lrzip/rzip.c
Con Kolivas 02de002c58 Reworked the multithreading massively.
Place the data from each stream into a buffer that then is handed over to one thread which is allowed to begin doing the backend compression while the main rzip stream continues operating.
Fork up to as many threads as CPUs and feed data to them in a ring fashion, parallelising the workload as much as possible.
This causes a big speed up on the compression side on SMP machines.
Thread compression is limited to a minimum of 10MB compressed per thread to minimise the compromise to compression of smaller windows.
Alter the progress output to match some of the changes in verbose modes.
2010-11-13 01:26:09 +11:00

918 lines
25 KiB
C

/*
Copyright (C) Andrew Tridgell 1998,
Con Kolivas 2006-2010
Modified to use flat hash, memory limit and variable hash culling
by Rusty Russell copyright (C) 2003.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* rzip compression algorithm */
#include "rzip.h"
#define CHUNK_MULTIPLE (100 * 1024 * 1024)
#define CKSUM_CHUNK 1024*1024
#define GREAT_MATCH 1024
#define MINIMUM_MATCH 31
/* Hash table works as follows. We start by throwing tags at every
* offset into the table. As it fills, we start eliminating tags
* which don't have lower bits set to one (ie. first we eliminate all
* even tags, then all tags divisible by four, etc.). This ensures
* that on average, all parts of the file are covered by the hash, if
* sparsely. */
typedef i64 tag;
/* All zero means empty. We might miss the first chunk this way. */
struct hash_entry {
i64 offset;
tag t;
};
/* Levels control hashtable size and bzip2 level. */
static struct level {
unsigned long mb_used;
unsigned initial_freq;
unsigned max_chain_len;
} levels[10] = {
{ 1, 4, 1 },
{ 2, 4, 2 },
{ 4, 4, 2 },
{ 8, 4, 2 },
{ 16, 4, 3 },
{ 32, 4, 4 },
{ 32, 2, 6 },
{ 64, 1, 16 }, /* More MB makes sense, but need bigger test files */
{ 64, 1, 32 },
{ 64, 1, 128 },
};
struct rzip_state {
void *ss;
struct level *level;
tag hash_index[256];
struct hash_entry *hash_table;
i64 hash_bits;
i64 hash_count;
i64 hash_limit;
tag minimum_tag_mask;
i64 tag_clean_ptr;
i64 last_match;
i64 chunk_size;
i64 mmap_size;
char chunk_bytes;
uint32_t cksum;
int fd_in, fd_out;
int stdin_eof;
struct {
i64 inserts;
i64 literals;
i64 literal_bytes;
i64 matches;
i64 match_bytes;
i64 tag_hits;
i64 tag_misses;
} stats;
};
struct sliding_buffer {
uchar *buf_low; /* The low window buffer */
uchar *buf_high;/* "" high "" */
i64 orig_offset;/* Where the original buffer started */
i64 offset_low; /* What the current offset the low buffer has */
i64 offset_high;/* "" high buffer "" */
i64 offset_search;/* Where the search is up to */
i64 orig_size; /* How big the full buffer would be */
i64 size_low; /* How big the low buffer is */
i64 size_high; /* "" high "" */
i64 high_length;/* How big the high buffer should be */
int fd; /* The fd of the mmap */
} sb; /* Sliding buffer */
static void remap_low_sb(void)
{
static int top = 0;
i64 new_offset;
if (top)
return;
new_offset = sb.offset_search;
if (new_offset + sb.size_low > sb.orig_size) {
new_offset = sb.orig_size - sb.size_low;
top = 1;
}
new_offset -= new_offset % control.page_size; /* Round to page size */
print_maxverbose("Sliding main buffer\n");
if (unlikely(munmap(sb.buf_low, sb.size_low)))
fatal("Failed to munmap in remap_low_sb\n");
sb.offset_low = new_offset;
sb.buf_low = (uchar *)mmap(sb.buf_low, sb.size_low, PROT_READ, MAP_SHARED, sb.fd, sb.orig_offset + sb.offset_low);
