;
|
|
|
|
if (unlikely(len && write_sbstream(control, st->ss, 1, last, len)))
|
|
fatal_return(("Failed to write_stream in put_literal\n"), false);
|
|
last += len;
|
|
} while (p > last);
|
|
return true;
|
|
}
|
|
|
|
/* Could give false positive on offset 0. Who cares. */
|
|
static inline bool empty_hash(struct hash_entry *he)
|
|
{
|
|
return !(he->offset | he->t);
|
|
}
|
|
|
|
static i64 primary_hash(struct rzip_state *st, tag t)
|
|
{
|
|
return t & ((1 << st->hash_bits) - 1);
|
|
}
|
|
|
|
static inline tag increase_mask(tag tag_mask)
|
|
{
|
|
/* Get more precise. */
|
|
return (tag_mask << 1) | 1;
|
|
}
|
|
|
|
static inline bool minimum_bitness(struct rzip_state *st, tag t)
|
|
{
|
|
tag better_than_min = increase_mask(st->minimum_tag_mask);
|
|
|
|
if ((t & better_than_min) != better_than_min)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Is a going to be cleaned before b? ie. does a have fewer low bits
|
|
* set than b? */
|
|
static inline bool lesser_bitness(tag a, tag b)
|
|
{
|
|
a ^= 0xffffffffffffffff;
|
|
b ^= 0xffffffffffffffff;
|
|
return (ffsll(a) < ffsll(b));
|
|
}
|
|
|
|
/* If hash bucket is taken, we spill into next bucket(s). Secondary hashing
|
|
works better in theory, but modern caches make this 20% faster. */
|
|
static void insert_hash(struct rzip_state *st, tag t, i64 offset)
|
|
{
|
|
i64 h, victim_h = 0, round = 0;
|
|
/* If we need to kill one, this will be it. */
|
|
static i64 victim_round = 0;
|
|
struct hash_entry *he;
|
|
|
|
h = primary_hash(st, t);
|
|
he = &st->hash_table[h];
|
|
while (!empty_hash(he)) {
|
|
/* If this due for cleaning anyway, just replace it:
|
|
rehashing might move it behind tag_clean_ptr. */
|
|
if (minimum_bitness(st, he->t)) {
|
|
st->hash_count--;
|
|
break;
|
|
}
|
|
/* If we are better than current occupant, we can't
|
|
jump over it: it will be cleaned before us, and
|
|
noone would then find us in the hash table. Rehash
|
|
it, then take its place. */
|
|
if (lesser_bitness(he->t, t)) {
|
|
insert_hash(st, he->t,
|
|
he->offset);
|
|
break;
|
|
}
|
|
|
|
/* If we have lots of identical patterns, we end up
|
|
with lots of the same hash number. Discard random. */
|
|
if (he->t == t) {
|
|
if (round == victim_round)
|
|
victim_h = h;
|
|
if (++round == st->level->max_chain_len) {
|
|
h = victim_h;
|
|
he = &st->hash_table[h];
|
|
st->hash_count--;
|
|
victim_round++;
|
|
if (victim_round == st->level->max_chain_len)
|
|
victim_round = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
he = &st->hash_table[h];
|
|
}
|
|
|
|
he->t = t;
|
|
he->offset = offset;
|
|
}
|
|
|
|
/* Eliminate one hash entry with minimum number of lower bits set.
