/* Copyright (C) 2006-2011 Con Kolivas Copyright (C) 1998 Andrew Tridgell Modified to use flat hash, memory limit and variable hash culling by Rusty Russell copyright (C) 2003. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* rzip compression algorithm */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_SYS_MMAN_H # include #endif #include #ifdef HAVE_SYS_STAT_H # include #endif #ifdef HAVE_SYS_TIME_H # include #endif #ifdef HAVE_UNISTD_H # include #endif #include #include #ifdef HAVE_ERRNO_H # include #endif #ifdef HAVE_ENDIAN_H # include #elif HAVE_SYS_ENDIAN_H # include #endif #include "md5.h" #include "stream.h" #include "util.h" #include "liblrzip.h" #include "lrzip.h" /* needed for CRC routines */ #include "lzma/C/7zCrc.h" #ifndef MAP_ANONYMOUS # define MAP_ANONYMOUS MAP_ANON #endif #define CHUNK_MULTIPLE (100 * 1024 * 1024) #define CKSUM_CHUNK 1024*1024 #define GREAT_MATCH 1024 #define MINIMUM_MATCH 31 /* Hash table works as follows. We start by throwing tags at every * offset into the table. As it fills, we start eliminating tags * which don't have lower bits set to one (ie. first we eliminate all * even tags, then all tags divisible by four, etc.). This ensures * that on average, all parts of the file are covered by the hash, if * sparsely. */ typedef i64 tag; /* All zero means empty. We might miss the first chunk this way. */ struct hash_entry { i64 offset; tag t; }; /* Levels control hashtable size and bzip2 level. */ static struct level { unsigned long mb_used; unsigned initial_freq; unsigned max_chain_len; } levels[10] = { { 1, 4, 1 }, { 2, 4, 2 }, { 4, 4, 2 }, { 8, 4, 2 }, { 16, 4, 3 }, { 32, 4, 4 }, { 32, 2, 6 }, { 64, 1, 16 }, /* More MB makes sense, but need bigger test files */ { 64, 1, 32 }, { 64, 1, 128 }, }; struct rzip_state { void *ss; struct level *level; tag hash_index[256]; struct hash_entry *hash_table; i64 hash_bits; i64 hash_count; i64 hash_limit; tag minimum_tag_mask; i64 tag_clean_ptr; i64 last_match; i64 chunk_size; i64 mmap_size; char chunk_bytes; uint32_t cksum; int fd_in, fd_out; int stdin_eof; struct { i64 inserts; i64 literals; i64 literal_bytes; i64 matches; i64 match_bytes; i64 tag_hits; i64 tag_misses; } stats; }; struct sliding_buffer { uchar *buf_low; /* The low window buffer */ uchar *buf_high;/* "" high "" */ i64 orig_offset;/* Where the original buffer started */ i64 offset_low; /* What the current offset the low buffer has */ i64 offset_high;/* "" high buffer "" */ i64 offset_search;/* Where the search is up to */ i64 orig_size; /* How big the full buffer would be */ i64 size_low; /* How big the low buffer is */ i64 size_high; /* "" high "" */ i64 high_length;/* How big the high buffer should be */ int fd; /* The fd of the mmap */ } sb; /* Sliding buffer */ static void remap_low_sb(rzip_control *control) { i64 new_offset; new_offset = sb.offset_search; round_to_page(&new_offset); print_maxverbose("Sliding main buffer to offset %lld\n", new_offset); if (unlikely(munmap(sb.buf_low, sb.size_low))) fatal("Failed to munmap in remap_low_sb\n"); if (new_offset + sb.size_low > sb.orig_size) sb.size_low = sb.orig_size - new_offset; sb.offset_low = new_offset; sb.buf_low = (uchar *)mmap(sb.buf_low, sb.size_low, PROT_READ, MAP_SHARED, sb.fd, sb.orig_offset + sb.offset_low); if (unlikely(sb.buf_low == MAP_FAILED)) fatal("Failed to re mmap in remap_low_sb\n"); } static inline