if (unlikely(sb.buf_low == MAP_FAILED))
fatal("Failed to re mmap in remap_low_sb\n");
}
static inline void remap_high_sb(i64 p)
{
if (unlikely(munmap(sb.buf_high, sb.size_high)))
fatal("Failed to munmap in remap_high_sb\n");
sb.size_high = sb.high_length; /* In case we shrunk it when we hit the end of the file */
sb.offset_high = p;
/* Make sure offset is rounded to page size of total offset */
sb.offset_high -= (sb.offset_high + sb.orig_offset) % control.page_size;
if (unlikely(sb.offset_high + sb.size_high > sb.orig_size))
sb.size_high = sb.orig_size - sb.offset_high;
sb.buf_high = (uchar *)mmap(sb.buf_high, sb.size_high, PROT_READ, MAP_SHARED, sb.fd, sb.orig_offset + sb.offset_high);
if (unlikely(sb.buf_high == MAP_FAILED))
fatal("Failed to re mmap in remap_high_sb\n");
}
/* We use a "sliding mmap" to effectively read more than we can fit into the
* compression window. This is done by using a maximally sized lower mmap at
* the beginning of the block which slides up once the hash search moves beyond
* it, and a 64k mmap block that slides up and down as is required for any
* offsets outside the range of the lower one. This is much slower than mmap
* but makes it possible to have unlimited sized compression windows. */
static uchar *get_sb(i64 p)
{
i64 low_end = sb.offset_low + sb.size_low;
if (unlikely(sb.offset_search > low_end))
remap_low_sb();
if (p >= sb.offset_low && p < low_end)
return (sb.buf_low + p - sb.offset_low);
if (p >= sb.offset_high && p < (sb.offset_high + sb.size_high))
return (sb.buf_high + (p - sb.offset_high));
/* p is not within the low or high buffer range */
remap_high_sb(p);
return (sb.buf_high + (p - sb.offset_high));
}
static inline void put_u8(void *ss, int stream, uchar b)
{
if (unlikely(write_stream(ss, stream, &b, 1)))
fatal("Failed to put_u8\n");
}
static inline void put_u32(void *ss, int stream, uint32_t s)
{
if (unlikely(write_stream(ss, stream, (uchar *)&s, 4)))
fatal("Failed to put_u32\n");
}
/* Put a variable length of bytes dependant on how big the chunk is */
static inline void put_vchars(void *ss, int stream, i64 s, int length)
{
int bytes;
for (bytes = 0; bytes < length; bytes++) {
int bits = bytes * 8;
uchar sb = (s >> bits) & (i64)0XFF;
put_u8(ss, stream, sb);
}
}
static void put_header(void *ss, uchar head, i64 len)
{
put_u8(ss, 0, head);
put_vchars(ss, 0, len, 2);
}
static void put_match(struct rzip_state *st, i64 p, i64 offset, i64 len)
{
do {
i64 ofs;
i64 n = len;
if (n > 0xFFFF)
n = 0xFFFF;
ofs = (p - offset);
put_header(st->ss, 1, n);
put_vchars(st->ss, 0, ofs, st->chunk_bytes);
st->stats.matches++;
st->stats.match_bytes += n;
len -= n;
p += n;
offset += n;
} while (len);
}
/* write some data to a stream mmap encoded. Return -1 on failure */
int write_sbstream(void *ss, int stream, i64 p, i64 len)
{
struct stream_info *sinfo = ss;
while (len) {
i64 n, i;
n = MIN(sinfo->bufsize - sinfo->s[stream].buflen, len);
for (i = 0; i < n; i++) {
memcpy(sinfo->s[stream].buf + sinfo->s[stream].buflen + i,
get_sb(p + i), 1);
}
sinfo->s[stream].buflen += n;
p += n;
len -= n;
if (sinfo->s[stream].buflen == sinfo->bufsize)
flush_buffer(sinfo, stream);
}
return 0;
}
static void put_literal(struct rzip_state *st, i64 last, i64 p)
{
do {
i64 len = p - last;
if (len > 0xFFFF)
len = 0xFFFF;
st->stats.literals++;
st->stats.literal_bytes += len;
put_header(st->ss, 0, len);
if (unlikely(len && write_sbstream(st->ss, 1, last, len)))