|
|
Returns tag requirement for any new entries. */
|
|
static inline tag clean_one_from_hash(rzip_control *control, struct rzip_state *st)
|
|
{
|
|
struct hash_entry *he;
|
|
tag better_than_min;
|
|
|
|
again:
|
|
better_than_min = increase_mask(st->minimum_tag_mask);
|
|
if (!st->tag_clean_ptr)
|
|
print_maxverbose("Starting sweep for mask %u\n", (unsigned int)st->minimum_tag_mask);
|
|
|
|
for (; st->tag_clean_ptr < (1U << st->hash_bits); st->tag_clean_ptr++) {
|
|
he = &st->hash_table[st->tag_clean_ptr];
|
|
if (empty_hash(he))
|
|
continue;
|
|
if ((he->t & better_than_min) != better_than_min) {
|
|
he->offset = 0;
|
|
he->t = 0;
|
|
st->hash_count--;
|
|
return better_than_min;
|
|
}
|
|
}
|
|
|
|
/* We hit the end: everthing in hash satisfies the better mask. */
|
|
st->minimum_tag_mask = better_than_min;
|
|
st->tag_clean_ptr = 0;
|
|
goto again;
|
|
}
|
|
|
|
static inline void next_tag(rzip_control *control, struct rzip_state *st, i64 p, tag *t)
|
|
{
|
|
uchar *u;
|
|
|
|
u = control->get_sb(control, p - 1);
|
|
*t ^= st->hash_index[*u];
|
|
u = control->get_sb(control, p + MINIMUM_MATCH - 1);
|
|
*t ^= st->hash_index[*u];
|
|
}
|
|
|
|
static inline tag full_tag(rzip_control *control, struct rzip_state *st, i64 p)
|
|
{
|
|
tag ret = 0;
|
|
int i;
|
|
uchar *u;
|
|
|
|
for (i = 0; i < MINIMUM_MATCH; i++) {
|
|
u = control->get_sb(control, p + i);
|
|
if (unlikely(!u))
|
|
return -1;
|
|
ret ^= st->hash_index[*u];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline i64
|
|
match_len(rzip_control *control, struct rzip_state *st, i64 p0, i64 op,
|
|
i64 end, i64 *rev)
|
|
{
|
|
uchar *(*csb)(rzip_control *, i64);
|
|
i64 p, len;
|
|
|
|
if (op >= p0)
|
|
return 0;
|
|
|
|
p = p0;
|
|
csb = control->get_sb;
|
|
while (p < end && (*csb(control, p) == *csb(control, op))) {
|
|
p++;
|
|
op++;
|
|
}
|
|
len = p - p0;
|
|
p = p0;
|
|
op -= len;
|
|
|
|
end = MAX(0, st->last_match);
|
|
|
|
while (p > end && op > 0 && *csb(control, op - 1) == *csb(control, p - 1)) {
|
|
op--;
|
|
p--;
|
|
}
|
|
|
|
len += *rev = p0 - p;
|
|
if (len < MINIMUM_MATCH)
|
|
return 0;
|
|
|
|
return len;
|
|
}
|
|
|
|
static inline i64
|
|
find_best_match(rzip_control *control, struct rzip_state *st, tag t, i64 p,
|
|
i64 end, i64 *offset, i64 *reverse)
|
|
{
|
|
struct hash_entry *he;
|
|
i64 length = 0;
|
|
i64 rev;
|
|
i64 h;
|
|
|
|
rev = 0;
|
|
*reverse = 0;
|
|
|
|
/* Could optimise: if lesser goodness, can stop search. But
|
|
* chains are usually short anyway. */
|
|
h = primary_hash(st, t);
|
|
he = &st->hash_table[h];
|
|
while (!empty_hash(he)) {
|
|
i64 mlen;
|
|
|
|
if (t == he->t) {
|
|
mlen = match_len(control, st, p, he->offset, end,
|
|
&rev);
|
|
|
|
if (mlen)
|
|
st->stats.tag_hits++;
|
|
else
|
|
st->stats.tag_misses++;
|
|
|
|
if (mlen >= length) {
|
|
length = mlen;
|
|
(*offset) = he->offset - rev;
|
|
(*reverse) = rev;
|
|
}
|
|
}
|
|
|
|
h++;
|
|
h &= ((1 << st->hash_bits) - 1);
|
|
he = &st->hash_table[h];
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
static void show_distrib(rzip_control *control, struct rzip_state *st)
|
|
{
|
|
struct hash_entry *he;
|
|
i64 primary = 0;
|
|
i64 total = 0;
|
|
i64 i;
|
|
|
|
for (i = 0; i < (1U << st->hash_bits); i++) {
|
|
he = &st->hash_table[i];
|
|
if (empty_hash(he))
|
|
continue;
|
|
total++;
|
|
if (primary_hash(st, he->t) == i)
|
|
primary++;
|
|
}
|
|
|
|
if (total != st->hash_count)
|
|
print_err("WARNING: hash_count says total %lld\n", st->hash_count);
|
|
|
|
print_output("%lld total hashes -- %lld in primary bucket (%-2.3f%%)\n", total, primary,
|
|
primary * 100.0 / (total ? : 1));
|
|
}
|
|
|
|
/* Perform all checksumming in a separate thread to speed up the hash search. */
|
|
static void *cksumthread(void *data)
|
|
{
|
|
rzip_control *control = (rzip_control *)data;
|
|
|
|
pthread_detach(pthread_self());
|
|
|
|
*control->checksum.cksum = CrcUpdate(*control->checksum.cksum, control->checksum.buf, control->checksum.len);