void remap_high_sb(rzip_control *control, i64 p) { if (unlikely(munmap(sb.buf_high, sb.size_high))) fatal("Failed to munmap in remap_high_sb\n"); sb.size_high = sb.high_length; /* In case we shrunk it when we hit the end of the file */ sb.offset_high = p; /* Make sure offset is rounded to page size of total offset */ sb.offset_high -= (sb.offset_high + sb.orig_offset) % control->page_size; if (unlikely(sb.offset_high + sb.size_high > sb.orig_size)) sb.size_high = sb.orig_size - sb.offset_high; sb.buf_high = (uchar *)mmap(sb.buf_high, sb.size_high, PROT_READ, MAP_SHARED, sb.fd, sb.orig_offset + sb.offset_high); if (unlikely(sb.buf_high == MAP_FAILED)) fatal("Failed to re mmap in remap_high_sb\n"); } /* We use a "sliding mmap" to effectively read more than we can fit into the * compression window. This is done by using a maximally sized lower mmap at * the beginning of the block which slides up once the hash search moves beyond * it, and a 64k mmap block that slides up and down as is required for any * offsets outside the range of the lower one. This is much slower than mmap * but makes it possible to have unlimited sized compression windows. */ static uchar *get_sb(rzip_control *control, i64 p) { i64 low_end = sb.offset_low + sb.size_low; if (unlikely(sb.offset_search > low_end)) remap_low_sb(control); if (p >= sb.offset_low && p < low_end) return (sb.buf_low + p - sb.offset_low); if (p >= sb.offset_high && p < (sb.offset_high + sb.size_high)) return (sb.buf_high + (p - sb.offset_high)); /* p is not within the low or high buffer range */ remap_high_sb(control, p); return (sb.buf_high + (p - sb.offset_high)); } /* All put_u8/u32/vchars go to stream 0 */ static inline void put_u8(rzip_control *control, void *ss, uchar b) { if (unlikely(write_stream(control, ss, 0, &b, 1))) fatal("Failed to put_u8\n"); } static inline void put_u32(rzip_control *control, void *ss, uint32_t s) { s = htole32(s); if (unlikely(write_stream(control, ss, 0, (uchar *)&s, 4))) fatal("Failed to put_u32\n"); } /* Put a variable length of bytes dependant on how big the chunk is */ static inline void put_vchars(rzip_control *control, void *ss, i64 s, int length) { s = htole64(s); if (unlikely(write_stream(control, ss, 0, (uchar *)&s, length))) fatal("Failed to put_vchars\n"); } static void put_header(rzip_control *control, void *ss, uchar head, i64 len) { put_u8(control, ss, head); put_vchars(control, ss, len, 2); } static void put_match(rzip_control *control, struct rzip_state *st, i64 p, i64 offset, i64 len) { do { i64 ofs; i64 n = len; if (n > 0xFFFF) n = 0xFFFF; ofs = (p - offset); put_header(control, st->ss, 1, n); put_vchars(control, st->ss, ofs, st->chunk_bytes); st->stats.matches++; st->stats.match_bytes += n; len -= n; p += n; offset += n; } while (len); } /* write some data to a stream mmap encoded. Return -1 on failure */ static int write_sbstream(rzip_control *control, void *ss, int stream, i64 p, i64 len) { struct stream_info *sinfo = ss; while (len) { i64 n, i; n = MIN(sinfo->bufsize - sinfo->s[stream].buflen, len); for (i = 0; i < n; i++) { memcpy(sinfo->s[stream].buf + sinfo->s[stream].buflen + i, get_sb(control, p + i), 1); } sinfo->s[stream].buflen += n; p += n; len -= n; if (sinfo->s[stream].buflen == sinfo->bufsize) flush_buffer(control, sinfo, stream); } return 0; } static void put_literal(rzip_control *control, struct rzip_state *st, i64 last, i64 p) { do { i64 len = p - last; if (len > 0xFFFF) len = 0xFFFF; st->stats.literals++; st->stats.literal_bytes += len; put_header(control, st->ss, 0, len); if (unlikely(len && write_sbstream(control, st->ss, 1, last, len))) fatal("Failed to write_stream in put_literal\n"); last += len; } while (p > last); } /* Could give false positive on offset 0. Who cares. */ static int empty_hash(struct rzip_state *st, i64 h) { return !st->hash_table[h].offset && !st->hash_table[h].t; } static i64 primary_hash(struct rzip_state *st, tag t) { return t & ((1 << st->hash_bits) - 1); } static inline tag increase_mask(tag tag_mask) { /* Get more precise. */ return (tag_mask << 1) | 1; } static int minimum_bitness(struct rzip_state *st, tag t) { tag better_than_min = increase_mask(st->minimum_tag_mask); if ((t & better_than_min) != better_than_min) return 1; return 0; } /* Is a going to be cleaned before b? ie. does a have fewer low bits * set than b? */ static int lesser_bitness(tag a, tag b) { tag mask; for (mask = 0; mask != (tag) - 1; mask = ((mask << 1) | 1)) { if ((a & b & mask) != mask) break; } return ((a & mask) < (b & mask)); } /* If hash bucket is taken, we spill into next bucket(s). Secondary hashing works better in theory, but modern caches make this 20% faster. */ static void insert_hash(struct rzip_state *st, tag t, i64 offset) { i64 h, victim_h = 0, round = 0; /* If we need to kill one, this will be it. */ static i64 victim_round = 0; h = primary_hash(st, t); while (!empty_hash(st, h)) { /* If this due for cleaning anyway, just replace it: rehashing might move it behind tag_clean_ptr. */ if (minimum_bitness(st, st->hash_table[h].t)) { st->hash_count--; break; } /* If we are better than current occupant, we can't jump over it: it will be cleaned before us, and noone would then find us in the hash table. Rehash it, then take its place. */ if (lesser_bitness(st->hash_table[h].t, t)) { insert_hash(st, st->hash_table[h].t, st->hash_table[h].offset); break; } /* If we have lots of identical patterns, we end up with lots of the same hash number. Discard random. */ if (st->hash_table[h].t == t) { if (round == victim_round) victim_h = h; if (++round == st->level->max_chain_len) { h = victim_h; st->hash_count--; victim_round++; if (victim_round == st->level->max_chain_len) victim_round = 0; break; } } h++; h &= ((1 << st->hash_bits) - 1); } st->hash_table[h].t = t; st->hash_table[h].offset = offset; } /* Eliminate one hash entry with minimum number of lower bits set. Returns tag requirement for any new entries. */ static tag clean_one_from_hash(rzip_control *control, struct rzip_state *st) { tag better_than_min; again: better_than_min = increase_mask(st->minimum_tag_mask); if (!st->tag_clean_ptr) print_maxverbose("Starting sweep for mask %u\n", (unsigned int)st->minimum_tag_mask); for (; st->tag_clean_ptr < (1U << st->hash_bits); st->tag_clean_ptr++) { if (empty_hash(st, st->tag_clean_ptr)) continue; if ((st->hash_table[st->tag_clean_ptr].t & better_than_min) != better_than_min) { st->hash_table[st->tag_clean_ptr].offset = 0; st->hash_table[st->tag_clean_ptr].t = 0; st->hash_count--; return better_than_min; } } /* We hit the end: everthing in hash satisfies the better mask. */ st->minimum_tag_mask = better_than_min; st->tag_clean_ptr = 0; goto again; } static inline tag next_tag(rzip_control *control, struct rzip_state *st, i64 p, tag t) { t ^= st->hash_index[*get_sb(control, p - 1)]; t ^= st->hash_index[*get_sb(control, p + MINIMUM_MATCH - 1)]; return t; } static inline tag full_tag(rzip_control *control, struct rzip_state *st, i64 p) { tag ret = 0; int i; for (i = 0; i < MINIMUM_MATCH; i++) ret ^= st->hash_index[*get_sb(control, p + i)]; return ret; } static inline i64 match_len(rzip_control *control, struct rzip_state *st, i64 p0, i64 op, i64 end, i64 *rev) { i64 p = p0; i64 len = 0; if (op >= p0) return 0; while ((*get_sb(control, p) == *get_sb(control, op)) && (p < end)) { p++; op++; } len = p - p0; p = p0; op -= len; end = 0; if (end < st->last_match) end = st->last_match; while (p > end && op > 0 && *get_sb(control, op - 1) == *get_sb(control, p - 1)) { op--; p--; } (*rev) = p0 - p; len += p0 - p; if (len < MINIMUM_MATCH) return 0; return len; } static i64 find_best_match(rzip_control *control, struct rzip_state *st, tag t, i64 p, i64 end, i64 *offset, i64 *reverse) { i64 length = 0; i64 rev; i64 h; rev = 0; *reverse = 0; /* Could optimise: if lesser goodness, can stop search. But * chains are usually short anyway. */ h = primary_hash(st, t); while (!empty_hash(st, h)) { i64 mlen; if (t == st->hash_table[h].t) { mlen = match_len(control, st, p, st->hash_table[h].offset, end, &rev); if (mlen) st->stats.tag_hits++; else st->stats.tag_misses++; if (mlen >= length) { length = mlen; (*offset) = st->hash_table[h].offset - rev; (*reverse) = rev; } } h++; h &= ((1 << st->hash_bits) - 1); } return length; } static void show_distrib(rzip_control *control, struct rzip_state *st) { i64 primary = 0; i64 total = 0; i64 i; for (i = 0; i < (1U << st->hash_bits); i++) { if (empty_hash(st, i)) continue; total++; if (primary_hash(st, st->hash_table[i].t) == i) primary++; } if (total != st->hash_count) print_err("WARNING: hash_count says total %lld\n", st->hash_count); print_output("%lld total hashes -- %lld in primary bucket (%-2.3f%%)\n", total, primary, primary*100.0/total); } static void hash_search(rzip_control *control, struct rzip_state *st, double pct_base, double pct_multiple) { i64 cksum_limit = 0, p, end; tag t = 0; struct { i64 p; i64 ofs; i64 len; } current; tag tag_mask = (1 << st->level->initial_freq) - 1; if (st->hash_table) memset(st->hash_table, 0, sizeof(st->hash_table[0]) * (1<hash_bits)); else { i64 hashsize = st->level->mb_used * (1024 * 1024 / sizeof(st->hash_table[0])); for (st->hash_bits = 0; (1U << st->hash_bits) < hashsize; st->hash_bits++); print_maxverbose("hashsize = %lld. bits = %lld. %luMB\n", hashsize, st->hash_bits, st->level->mb_used); /* 66% full at max. */ st->hash_limit = (1 << st->hash_bits) / 3 * 2; st->hash_table = calloc(sizeof(st->hash_table[0]), (1 << st->hash_bits)); } if (unlikely(!st->hash_table)) fatal("Failed to allocate hash table in hash_search\n"); st->minimum_tag_mask = tag_mask; st->tag_clean_ptr = 0; st->cksum = 0; st->hash_count = 0; p = 0; end = st->chunk_size - MINIMUM_MATCH; st->last_match = p; current.len = 0; current.p = p; current.ofs = 0; t = full_tag(control, st, p); while (p < end) { int lastpct = 0, last_chunkpct = 0; i64 reverse, mlen, offset = 0; p++; sb.offset_search = p; t = next_tag(control, st, p, t); /* Don't look for a match if there are no tags with this number of bits in the hash table. */ if ((t & st->minimum_tag_mask) != st->minimum_tag_mask) continue; mlen = find_best_match(control, st, t, p, end, &offset, &reverse); /* Only insert occasionally into hash. */ if ((t & tag_mask) == tag_mask) { st->stats.inserts++; st->hash_count++; insert_hash(st, t, p); if (st->hash_count > st->hash_limit) tag_mask = clean_one_from_hash(control, st); } if (mlen > current.len) { current.p = p - reverse; current.len = mlen; current.ofs = offset; } if ((current.len >= GREAT_MATCH || p >= current.p + MINIMUM_MATCH) && current.len >= MINIMUM_MATCH) { if (st->last_match < current.p) put_literal(control, st, st->last_match, current.p); put_match(control, st, current.p, current.ofs, current.len); st->last_match = current.p + current.len; current.p = p = st->last_match; current.len = 0; t = full_tag(control, st, p); } if (unlikely(p % 128 == 0)) { int pct, chunk_pct; pct = pct_base + (pct_multiple * (100.0 * p) / st->chunk_size); chunk_pct = p / (end / 100); if (pct != lastpct || chunk_pct != last_chunkpct) { if (!STDIN || st->stdin_eof) print_progress("Total: %2d%% ", pct); print_progress("Chunk: %2d%%\r", chunk_pct); lastpct = pct; last_chunkpct = chunk_pct; } } if (p > (i64)cksum_limit) { i64 i, n = MIN(st->chunk_size - p, control->page_size); uchar *ckbuf = malloc(n); if (unlikely(!ckbuf)) fatal("Failed to malloc ckbuf in hash_search\n"); for (i = 0; i < n; i++) memcpy(ckbuf + i, get_sb(control, cksum_limit + i), 1); st->cksum = CrcUpdate(st->cksum, ckbuf, n); md5_process_bytes(ckbuf, n, &control->ctx); cksum_limit += n; free(ckbuf); } } if (MAX_VERBOSE) show_distrib(control, st); if (st->last_match < st->chunk_size) put_literal(control, st, st->last_match, st->chunk_size); if (st->chunk_size > cksum_limit) { i64 i, n = st->chunk_size - cksum_limit; uchar *ckbuf = malloc(n); if (unlikely(!ckbuf)) fatal("Failed to malloc ckbuf in hash_search\n"); for (i = 0; i < n; i++) memcpy(ckbuf + i, get_sb(control, cksum_limit + i), 1); st->cksum = CrcUpdate(st->cksum, ckbuf, n); md5_process_bytes(ckbuf, n, &control->ctx); cksum_limit += n; free(ckbuf); } put_literal(control, st, 0, 0); put_u32(control, st->ss, st->cksum); } static void init_hash_indexes(struct rzip_state *st) { int i; for (i = 0; i < 256; i++) st->hash_index[i] = ((random() << 16) ^ random()); } extern const i64 one_g; static inline void *fake_mremap(void *old_address, size_t old_size, size_t new_size, int flags __UNUSED__) { munmap(old_address, old_size); return mmap(old_address, new_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); } /* stdin is not file backed so we have to emulate the mmap by mapping * anonymous ram and reading stdin into it. It means the maximum ram * we can use will be less but we will already have determined this in * rzip_chunk */ static void mmap_stdin(rzip_control *control, uchar *buf, struct rzip_state *st) { i64 len = st->chunk_size; uchar *offset_buf = buf; ssize_t ret; i64 total; total = 0; while (len > 0) { ret = MIN(len, one_g); ret = read(0, offset_buf, (size_t)ret); if (unlikely(ret < 0)) fatal("Failed to read in mmap_stdin\n"); total += ret; if (ret == 0) { /* Should be EOF */ if (total < 128) failure("Will not compress a tiny file\n"); print_maxverbose("Shrinking chunk to %lld\n", total); buf = (uchar *)mremap(buf, st->chunk_size, total, 0); if (unlikely(buf == MAP_FAILED)) fatal("Failed to remap to smaller buf in mmap_stdin\n"); st->mmap_size = st->chunk_size = total; control->eof = st->stdin_eof = 