fatal("Failed to write_stream in put_literal\n");
last += len;
} while (p > last);
}
/* Could give false positive on offset 0. Who cares. */
static int empty_hash(struct rzip_state *st, i64 h)
{
return !st->hash_table[h].offset && !st->hash_table[h].t;
}
static i64 primary_hash(struct rzip_state *st, tag t)
{
return t & ((1 << st->hash_bits) - 1);
}
static inline tag increase_mask(tag tag_mask)
{
/* Get more precise. */
return (tag_mask << 1) | 1;
}
static int minimum_bitness(struct rzip_state *st, tag t)
{
tag better_than_min = increase_mask(st->minimum_tag_mask);
if ((t & better_than_min) != better_than_min)
return 1;
return 0;
}
/* Is a going to be cleaned before b? ie. does a have fewer low bits
* set than b? */
static int lesser_bitness(tag a, tag b)
{
tag mask;
for (mask = 0; mask != (tag) - 1; mask = ((mask << 1) | 1)) {
if ((a & b & mask) != mask)
break;
}
return ((a & mask) < (b & mask));
}
/* If hash bucket is taken, we spill into next bucket(s). Secondary hashing
works better in theory, but modern caches make this 20% faster. */
static void insert_hash(struct rzip_state *st, tag t, i64 offset)
{
i64 h, victim_h = 0, round = 0;
/* If we need to kill one, this will be it. */
static i64 victim_round = 0;
h = primary_hash(st, t);
while (!empty_hash(st, h)) {
/* If this due for cleaning anyway, just replace it:
rehashing might move it behind tag_clean_ptr. */
if (minimum_bitness(st, st->hash_table[h].t)) {
st->hash_count--;
break;
}
/* If we are better than current occupant, we can't
jump over it: it will be cleaned before us, and
noone would then find us in the hash table. Rehash
it, then take its place. */
if (lesser_bitness(st->hash_table[h].t, t)) {
insert_hash(st, st->hash_table[h].t,
st->hash_table[h].offset);
break;
}
/* If we have lots of identical patterns, we end up
with lots of the same hash number. Discard random. */
if (st->hash_table[h].t == t) {
if (round == victim_round)
victim_h = h;
if (++round == st->level->max_chain_len) {
h = victim_h;
st->hash_count--;
victim_round++;
if (victim_round == st->level->max_chain_len)
victim_round = 0;
break;
}
}
h++;
h &= ((1 << st->hash_bits) - 1);
}
st->hash_table[h].t = t;
st->hash_table[h].offset = offset;
}
/* Eliminate one hash entry with minimum number of lower bits set.
Returns tag requirement for any new entries. */
static tag clean_one_from_hash(struct rzip_state *st)
{
tag better_than_min;
again:
better_than_min = increase_mask(st->minimum_tag_mask);
if (!st->tag_clean_ptr)
print_maxverbose("Starting sweep for mask %u\n", (unsigned int)st->minimum_tag_mask);
for (; st->tag_clean_ptr < (1U << st->hash_bits); st->tag_clean_ptr++) {
if (empty_hash(st, st->tag_clean_ptr))
continue;
if ((st->hash_table[st->tag_clean_ptr].t & better_than_min)
!= better_than_min) {
st->hash_table[st->tag_clean_ptr].offset = 0;
st->hash_table[st->tag_clean_ptr].t = 0;
st->hash_count--;
return better_than_min;
}
}
/* We hit the end: everthing in hash satisfies the better mask. */
st->minimum_tag_mask = better_than_min;
st->tag_clean_ptr = 0;
goto again;
}
static inline tag next_tag(struct rzip_state *st, i64 p, tag t)
{
t ^= st->hash_index[*get_sb(p - 1)];
t ^= st->hash_index[*get_sb(p + MINIMUM_MATCH - 1)];
return t;
}
static inline tag full_tag(struct rzip_state *st, i64 p)
{
tag ret = 0;
int i;
for (i = 0; i < MINIMUM_MATCH; i++)
ret ^= st->hash_index[*get_sb(p + i)];
return ret;
}
static inline i64 match_len(struct rzip_state *st, i64 p0, i64 op, i64 end,