|
|
if (!NO_MD5)
|
|
md5_process_bytes(control->checksum.buf, control->checksum.len, &control->ctx);
|
|
free(control->checksum.buf);
|
|
unlock_mutex(control, &control->cksumlock);
|
|
return NULL;
|
|
}
|
|
|
|
static inline void cksum_update(rzip_control *control)
|
|
{
|
|
pthread_t thread;
|
|
|
|
create_pthread(control, &thread, NULL, cksumthread, control);
|
|
}
|
|
|
|
static inline bool hash_search(rzip_control *control, struct rzip_state *st,
|
|
double pct_base, double pct_multiple)
|
|
{
|
|
i64 cksum_limit = 0, p, end, cksum_chunks, cksum_remains, i;
|
|
struct sliding_buffer *sb = &control->sb;
|
|
int lastpct = 0, last_chunkpct = 0;
|
|
tag t = 0;
|
|
struct {
|
|
i64 p;
|
|
i64 ofs;
|
|
i64 len;
|
|
} current;
|
|
|
|
tag tag_mask = (1 << st->level->initial_freq) - 1;
|
|
|
|
if (st->hash_table)
|
|
memset(st->hash_table, 0, sizeof(st->hash_table[0]) * (1<<st->hash_bits));
|
|
else {
|
|
i64 hashsize = st->level->mb_used *
|
|
(1024 * 1024 / sizeof(st->hash_table[0]));
|
|
for (st->hash_bits = 0; (1U << st->hash_bits) < hashsize; st->hash_bits++);
|
|
|
|
print_maxverbose("hashsize = %lld. bits = %lld. %luMB\n",
|
|
hashsize, st->hash_bits, st->level->mb_used);
|
|
|
|
/* 66% full at max. */
|
|
st->hash_limit = (1 << st->hash_bits) / 3 * 2;
|
|
st->hash_table = calloc(sizeof(st->hash_table[0]), (1 << st->hash_bits));
|
|
if (unlikely(!st->hash_table))
|
|
fatal_return(("Failed to allocate hash table in hash_search\n"), false);
|
|
}
|
|
|
|
st->minimum_tag_mask = tag_mask;
|
|
st->tag_clean_ptr = 0;
|
|
st->cksum = 0;
|
|
st->hash_count = 0;
|
|
|
|
p = 0;
|
|
end = st->chunk_size - MINIMUM_MATCH;
|
|
st->last_match = p;
|
|
current.len = 0;
|
|
current.p = p;
|
|
current.ofs = 0;
|
|
|
|
if (likely(end > 0)) {
|
|
t = full_tag(control, st, p);
|
|
if (unlikely(t == -1))
|
|
return false;
|
|
}
|
|
|
|
while (p < end) {
|
|
i64 reverse, mlen, offset;
|
|
|
|
sb->offset_search = ++p;
|
|
if (unlikely(sb->offset_search > sb->offset_low + sb->size_low))
|
|
remap_low_sb(control, &control->sb);
|
|
|
|
if (unlikely(p % 128 == 0)) {
|
|
int pct, chunk_pct;
|
|
|
|
pct = pct_base + (pct_multiple * (100.0 * p) /
|
|
(st->chunk_size ? : 1));
|
|
chunk_pct = p / ((end / 100) ? : 1);
|
|
if (pct != lastpct || chunk_pct != last_chunkpct) {
|
|
if (!STDIN || st->stdin_eof)
|
|
print_progress("Total: %2d%% ", pct);
|
|
print_progress("Chunk: %2d%%\r", chunk_pct);
|
|
if (control->info_cb)
|
|
control->info_cb(control->info_data,
|
|
(!STDIN || st->stdin_eof) ? pct : -1, chunk_pct);
|
|
lastpct = pct;
|
|
last_chunkpct = chunk_pct;
|
|
}
|
|
}
|
|
|
|
next_tag(control, st, p, &t);
|
|
|
|
/* Don't look for a match if there are no tags with
|
|
this number of bits in the hash table. */
|
|
if ((t & st->minimum_tag_mask) != st->minimum_tag_mask)
|
|
continue;
|
|
|
|
offset = 0;
|
|
mlen = find_best_match(control, st, t, p, end, &offset, &reverse);
|
|
|
|
/* Only insert occasionally into hash. */
|
|
if ((t & tag_mask) == tag_mask) {
|
|
st->stats.inserts++;
|
|
st->hash_count++;
|
|
insert_hash(st, t, p);
|
|
if (st->hash_count > st->hash_limit)
|
|
tag_mask = clean_one_from_hash(control, st);
|
|
}
|
|
|
|
if (mlen > current.len) {
|
|
current.p = p - reverse;
|
|
current.len = mlen;
|
|
current.ofs = offset;
|
|
}
|
|
|
|
if ((current.len >= GREAT_MATCH || p >= current.p + MINIMUM_MATCH)
|
|
&& current.len >= MINIMUM_MATCH) {
|
|
if (st->last_match < current.p)
|
|
if (unlikely(!put_literal(control, st, st->last_match, current.p)))
|
|
return false;
|
|
if (unlikely(!put_match(control, st, current.p, current.ofs, current.len)))
|
|
return false;
|
|
st->last_match = current.p + current.len;
|
|
current.p = p = st->last_match;
|
|
current.len = 0;
|
|
t = full_tag(control, st, p);
|
|
if (unlikely(t == -1))
|
|
return false;
|
|
}
|
|
|
|
if (p > cksum_limit) {
|
|
/* We lock the mutex here and unlock it in the
|
|
* cksumthread. This lock protects all the data in
|
|
* control->checksum.