1; break; } offset_buf += ret; len -= ret; } control->st_size += total; } static void init_sliding_mmap(rzip_control *control, struct rzip_state *st, int fd_in, i64 offset) { /* Initialise the high buffer */ if (!STDIN) { sb.high_length = 65536; /* Round up to the next biggest page size */ if (sb.high_length % control->page_size) sb.high_length += control->page_size - (sb.high_length % control->page_size); sb.buf_high = (uchar *)mmap(NULL, sb.high_length, PROT_READ, MAP_SHARED, fd_in, offset); if (unlikely(sb.buf_high == MAP_FAILED)) fatal("Unable to mmap buf_high in init_sliding_mmap\n"); sb.size_high = sb.high_length; sb.offset_high = 0; } sb.offset_low = 0; sb.offset_search = 0; sb.size_low = st->mmap_size; sb.orig_size = st->chunk_size; sb.fd = fd_in; } /* compress a chunk of an open file. Assumes that the file is able to be mmap'd and is seekable */ static void rzip_chunk(rzip_control *control, struct rzip_state *st, int fd_in, int fd_out, i64 offset, double pct_base, double pct_multiple) { init_sliding_mmap(control, st, fd_in, offset); st->ss = open_stream_out(control, fd_out, NUM_STREAMS, st->chunk_size, st->chunk_bytes); if (unlikely(!st->ss)) fatal("Failed to open streams in rzip_chunk\n"); print_verbose("Beginning rzip pre-processing phase\n"); hash_search(control, st, pct_base, pct_multiple); /* unmap buffer before closing and reallocating streams */ if (unlikely(munmap(sb.buf_low, sb.size_low))) fatal("Failed to munmap in rzip_chunk\n"); if (!STDIN) { if (unlikely(munmap(sb.buf_high, sb.size_high))) fatal("Failed to munmap in rzip_chunk\n"); } if (unlikely(close_stream_out(control, st->ss))) fatal("Failed to flush/close streams in rzip_chunk\n"); } /* compress a whole file chunks at a time */ void rzip_fd(rzip_control *control, int fd_in, int fd_out) { /* add timers for ETA estimates * Base it off the file size and number of iterations required * depending on compression window size * Track elapsed time and estimated time to go * If file size < compression window, can't do */ struct timeval current, start, last; uchar md5_resblock[MD5_DIGEST_SIZE]; i64 len = 0, last_chunk = 0; int pass = 0, passes, j; struct rzip_state *st; struct statvfs fbuf; struct stat s, s2; double chunkmbs; i64 free_space; md5_init_ctx (&control->ctx); st = calloc(sizeof(*st), 1); if (unlikely(!st)) fatal("Failed to allocate control state in rzip_fd\n"); if (LZO_COMPRESS) { if (unlikely(lzo_init() != LZO_E_OK)) fatal("lzo_init() failed\n"); } if (unlikely(fstat(fd_in, &s))) fatal("Failed to stat fd_in in rzip_fd\n"); if (!STDIN) { len = control->st_size = s.st_size; if (len < 128) failure("Will not compress a tiny file\n"); print_verbose("File size: %lld\n", len); } else control->st_size = 0; if (!STDOUT) { /* Check if there's enough free space on the device chosen to fit the * compressed file, based on the compressed file being as large as the * uncompressed file. */ if (unlikely(fstatvfs(fd_out, &fbuf))) fatal("Failed to fstatvfs in compress_file\n"); free_space = (i64)fbuf.f_bsize * (i64)fbuf.f_bavail; if (free_space < control->st_size) { if (FORCE_REPLACE) print_err("Warning, possibly inadequate free space detected, but attempting to compress due to -f option being used.\n"); else failure("Possibly inadequate free space to compress file, use -f to override.