i64 *rev)
{
i64 p = p0;
i64 len = 0;
if (op >= p0)
return 0;
while ((*get_sb(p) == *get_sb(op)) && (p < end)) {
p++;
op++;
}
len = p - p0;
p = p0;
op -= len;
end = 0;
if (end < st->last_match)
end = st->last_match;
while (p > end && op > 0 && *get_sb(op - 1) == *get_sb(p - 1)) {
op--;
p--;
}
(*rev) = p0 - p;
len += p0 - p;
if (len < MINIMUM_MATCH)
return 0;
return len;
}
static i64 find_best_match(struct rzip_state *st, tag t, i64 p, i64 end,
i64 *offset, i64 *reverse)
{
i64 length = 0;
i64 h, best_h;
i64 rev;
rev = 0;
*reverse = 0;
/* Could optimise: if lesser goodness, can stop search. But
* chains are usually short anyway. */
h = primary_hash(st, t);
while (!empty_hash(st, h)) {
i64 mlen;
if (t == st->hash_table[h].t) {
mlen = match_len(st, p, st->hash_table[h].offset, end,
&rev);
if (mlen)
st->stats.tag_hits++;
else
st->stats.tag_misses++;
if (mlen >= length) {
length = mlen;
(*offset) = st->hash_table[h].offset - rev;
(*reverse) = rev;
best_h = h;
}
}
h++;
h &= ((1 << st->hash_bits) - 1);
}
return length;
}
static void show_distrib(struct rzip_state *st)
{
i64 primary = 0;
i64 total = 0;
i64 i;
for (i = 0; i < (1U << st->hash_bits); i++) {
if (empty_hash(st, i))
continue;
total++;
if (primary_hash(st, st->hash_table[i].t) == i)
primary++;
}
if (total != st->hash_count)
print_err("WARNING: hash_count says total %lld\n", st->hash_count);
print_output("%lld total hashes -- %lld in primary bucket (%-2.3f%%)\n", total, primary,
primary*100.0/total);
}
static void hash_search(struct rzip_state *st, double pct_base, double pct_multiple)
{
i64 cksum_limit = 0, p, end;
tag t = 0;
struct {
i64 p;
i64 ofs;
i64 len;
} current;
tag tag_mask = (1 << st->level->initial_freq) - 1;
if (st->hash_table)
memset(st->hash_table, 0, sizeof(st->hash_table[0]) * (1<<st->hash_bits));
else {
i64 hashsize = st->level->mb_used *
(1024 * 1024 / sizeof(st->hash_table[0]));
for (st->hash_bits = 0; (1U << st->hash_bits) < hashsize; st->hash_bits++);
print_maxverbose("hashsize = %lld. bits = %lld. %luMB\n",
hashsize, st->hash_bits, st->level->mb_used);
/* 66% full at max. */
st->hash_limit = (1 << st->hash_bits) / 3 * 2;
st->hash_table = calloc(sizeof(st->hash_table[0]), (1 << st->hash_bits));
}
if (unlikely(!st->hash_table))
fatal("Failed to allocate hash table in hash_search\n");
st->minimum_tag_mask = tag_mask;
st->tag_clean_ptr = 0;
st->cksum = 0;
st->hash_count = 0;
p = 0;
end = st->chunk_size - MINIMUM_MATCH;
st->last_match = p;
current.len = 0;
current.p = p;
current.ofs = 0;
t = full_tag(st, p);
while (p < end) {
int lastpct = 0, last_chunkpct = 0;
i64 reverse, mlen, offset = 0;
p++;
sb.offset_search = p;
t = next_tag(st, p, t);
/* Don't look for a match if there are no tags with
this number of bits in the hash table. */
if ((t & st->minimum_tag_mask) != st->minimum_tag_mask)
continue;
mlen = find_best_match(st, t, p, end, &offset, &reverse);
/* Only insert occasionally into hash. */
if ((t & tag_mask) == tag_mask) {
st->stats.inserts++;
st->hash_count++;
insert_hash(st, t, p);
if (st->hash_count > st->hash_limit)
tag_mask = clean_one_from_hash(st);
}
if (mlen > current.len) {
current.p = p - reverse;
current.len = mlen;
current.ofs = offset;
}
if ((current.len >= GREAT_MATCH || p >= current.p + MINIMUM_MATCH)
&& current.len >= MINIMUM_MATCH) {
if (st->last_match < current.p)
put_literal(st, st->last_match, current.p);
put_match(st, current.p, current.ofs, current.len);