|
|
*/
|
|
lock_mutex(control, &control->cksumlock);
|
|
control->checksum.len = MIN(st->chunk_size - p, control->page_size);
|
|
control->checksum.buf = malloc(control->checksum.len);
|
|
if (unlikely(!control->checksum.buf))
|
|
fatal_return(("Failed to malloc ckbuf in hash_search\n"), false);
|
|
control->do_mcpy(control, control->checksum.buf, cksum_limit, control->checksum.len);
|
|
control->checksum.cksum = &st->cksum;
|
|
cksum_update(control);
|
|
cksum_limit += control->checksum.len;
|
|
}
|
|
}
|
|
|
|
if (MAX_VERBOSE)
|
|
show_distrib(control, st);
|
|
|
|
if (st->last_match < st->chunk_size)
|
|
put_literal(control, st, st->last_match, st->chunk_size);
|
|
|
|
if (st->chunk_size > cksum_limit) {
|
|
/* Compute checksum. If the entire chunk is longer than maxram,
|
|
* do it "per-partes" */
|
|
lock_mutex(control, &control->cksumlock);
|
|
control->checksum.len = st->chunk_size - cksum_limit;
|
|
cksum_chunks = control->checksum.len / control->maxram;
|
|
cksum_remains = control->checksum.len % control->maxram;
|
|
|
|
control->checksum.buf = malloc(control->maxram);
|
|
if (unlikely(!control->checksum.buf))
|
|
fatal_return(("Failed to malloc ckbuf in hash_search2\n"), false);
|
|
|
|
for (i = 0; i < cksum_chunks; i++) {
|
|
control->do_mcpy(control, control->checksum.buf, cksum_limit, control->maxram);
|
|
cksum_limit += control->maxram;
|
|
st->cksum = CrcUpdate(st->cksum, control->checksum.buf, control->maxram);
|
|
if (!NO_MD5)
|
|
md5_process_bytes(control->checksum.buf, control->maxram, &control->ctx);
|
|
}
|
|
/* Process end of the checksum buffer */
|
|
control->do_mcpy(control, control->checksum.buf, cksum_limit, cksum_remains);
|
|
st->cksum = CrcUpdate(st->cksum, control->checksum.buf, cksum_remains);
|
|
if (!NO_MD5)
|
|
md5_process_bytes(control->checksum.buf, cksum_remains, &control->ctx);
|
|
free(control->checksum.buf);
|
|
unlock_mutex(control, &control->cksumlock);
|
|
} else
|
|
wait_mutex(control, &control->cksumlock);
|
|
|
|
if (unlikely(!put_literal(control, st, 0, 0)))
|
|
return false;
|
|
if (unlikely(!put_u32(control, st->ss, st->cksum)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline void init_hash_indexes(struct rzip_state *st)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
st->hash_index[i] = ((random() << 16) ^ random());
|
|
}
|
|
|
|
#if defined(__APPLE__) || defined(__FreeBSD__)
|
|
# define mremap fake_mremap
|
|
#endif
|
|
|
|
static inline void *fake_mremap(void *old_address, size_t old_size, size_t new_size, int flags __UNUSED__)
|
|
{
|
|
if (new_size > old_size) {
|
|
fprintf(stderr, "fake_mremap: This should only be used to shrink things. I'm not bothering with this.\n");
|
|
exit(1);
|
|
} else {
|
|
/* new_size occupies N pages; old_size occupies M > N pages;
|
|
we want to unmap the M - N pages at the end.