\n"); } } /* Optimal use of ram involves using no more than 2/3 of it, so we * allocate 1/3 of it to the main buffer and use a sliding mmap * buffer to work on 2/3 ram size, leaving enough ram for the * compression backends */ control->max_mmap = control->maxram; round_to_page(&control->max_mmap); /* Set maximum chunk size to 2/3 of ram if not unlimited or specified * by a control window. When it's smaller than the file size, round it * to page size for efficiency. */ if (UNLIMITED) control->max_chunk = control->st_size; else if (control->window) control->max_chunk = control->window * CHUNK_MULTIPLE; else control->max_chunk = control->ramsize / 3 * 2; control->max_mmap = MIN(control->max_mmap, control->max_chunk); if (control->max_chunk < control->st_size) round_to_page(&control->max_chunk); if (!STDIN) st->chunk_size = MIN(control->max_chunk, len); else st->chunk_size = control->max_mmap; if (st->chunk_size < len) round_to_page(&st->chunk_size); st->level = &levels[control->compression_level]; st->fd_in = fd_in; st->fd_out = fd_out; st->stdin_eof = 0; init_hash_indexes(st); passes = 0; /* set timers and chunk counter */ last.tv_sec = last.tv_usec = 0; gettimeofday(&start, NULL); prepare_streamout_threads(control); while (len > 0 || (STDIN && !st->stdin_eof)) { double pct_base, pct_multiple; i64 offset = s.st_size - len; int bits = 8; st->chunk_size = control->max_chunk; st->mmap_size = control->max_mmap; if (!STDIN) { st->chunk_size = MIN(st->chunk_size, len); st->mmap_size = MIN(st->mmap_size, len); } retry: if (STDIN) { /* NOTE the buf is saved here for STDIN mode */ sb.buf_low = mmap(NULL, st->mmap_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); /* Better to shrink the window to the largest size that works than fail */ if (sb.buf_low == MAP_FAILED) { if (unlikely(errno != ENOMEM)) fatal("Failed to mmap %s\n", control->infile); st->mmap_size = st->mmap_size / 10 * 9; round_to_page(&st->mmap_size); if (unlikely(!st->mmap_size)) fatal("Unable to mmap any ram\n"); goto retry; } st->chunk_size = st->mmap_size; mmap_stdin(control, sb.buf_low, st); } else { /* NOTE The buf is saved here for !STDIN mode */ sb.buf_low = (uchar *)mmap(sb.buf_low, st->mmap_size, PROT_READ, MAP_SHARED, fd_in, offset); if (sb.buf_low == MAP_FAILED) { if (unlikely(errno != ENOMEM)) fatal("Failed to mmap %s\n", control->infile); st->mmap_size = st->mmap_size / 10 * 9; round_to_page(&st->mmap_size); if (unlikely(!st->mmap_size)) fatal("Unable to mmap any ram\n"); goto retry; } if (st->mmap_size < st->chunk_size) print_maxverbose("Enabling sliding mmap mode and using mmap of %lld bytes with window of %lld bytes\n", st->mmap_size, st->chunk_size); } print_maxverbose("Succeeded in testing %lld sized mmap for rzip pre-processing\n", st->mmap_size); if (st->chunk_size > control->ramsize) print_verbose("Compression window is larger than ram, will proceed with unlimited mode possibly much slower\n"); if (!passes && !STDIN) { passes = s.st_size / st->chunk_size + !!