st->last_match = current.p + current.len;
current.p = p = st->last_match;
current.len = 0;
t = full_tag(st, p);
}
if (unlikely(p % 128 == 0)) {
int pct, chunk_pct;
pct = pct_base + (pct_multiple * (100.0 * p) /
st->chunk_size);
chunk_pct = p / (end / 100);
if (pct != lastpct || chunk_pct != last_chunkpct) {
if (!STDIN)
print_progress("Total: %2d%% ", pct);
print_progress("Chunk: %2d%%\r", chunk_pct);
lastpct = pct;
last_chunkpct = chunk_pct;
}
}
if (p > (i64)cksum_limit) {
i64 i, n = st->chunk_size - p;
for (i = 0; i < n; i++)
st->cksum = CrcUpdate(st->cksum, get_sb(cksum_limit + i), 1);
cksum_limit += n;
}
}
/* Fake that we got to 100% since we're done :D */
if (!STDIN)
print_progress("Total: 100%% ");
print_progress("Chunk: 100%%\n");
if (MAX_VERBOSE)
show_distrib(st);
if (st->last_match < st->chunk_size)
put_literal(st, st->last_match, st->chunk_size);
if (st->chunk_size > cksum_limit) {
i64 i, n = st->chunk_size - cksum_limit;
for (i = 0; i < n; i++)
st->cksum = CrcUpdate(st->cksum, get_sb(cksum_limit + i), 1);
cksum_limit += n;
}
put_literal(st, 0, 0);
put_u32(st->ss, 0, st->cksum);
}
static void init_hash_indexes(struct rzip_state *st)
{
int i;
for (i = 0; i < 256; i++)
st->hash_index[i] = ((random() << 16) ^ random());
}
extern const i64 one_g;
static inline void *fake_mremap(void *old_address, size_t old_size, size_t new_size, int flags)
{
flags = 0;
munmap(old_address, old_size);
return mmap(old_address, new_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
}
/* stdin is not file backed so we have to emulate the mmap by mapping
* anonymous ram and reading stdin into it. It means the maximum ram
* we can use will be less but we will already have determined this in
* rzip_chunk */
static void mmap_stdin(uchar *buf, struct rzip_state *st)
{
i64 len = st->chunk_size;
uchar *offset_buf = buf;
ssize_t ret;
i64 total;
total = 0;
while (len > 0) {
if (len > one_g)
ret = one_g;
else
ret = len;
ret = read(0, offset_buf, (size_t)ret);
if (unlikely(ret < 0))
fatal("Failed to read in mmap_stdin\n");
total += ret;
if (ret == 0) {
/* Should be EOF */
print_maxverbose("Shrinking chunk to %lld\n", total);
buf = mremap(buf, st->chunk_size, total, 0);
if (unlikely(buf == MAP_FAILED))
fatal("Failed to remap to smaller buf in mmap_stdin\n");
st->chunk_size = total;
st->stdin_eof = 1;
break;
}
offset_buf += ret;
len -= ret;
}
control.st_size += total;
}
static void init_sliding_mmap(struct rzip_state *st, int fd_in, i64 offset)
{
/* Initialise the high buffer */
if (UNLIMITED) {
sb.high_length = 65536;
sb.buf_high = (uchar *)mmap(NULL, sb.high_length, PROT_READ, MAP_SHARED, fd_in, offset);
if (unlikely(sb.buf_high == MAP_FAILED))
fatal("Unable to mmap buf_high in init_sliding_mmap\n");
sb.size_high = sb.high_length;
sb.offset_high = 0;
}
sb.offset_low = 0;
sb.offset_search = 0;
sb.size_low = st->mmap_size;
sb.orig_size = st->chunk_size;
sb.fd = fd_in;
}
/* compress a chunk of an open file. Assumes that the file is able to
be mmap'd and is seekable */
static void rzip_chunk(struct rzip_state *st, int fd_in, int fd_out, i64 offset,
double pct_base, double pct_multiple)
{
init_sliding_mmap(st, fd_in, offset);
st->ss = open_stream_out(fd_out, NUM_STREAMS, st->chunk_size);
if (unlikely(!st->ss))
fatal("Failed to open streams in rzip_chunk\n");
print_verbose("Performing rzip pre-processing phase\n");
hash_search(st, pct_base, pct_multiple);
/* unmap buffer before closing and reallocating streams */