|
|
note the idiom: ceiling(n/k) = (n+k-1) div k */
|
|
size_t kept_n = (new_size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
int ret = munmap(old_address + (kept_n * PAGE_SIZE), old_size - (kept_n * PAGE_SIZE));
|
|
|
|
if (ret < 0)
|
|
return MAP_FAILED;
|
|
|
|
return old_address;
|
|
}
|
|
}
|
|
|
|
/* stdin is not file backed so we have to emulate the mmap by mapping
|
|
* anonymous ram and reading stdin into it. It means the maximum ram
|
|
* we can use will be less but we will already have determined this in
|
|
* rzip_chunk */
|
|
static inline bool mmap_stdin(rzip_control *control, uchar *buf,
|
|
struct rzip_state *st)
|
|
{
|
|
i64 len = st->chunk_size;
|
|
uchar *offset_buf = buf;
|
|
ssize_t ret;
|
|
i64 total;
|
|
|
|
total = 0;
|
|
while (len > 0) {
|
|
ret = MIN(len, one_g);
|
|
ret = read(fileno(control->inFILE), offset_buf, (size_t)ret);
|
|
if (unlikely(ret < 0))
|
|
fatal_return(("Failed to read in mmap_stdin\n"), false);
|
|
total += ret;
|
|
if (ret == 0) {
|
|
/* Should be EOF */
|
|
print_maxverbose("Shrinking chunk to %lld\n", total);
|
|
if (likely(total)) {
|
|
buf = (uchar *)mremap(buf, st->chunk_size, total, 0);
|
|
st->mmap_size = st->chunk_size = total;
|
|
} else {
|
|
/* Empty file */
|
|
buf = (uchar *)mremap(buf, st->chunk_size, control->page_size, 0);
|
|
st->mmap_size = control->page_size;
|
|
st->chunk_size = 0;
|
|
}
|
|
if (unlikely(buf == MAP_FAILED))
|
|
fatal_return(("Failed to remap to smaller buf in mmap_stdin\n"), false);
|
|
control->eof = st->stdin_eof = 1;
|
|
break;
|
|
}
|
|
offset_buf += ret;
|
|
len -= ret;
|
|
}
|
|
control->st_size += total;
|
|
return true;
|
|
}
|
|
|
|
static inline bool
|
|
init_sliding_mmap(rzip_control *control, struct rzip_state *st, int fd_in,
|
|
i64 offset)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
/* Initialise the high buffer */
|
|
if (!STDIN) {
|
|
sb->high_length = 65536;
|
|
/* Round up to the next biggest page size */
|
|
if (sb->high_length % control->page_size)
|
|
sb->high_length += control->page_size - (sb->high_length % control->page_size);
|
|
sb->buf_high = (uchar *)mmap(NULL, sb->high_length, PROT_READ, MAP_SHARED, fd_in, offset);
|
|
if (unlikely(sb->buf_high == MAP_FAILED))
|
|
fatal_return(("Unable to mmap buf_high in init_sliding_mmap\n"), false);
|
|
sb->size_high = sb->high_length;
|
|
sb->offset_high = 0;
|
|
}
|
|
sb->offset_low = 0;
|
|
sb->offset_search = 0;
|
|
sb->size_low = st->mmap_size;
|
|
sb->orig_size = st->chunk_size;
|
|
sb->fd = fd_in;
|
|
return true;
|
|
}
|
|
|
|
/* compress a chunk of an open file. Assumes that the file is able to
|
|
be mmap'd and is seekable */
|
|
static inline bool
|
|
rzip_chunk(rzip_control *control, struct rzip_state *st, int fd_in, int fd_out,
|
|
i64 offset, double pct_base, double pct_multiple)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
if (unlikely(!init_sliding_mmap(control, st, fd_in, offset)))
|
|
return false;
|
|
|
|
st->ss = open_stream_out(control, fd_out, NUM_STREAMS, st->chunk_size, st->chunk_bytes);
|
|
if (unlikely(!st->ss))
|
|
fatal_return(("Failed to open streams in rzip_chunk\n"), false);
|
|
|
|
print_verbose("Beginning rzip pre-processing phase\n");
|
|
if (unlikely(!hash_search(control, st, pct_base, pct_multiple))) {
|
|
close_stream_out(control, st->ss);
|
|
return false;
|
|
}
|
|
|
|
/* unmap buffer before closing and reallocating streams */
|
|
if (unlikely(munmap(sb->buf_low, sb->size_low))) {
|
|
close_stream_out(control, st->ss);
|
|
fatal_return(("Failed to munmap in rzip_chunk\n"), false);
|
|
}
|
|
if (!STDIN) {
|
|
if (unlikely(munmap(sb->buf_high, sb->size_high))) {
|
|
close_stream_out(control, st->ss);
|
|
fatal_return(("Failed to munmap in rzip_chunk\n"), false);
|
|
}
|
|
}
|
|
|
|
if (unlikely(close_stream_out(control, st->ss)))