(s.st_size % st->chunk_size); if (passes == 1) print_verbose("Will take 1 pass\n"); else print_verbose("Will take %d passes\n", passes); } sb.orig_offset = offset; print_maxverbose("Chunk size: %lld\n", st->chunk_size); /* Determine the chunk byte width to write to the file * This allows archives of different chunk sizes to have * optimal byte width entries. When working with stdin we * won't know in advance how big it is so it will always be * rounded up to the window size. */ while (st->chunk_size >> bits > 0) bits++; st->chunk_bytes = bits / 8; if (bits % 8) st->chunk_bytes++; print_maxverbose("Byte width: %d\n", st->chunk_bytes); if (STDIN) pct_base = (100.0 * -len) / control->st_size; else pct_base = (100.0 * (control->st_size - len)) / control->st_size; pct_multiple = ((double)st->chunk_size) / control->st_size; pass++; if (st->stdin_eof) passes = pass; gettimeofday(¤t, NULL); /* this will count only when size > window */ if (last.tv_sec > 0) { unsigned int eta_hours, eta_minutes, eta_seconds, elapsed_time, finish_time, elapsed_hours, elapsed_minutes, elapsed_seconds, diff_seconds; elapsed_time = current.tv_sec - start.tv_sec; finish_time = elapsed_time / (pct_base / 100.0); elapsed_hours = elapsed_time / 3600; elapsed_minutes = (elapsed_time / 60) % 60; elapsed_seconds = elapsed_time % 60; diff_seconds = finish_time - elapsed_time; eta_hours = diff_seconds / 3600; eta_minutes = (diff_seconds / 60) % 60; eta_seconds = diff_seconds % 60; chunkmbs = (last_chunk / 1024 / 1024) / (double)(current.tv_sec-last.tv_sec); if (!STDIN || st->stdin_eof) print_verbose("\nPass %d / %d -- Elapsed Time: %02d:%02d:%02d. ETA: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n", pass, passes, elapsed_hours, elapsed_minutes, elapsed_seconds, eta_hours, eta_minutes, eta_seconds, chunkmbs); else print_verbose("\nPass %d -- Elapsed Time: %02d:%02d:%02d. Compress Speed: %3.3fMB/s.\n", pass, elapsed_hours, elapsed_minutes, elapsed_seconds, chunkmbs); } last.tv_sec = current.tv_sec; last.tv_usec = current.tv_usec; if (st->chunk_size == len) control->eof = 1; rzip_chunk(control, st, fd_in, fd_out, offset, pct_base, pct_multiple); /* st->chunk_size may be shrunk in rzip_chunk */ last_chunk = st->chunk_size; len -= st->chunk_size; if (unlikely(len > 0 && control->eof)) failure("Wrote EOF to file yet chunk_size was shrunk, corrupting archive.\n"); } close_streamout_threads(control); if (likely(st->hash_table)) free(st->hash_table); md5_finish_ctx(&control->ctx, md5_resblock); if (HASH_CHECK || MAX_VERBOSE) { print_output("MD5: "); for (j = 0; j < MD5_DIGEST_SIZE; j++) print_output("%02x", md5_resblock[j] & 0xFF); print_output("\n"); } /* When encrypting data, we encrypt the MD5 value as well */ if (ENCRYPT) lrz_encrypt(control, md5_resblock, MD5_DIGEST_SIZE, control->salt_pass); if (unlikely(write_1g(control, md5_resblock, MD5_DIGEST_SIZE) != MD5_DIGEST_SIZE)) fatal("Failed to write md5 in rzip_fd\n"); if (TMP_OUTBUF) flush_tmpoutbuf(control); gettimeofday(¤t, NULL); if (STDIN) s.st_size = control->st_size; chunkmbs = (s.st_size / 1024 / 1024) / ((double)(current.tv_sec-start.tv_sec)? : 1); fstat(fd_out, &s2); print_maxverbose("matches=%u match_bytes=%u\n", (unsigned int)st->stats.matches, (unsigned int)st->stats.match_bytes); print_maxverbose("literals=%u literal_bytes=%u\n", (unsigned int)st->stats.literals, (unsigned int)st->stats.literal_bytes); print_maxverbose("true_tag_positives=%u false_tag_positives=%u\n", (unsigned int)st->stats.tag_hits, (unsigned int)st->stats.tag_misses); print_maxverbose("inserts=%u match %.3f\n", (unsigned int)st->stats.inserts, (1.0 + st->stats.match_bytes) / st->stats.literal_bytes); if (!STDIN) print_progress("%s - ", control->infile); print_progress("Compression Ratio: %.3f. Average Compression Speed: %6.3fMB/s.\n", 1.0 * s.st_size / s2.st_size, chunkmbs); free(st); }