if (unlikely(munmap(sb.buf_low, sb.size_low)))
fatal("Failed to munmap in rzip_chunk\n");
if (UNLIMITED) {
if (unlikely(munmap(sb.buf_high, sb.size_high)))
fatal("Failed to munmap in rzip_chunk\n");
}
if (unlikely(close_stream_out(st->ss)))
fatal("Failed to flush/close streams in rzip_chunk\n");
}
/* Needs to be less than 31 bits and page aligned on 32 bits */
const i64 two_gig = (1ull << 31) - 4096;
/* compress a whole file chunks at a time */
void rzip_fd(int fd_in, int fd_out)
{
/* add timers for ETA estimates
* Base it off the file size and number of iterations required
* depending on compression window size
* Track elapsed time and estimated time to go
* If file size < compression window, can't do
*/
struct timeval current, start, last;
struct stat s, s2;
struct rzip_state *st;
i64 len = 0, chunk_window, last_chunk = 0;
int pass = 0, passes;
unsigned int eta_hours, eta_minutes, eta_seconds, elapsed_hours,
elapsed_minutes, elapsed_seconds;
double finish_time, elapsed_time, chunkmbs;
st = calloc(sizeof(*st), 1);
if (unlikely(!st))
fatal("Failed to allocate control state in rzip_fd\n");
if (LZO_COMPRESS) {
if (unlikely(lzo_init() != LZO_E_OK))
fatal("lzo_init() failed\n");
}
if (unlikely(fstat(fd_in, &s)))
fatal("Failed to stat fd_in in rzip_fd - %s\n", strerror(errno));
if (!STDIN) {
len = control.st_size = s.st_size;
print_verbose("File size: %lld\n", len);
} else
control.st_size = 0;
if (control.window)
chunk_window = control.window * CHUNK_MULTIPLE;
else {
if (STDIN)
chunk_window = control.ramsize;
else
chunk_window = len;
}
if (chunk_window < len)
chunk_window -= chunk_window % control.page_size;
st->chunk_size = chunk_window;
st->level = &levels[control.compression_level];
st->fd_in = fd_in;
st->fd_out = fd_out;
st->stdin_eof = 0;
init_hash_indexes(st);
passes = 1 + s.st_size / chunk_window;
/* set timers and chunk counter */
last.tv_sec = last.tv_usec = 0;
gettimeofday(&start, NULL);
while (len > 0 || (STDIN && !st->stdin_eof)) {
double pct_base, pct_multiple;
i64 offset = s.st_size - len;
int bits = 8;
/* Flushing the dirty data will decrease our chances of
* running out of memory when we allocate ram again on the
* next chunk. It will also prevent thrashing on-disk due to
* concurrent reads and writes if we're on the same device. */
if (last_chunk)
print_verbose("Flushing data to disk.\n");
fsync(fd_out);
if (st->chunk_size > len && !STDIN)
st->chunk_size = len;
st->mmap_size = st->chunk_size;
if (BITS32 && st->mmap_size > two_gig) {
print_verbose("Limiting to 2GB due to 32 bit limitations\n");
st->mmap_size = two_gig;
}
retry:
/* Mmapping anonymously first will tell us how much ram we can use in
* advance and zeroes it which has a defragmenting effect on ram
* before the real read in. */
sb.buf_low = mmap(NULL, st->mmap_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
/* Better to shrink the window to the largest size that works than fail */
if (sb.buf_low == MAP_FAILED) {
st->mmap_size = st->mmap_size / 10 * 9;
st->mmap_size -= st->mmap_size % control.page_size;
if (unlikely(!st->mmap_size))
fatal("Unable to mmap any ram\n");
goto retry;
}
/* NOTE the buf is saved here for STDIN mode */
if (!STDIN) {
if (unlikely(munmap(sb.buf_low, st->mmap_size)))
fatal("Failed to munmap\n");
}
if (!MAXRAM) {
print_maxverbose("Succeeded in allocating %lld sized mmap\n", st->mmap_size);
if (!UNLIMITED)
st->chunk_size = st->mmap_size;
} else
st->mmap_size = st->chunk_size;
if (!STDIN) {