|
|
fatal_return(("Failed to flush/close streams in rzip_chunk\n"), false);
|
|
return true;
|
|
}
|
|
|
|
/* compress a whole file chunks at a time */
|
|
bool rzip_fd(rzip_control *control, int fd_in, int fd_out)
|
|
{
|
|
struct sliding_buffer *sb = &control->sb;
|
|
|
|
/* add timers for ETA estimates
|
|
* Base it off the file size and number of iterations required
|
|
* depending on compression window size
|
|
* Track elapsed time and estimated time to go
|
|
* If file size < compression window, can't do
|
|
*/
|
|
struct timeval current, start, last;
|
|
i64 len = 0, last_chunk = 0;
|
|
int pass = 0, passes, j;
|
|
struct rzip_state *st;
|
|
struct statvfs fbuf;
|
|
struct stat s, s2;
|
|
double chunkmbs;
|
|
i64 free_space;
|
|
|
|
init_mutex(control, &control->control_lock);
|
|
if (!NO_MD5)
|
|
md5_init_ctx(&control->ctx);
|
|
init_mutex(control, &control->cksumlock);
|
|
|
|
st = calloc(sizeof(*st), 1);
|
|
if (unlikely(!st))
|
|
fatal_return(("Failed to allocate control state in rzip_fd\n"), false);
|
|
|
|
if (LZO_COMPRESS) {
|
|
if (unlikely(lzo_init() != LZO_E_OK)) {
|
|
free(st);
|
|
fatal_return(("lzo_init() failed\n"), false);
|
|
}
|
|
}
|
|
|
|
if (unlikely(fstat(fd_in, &s))) {
|
|
free(st);
|
|
fatal_return(("Failed to stat fd_in in rzip_fd\n"), false);
|
|
}
|
|
|
|
if (!STDIN) {
|
|
len = control->st_size = s.st_size;
|
|
print_verbose("File size: %lld\n", len);
|
|
} else
|
|
control->st_size = 0;
|
|
|
|
if (!STDOUT) {
|
|
/* Check if there's enough free space on the device chosen to fit the
|
|
* compressed file, based on the compressed file being as large as the
|
|
* uncompressed file. */
|
|
if (unlikely(fstatvfs(fd_out, &fbuf))) {
|
|
free(st);
|
|
fatal_return(("Failed to fstatvfs in compress_file\n"), false);
|
|
}
|
|
free_space = (i64)fbuf.f_bsize * (i64)fbuf.f_bavail;
|
|
if (free_space < control->st_size) {
|
|
if (FORCE_REPLACE)
|
|
print_err("Warning, possibly inadequate free space detected, but attempting to compress due to -f option being used.\n");
|
|
else {
|
|
free(st);
|
|
failure_return(("Possibly inadequate free space to compress file, use -f to override.\n"), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Optimal use of ram involves using no more than 2/3 of it, so we
|
|
* allocate 1/3 of it to the main buffer and use a sliding mmap
|
|
* buffer to work on 2/3 ram size, leaving enough ram for the
|
|
* compression backends */
|
|
control->max_mmap = control->maxram;
|
|
round_to_page(&control->max_mmap);
|
|
|
|
/* Set maximum chunk size to 2/3 of ram if not unlimited or specified
|
|
* by a control window. When it's smaller than the file size, round it
|
|
* to page size for efficiency. */
|
|
if (UNLIMITED)
|
|
control->max_chunk = control->st_size;
|
|
else if (control->window)
|
|
control->max_chunk = control->window * CHUNK_MULTIPLE;
|
|
else
|
|
control->max_chunk = control->ramsize / 3 * 2;
|
|
control->max_mmap = MIN(control->max_mmap, control->max_chunk);
|
|
if (control->max_chunk < control->st_size)
|
|
round_to_page(&control->max_chunk);
|
|
|
|
if (!STDIN)
|
|
st->chunk_size = MIN(control->max_chunk, len);
|
|
else
|
|
st->chunk_size = control->max_mmap;
|
|
if (st->chunk_size < len)
|
|
round_to_page(&st->chunk_size);
|
|
|
|
st->level = &levels[control->compression_level];
|
|
st->fd_in = fd_in;
|
|
st->fd_out = fd_out;
|
|
st->stdin_eof = 0;
|
|
|
|
init_hash_indexes(st);
|
|
|
|
passes = 0;
|
|
|
|
/* set timers and chunk counter */
|
|
last.tv_sec = last.tv_usec = 0;
|
|
gettimeofday(&start, NULL);
|
|
|
|
prepare_streamout_threads(control);
|
|
control->get_sb = single_get_sb;
|
|
control->do_mcpy = single_mcpy;
|
|
|
|
while (!pass || len > 0 || (STDIN && !st->stdin_eof)) {
|
|
double pct_base, pct_multiple;
|
|
i64 offset = s.st_size - len;
|
|
int bits = 8;
|
|
|
|
st->chunk_size = control->max_chunk;
|
|
st->mmap_size = control->max_mmap;
|
|
if (!STDIN) {
|
|
st->chunk_size = MIN(st->chunk_size, len);
|
|
if (likely(st->chunk_size))
|
|
st->mmap_size = MIN(st->mmap_size, len);
|
|
else
|
|
st->mmap_size = control->page_size;
|
|
}
|
|
|
|
retry:
|
|
if (STDIN) {
|
|
/* NOTE the buf is saved here for STDIN mode */
|
|
sb->buf_low = mmap(NULL, st->mmap_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
|
/* Better to shrink the window to the largest size that works than fail */
|
|
if (sb->buf_low == MAP_FAILED) {
|
|
if (unlikely(errno != ENOMEM)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Failed to mmap %s\n", control->infile), false);
|
|
}
|
|
st->mmap_size = st->mmap_size / 10 * 9;
|
|
round_to_page(&st->mmap_size);
|
|
if (unlikely(!st->mmap_size)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Unable to mmap any ram\n"), false);
|
|
}
|
|
goto retry;
|
|
}
|
|
st->chunk_size = st->mmap_size;
|
|
if (unlikely(!mmap_stdin(control, sb->buf_low, st))) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
return false;
|
|
}
|
|
} else {
|
|
/* NOTE The buf is saved here for !STDIN mode */
|
|
sb->buf_low = (uchar *)mmap(sb->buf_low, st->mmap_size, PROT_READ, MAP_SHARED, fd_in, offset);
|
|
if (sb->buf_low == MAP_FAILED) {
|
|
if (unlikely(errno != ENOMEM)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Failed to mmap %s\n", control->infile), false);
|
|
}
|
|
st->mmap_size = st->mmap_size / 10 * 9;
|
|
round_to_page(&st->mmap_size);
|
|
if (unlikely(!st->mmap_size)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
fatal_return(("Unable to mmap any ram\n"), false);
|
|
}
|
|
goto retry;
|
|
}
|
|
if (st->mmap_size < st->chunk_size) {
|
|
print_maxverbose("Enabling sliding mmap mode and using mmap of %lld bytes with window of %lld bytes\n", st->mmap_size, st->chunk_size);
|
|
control->get_sb = &sliding_get_sb;
|
|
control->do_mcpy = &sliding_mcpy;
|
|
}
|
|
}
|
|
print_maxverbose("Succeeded in testing %lld sized mmap for rzip pre-processing\n", st->mmap_size);
|
|
|
|
if (st->chunk_size > control->ramsize)
|
|
print_verbose("Compression window is larger than ram, will proceed with unlimited mode possibly much slower\n");
|
|
|
|
if (!passes && !STDIN && st->chunk_size) {
|
|
passes = s.st_size / st->chunk_size + !!(s.st_size % st->chunk_size);
|
|
if (passes == 1)
|
|
print_verbose("Will take 1 pass\n");
|
|
else
|
|
print_verbose("Will take %d passes\n", passes);
|
|
}
|
|
|
|
sb->orig_offset = offset;
|
|
print_maxverbose("Chunk size: %lld\n", st->chunk_size);
|
|
|
|
/* Determine the chunk byte width to write to the file
|
|
* This allows archives of different chunk sizes to have
|
|
* optimal byte width entries. When working with stdin we
|
|
* won't know in advance how big it is so it will always be
|
|
* rounded up to the window size. */
|
|
while (st->chunk_size >> bits > 0)
|
|
bits++;
|
|
st->chunk_bytes = bits / 8;
|
|
if (bits % 8)
|
|
st->chunk_bytes++;
|
|
print_maxverbose("Byte width: %d\n", st->chunk_bytes);
|
|
|
|
if (STDIN)
|
|
pct_base = (100.0 * -len) / control->st_size;
|
|
else
|
|
pct_base = (100.0 * (control->st_size - len)) / control->st_size;
|
|
pct_multiple = ((double)st->chunk_size) / control->st_size;
|
|
pass++;
|
|
if (st->stdin_eof)
|
|
passes = pass;
|
|
|
|
gettimeofday(¤t, NULL);
|
|
/* this will count only when size > window */
|
|
if (last.tv_sec > 0) {
|
|
unsigned int eta_hours, eta_minutes, eta_seconds, elapsed_time, finish_time,
|
|
elapsed_hours, elapsed_minutes, elapsed_seconds, diff_seconds;
|
|
|
|
elapsed_time = current.tv_sec - start.tv_sec;
|
|
finish_time = elapsed_time / ((pct_base / 100.0) ? : 1);
|
|
elapsed_hours = elapsed_time / 3600;
|
|
elapsed_minutes = (elapsed_time / 60) % 60;
|
|
elapsed_seconds = elapsed_time % 60;