/* The buf is saved here for !STDIN mode */
sb.buf_low = (uchar *)mmap(sb.buf_low, st->mmap_size, PROT_READ, MAP_SHARED, fd_in, offset);
if (sb.buf_low == MAP_FAILED) {
if (unlikely(!MAXRAM))
fatal("Failed to remap ram\n");
st->mmap_size = st->mmap_size / 10 * 9;
st->mmap_size -= st->mmap_size % control.page_size;
if (unlikely(!st->mmap_size))
fatal("Unable to mmap any ram\n");
goto retry;
}
} else
mmap_stdin(sb.buf_low, st);
if (st->mmap_size < st->chunk_size)
print_verbose("Compression window is larger than ram allocated, will proceed with unlimited mode possibly much slower\n");
sb.orig_offset = offset;
print_maxverbose("Chunk size: %lld\n", st->chunk_size);
/* Determine the chunk byte width and write it to the file
* This allows archives of different chunk sizes to have
* optimal byte width entries. When working with stdin we
* won't know in advance how big it is so it will always be
* rounded up to the window size. */
while (st->chunk_size >> bits > 0)
bits++;
st->chunk_bytes = bits / 8;
if (bits % 8)
st->chunk_bytes++;
print_maxverbose("Byte width: %d\n", st->chunk_bytes);
if (unlikely(write(fd_out, &st->chunk_bytes, 1) != 1))
fatal("Failed to write chunk_bytes size in rzip_fd\n");
pct_base = (100.0 * (s.st_size - len)) / s.st_size;
pct_multiple = ((double)st->chunk_size) / s.st_size;
pass++;
gettimeofday(&current, NULL);
/* this will count only when size > window */
if (last.tv_sec > 0) {
elapsed_time = current.tv_sec - start.tv_sec;
finish_time = elapsed_time / (pct_base / 100.0);
elapsed_hours = (unsigned int)(elapsed_time) / 3600;
elapsed_minutes = (unsigned int)(elapsed_time - elapsed_hours * 3600) / 60;
elapsed_seconds = (unsigned int) elapsed_time - elapsed_hours * 60 - elapsed_minutes * 60;
eta_hours = (unsigned int)(finish_time - elapsed_time) / 3600;
eta_minutes = (unsigned int)((finish_time - elapsed_time) - eta_hours * 3600) / 60;
eta_seconds = (unsigned int)(finish_time - elapsed_time) - eta_hours * 60 - eta_minutes * 60;
chunkmbs = (last_chunk / 1024 / 1024) / (double)(current.tv_sec-last.tv_sec);
if (!STDIN)
print_verbose("\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. ETA: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds,
eta_hours, eta_minutes, eta_seconds, chunkmbs);
else
print_verbose("\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n",
pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds, chunkmbs);
}
last.tv_sec = current.tv_sec;
last.tv_usec = current.tv_usec;
rzip_chunk(st, fd_in, fd_out, offset, pct_base, pct_multiple);
/* st->chunk_bytes may be shrunk in rzip_chunk */
last_chunk = st->chunk_size;
len -= st->chunk_size;
}
gettimeofday(&current, NULL);
chunkmbs = (s.st_size / 1024 / 1024) / ((double)(current.tv_sec-start.tv_sec)? : 1);
fstat(fd_out, &s2);
print_maxverbose("matches=%u match_bytes=%u\n",
(unsigned int)st->stats.matches, (unsigned int)st->stats.match_bytes);
print_maxverbose("literals=%u literal_bytes=%u\n",
(unsigned int)st->stats.literals, (unsigned int)st->stats.literal_bytes);
print_maxverbose("true_tag_positives=%u false_tag_positives=%u\n",
(unsigned int)st->stats.tag_hits, (unsigned int)st->stats.tag_misses);
print_maxverbose("inserts=%u match %.3f\n",
(unsigned int)st->stats.inserts,
(1.0 + st->stats.match_bytes) / st->stats.literal_bytes);
if (!STDIN)
print_progress("%s - ", control.infile);
print_progress("Compression Ratio: %.3f. Average Compression Speed: %6.3fMB/s.\n",
1.0 * s.st_size / s2.st_size, chunkmbs);
free(st);
}