|
|
diff_seconds = finish_time - elapsed_time;
|
|
eta_hours = diff_seconds / 3600;
|
|
eta_minutes = (diff_seconds / 60) % 60;
|
|
eta_seconds = diff_seconds % 60;
|
|
|
|
chunkmbs = (last_chunk / 1024 / 1024) / (double)(current.tv_sec-last.tv_sec);
|
|
if (!STDIN || st->stdin_eof)
|
|
print_verbose("\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. ETA: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
|
|
pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds,
|
|
eta_hours, eta_minutes, eta_seconds, chunkmbs);
|
|
else
|
|
print_verbose("\nPass %d -- Elapsed Time: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
|
|
pass, elapsed_hours, elapsed_minutes, elapsed_seconds, chunkmbs);
|
|
}
|
|
last.tv_sec = current.tv_sec;
|
|
last.tv_usec = current.tv_usec;
|
|
|
|
if (st->chunk_size == len)
|
|
control->eof = 1;
|
|
if (unlikely(!rzip_chunk(control, st, fd_in, fd_out, offset, pct_base, pct_multiple))) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
/* st->chunk_size may be shrunk in rzip_chunk */
|
|
last_chunk = st->chunk_size;
|
|
len -= st->chunk_size;
|
|
if (unlikely(len > 0 && control->eof)) {
|
|
close_streamout_threads(control);
|
|
free(st->hash_table);
|
|
free(st);
|
|
failure_return(("Wrote EOF to file yet chunk_size was shrunk, corrupting archive.\n"), false);
|
|
}
|
|
}
|
|
|
|
if (likely(st->hash_table))
|
|
free(st->hash_table);
|
|
if (unlikely(!close_streamout_threads(control))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
if (!NO_MD5) {
|
|
/* Temporary workaround till someone fixes apple md5 */
|
|
md5_finish_ctx(&control->ctx, control->md5_resblock);
|
|
if (HASH_CHECK || MAX_VERBOSE) {
|
|
print_output("MD5: ");
|
|
for (j = 0; j < MD5_DIGEST_SIZE; j++)
|
|
print_output("%02x", control->md5_resblock[j] & 0xFF);
|
|
print_output("\n");
|
|
}
|
|
/* When encrypting data, we encrypt the MD5 value as well */
|
|
if (ENCRYPT)
|
|
if (unlikely(!lrz_encrypt(control, control->md5_resblock, MD5_DIGEST_SIZE, control->salt_pass))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
if (unlikely(write_1g(control, control->md5_resblock, MD5_DIGEST_SIZE) != MD5_DIGEST_SIZE)) {
|
|
free(st);
|
|
fatal_return(("Failed to write md5 in rzip_fd\n"), false);
|
|
}
|
|
}
|
|
|
|
if (TMP_OUTBUF)
|
|
if (unlikely(!flush_tmpoutbuf(control))) {
|
|
free(st);
|
|
return false;
|
|
}
|
|
|
|
gettimeofday(¤t, NULL);
|
|
if (STDIN)
|
|
s.st_size = control->st_size;
|
|
chunkmbs = (s.st_size / 1024 / 1024) / ((double)(current.tv_sec-start.tv_sec)? : 1);
|
|
|
|
fstat(fd_out, &s2);
|
|
|
|
print_maxverbose("matches=%u match_bytes=%u\n",
|
|
(unsigned int)st->stats.matches, (unsigned int)st->stats.match_bytes);
|
|
print_maxverbose("literals=%u literal_bytes=%u\n",
|
|
(unsigned int)st->stats.literals, (unsigned int)st->stats.literal_bytes);
|
|
print_maxverbose("true_tag_positives=%u false_tag_positives=%u\n",
|
|
(unsigned int)st->stats.tag_hits, (unsigned int)st->stats.tag_misses);
|
|
print_maxverbose("inserts=%u match %.3f\n",
|
|
(unsigned int)st->stats.inserts,
|
|
(1.0 + st->stats.match_bytes) / st->stats.literal_bytes);
|
|
|
|
if (!STDIN)
|
|
print_progress("%s - ", control->infile);
|
|
print_progress("Compression Ratio: %.3f. Average Compression Speed: %6.3fMB/s.\n",
|
|
1.0 * s.st_size / s2.st_size, chunkmbs);
|
|
|
|
free(st);
|
|
return true;
|
|
}
|
|
|
|
void rzip_control_free(rzip_control *control)
|
|
{
|
|
size_t x;
|
|
if (!control)
|
|
return;
|
|
|
|
free(control->tmpdir);
|
|
free(control->outname);
|
|
free(control->outdir);
|
|
if (control->suffix && control->suffix[0]) free(control->suffix);
|
|
|
|
for (x = 0; x < control->sinfo_idx; x++) {
|
|
free(control->sinfo_queue[x]->s);
|
|
free(control->sinfo_queue[x]);
|
|
}
|
|
free(control->sinfo_queue);
|
|
free(control);
|
|
}
|