/* libzpaq.cpp - Part of LIBZPAQ Version 5.01 Copyright (C) 2011, Dell Inc. Written by Matt Mahoney. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so without restriction. This Software is provided "as is" without warranty. LIBZPAQ is a C++ library for compression and decompression of data conforming to the ZPAQ level 2 standard. See http://mattmahoney.net/zpaq/ */ #include "libzpaq.h" #include #include #include #include #ifndef NOJIT #ifndef _WIN32 #include #else #include #endif #endif namespace libzpaq { // Standard library redirections void* calloc(size_t a, size_t b) {return ::calloc(a, b);} void free(void* p) {::free(p);} int memcmp(const void* d, const void* s, size_t n) { return ::memcmp(d, s, n);} void* memset(void* d, int c, size_t n) {return ::memset(d, c, n);} double log(double x) {return ::log(x);} double exp(double x) {return ::exp(x);} double pow(double x, double y) {return ::pow(x, y);} // Read 16 bit little-endian number int toU16(const char* p) { return (p[0]&255)+256*(p[1]&255); } // Default read() and write() int Reader::read(char* buf, int n) { int i=0, c; while (i=0) buf[i++]=c; return i; } void Writer::write(const char* buf, int n) { for (int i=0; i 0 bytes of executable memory and update // p to point to it and newsize = n. Free any previously // allocated memory first. If newsize is 0 then free only. // Call error in case of failure. If NOJIT, ignore newsize // and set p=0, n=0 without allocating memory. void allocx(U8* &p, int &n, int newsize) { #ifdef NOJIT p=0; n=0; #else if (p || n) { if (p) #ifndef _WIN32 munmap(p, n); #else // Windows VirtualFree(p, 0, MEM_RELEASE); #endif p=0; n=0; } if (newsize>0) { #ifndef _WIN32 p=(U8*)mmap(0, newsize, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1, 0); if ((void*)p==MAP_FAILED) p=0; #else p=(U8*)VirtualAlloc(0, newsize, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE); #endif if (p) n=newsize; else { n=0; error("allocx failed"); } } #endif } //////////////////////////// SHA1 //////////////////////////// // SHA1 code, see http://en.wikipedia.org/wiki/SHA-1 // Start a new hash void SHA1::init() { len0=len1=0; h[0]=0x67452301; h[1]=0xEFCDAB89; h[2]=0x98BADCFE; h[3]=0x10325476; h[4]=0xC3D2E1F0; } // Return old result and start a new hash const char* SHA1::result() { // pad and append length const U32 s1=len1, s0=len0; put(0x80); while ((len0&511)!=448) put(0); put(s1>>24); put(s1>>16); put(s1>>8); put(s1); put(s0>>24); put(s0>>16); put(s0>>8); put(s0); // copy h to hbuf for (int i=0; i<5; ++i) { hbuf[4*i]=h[i]>>24; hbuf[4*i+1]=h[i]>>16; hbuf[4*i+2]=h[i]>>8; hbuf[4*i+3]=h[i]; } // return hash prior to clearing state init(); return hbuf; } // Hash 1 block of 64 bytes void SHA1::process() { for (int i=16; i<80; ++i) { w[i]=w[i-3]^w[i-8]^w[i-14]^w[i-16]; w[i]=w[i]<<1|w[i]>>31; } U32 a=h[0]; U32 b=h[1]; U32 c=h[2]; U32 d=h[3]; U32 e=h[4]; const U32 k1=0x5A827999, k2=0x6ED9EBA1, k3=0x8F1BBCDC, k4=0xCA62C1D6; #define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(~b&d))+k1+w[i]; b=b<<30|b>>2; #define f5(i) f1(a,b,c,d,e,i) f1(e,a,b,c,d,i+1) f1(d,e,a,b,c,i+2) \ f1(c,d,e,a,b,i+3) f1(b,c,d,e,a,i+4) f5(0) f5(5) f5(10) f5(15) #undef f1 #define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k2+w[i]; b=b<<30|b>>2; f5(20) f5(25) f5(30) f5(35) #undef f1 #define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+((b&c)|(b&d)|(c&d))+k3+w[i]; b=b<<30|b>>2; f5(40) f5(45) f5(50) f5(55) #undef f1 #define f1(a,b,c,d,e,i) e+=(a<<5|a>>27)+(b^c^d)+k4+w[i]; b=b<<30|b>>2; f5(60) f5(65) f5(70) f5(75) #undef f1 #undef f5 h[0]+=a; h[1]+=b; h[2]+=c; h[3]+=d; h[4]+=e; } //////////////////////////// Component /////////////////////// // A Component is a context model, indirect context model, match model, // fixed weight mixer, adaptive 2 input mixer without or with current // partial byte as context, adaptive m input mixer (without or with), // or SSE (without or with). const int compsize[256]={0,2,3,2,3,4,6,6,3,5}; void Component::init() { limit=cxt=a=b=c=0; cm.resize(0); ht.resize(0); a16.resize(0); } ////////////////////////// StateTable ////////////////////////// // How many states with count of n0 zeros, n1 ones (0...2) int StateTable::num_states(int n0, int n1) { const int B=6; const int bound[B]={20,48,15,8,6,5}; // n0 -> max n1, n1 -> max n0 if (n0=B || n0>bound[n1]) return 0; return 1+(n1>0 && n0+n1<=17); } // New value of count n0 if 1 is observed (and vice versa) void StateTable::discount(int& n0) { n0=(n0>=1)+(n0>=2)+(n0>=3)+(n0>=4)+(n0>=5)+(n0>=7)+(n0>=8); } // compute next n0,n1 (0 to N) given input y (0 or 1) void StateTable::next_state(int& n0, int& n1, int y) { if (n0 20,0 // 48,1,0 -> 48,1 // 15,2,0 -> 8,1 // 8,3,0 -> 6,2 // 8,3,1 -> 5,3 // 6,4,0 -> 5,3 // 5,5,0 -> 5,4 // 5,5,1 -> 4,5 while (!num_states(n0, n1)) { if (n1<2) --n0; else { n0=(n0*(n1-1)+(n1/2))/n1; --n1; } } } } // Initialize next state table ns[state*4] -> next if 0, next if 1, n0, n1 StateTable::StateTable() { // Assign states by increasing priority const int N=50; U8 t[N][N][2]={{{0}}}; // (n0,n1,y) -> state number int state=0; for (int i=0; i=0 && n<=2); if (n) { t[n0][n1][0]=state; t[n0][n1][1]=state+n-1; state+=n; } } } // Generate next state table memset(ns, 0, sizeof(ns)); for (int n0=0; n0=0 && s<256); int s0=n0, s1=n1; next_state(s0, s1, 0); assert(s0>=0 && s0=0 && s1=0 && s0=0 && s1=7); assert(hbegin>=cend); assert(hend>=hbegin); assert(out2); if (!pp) { // if not a postprocessor then write COMP for (int i=0; iput(header[i]); } else { // write PCOMP size only out2->put((hend-hbegin)&255); out2->put((hend-hbegin)>>8); } for (int i=hbegin; iput(header[i]); return true; } // Read header from in2 int ZPAQL::read(Reader* in2) { // Get header size and allocate int hsize=in2->get(); hsize+=in2->get()*256; header.resize(hsize+300); cend=hbegin=hend=0; header[cend++]=hsize&255; header[cend++]=hsize>>8; while (cend<7) header[cend++]=in2->get(); // hh hm ph pm n // Read COMP int n=header[cend-1]; for (int i=0; iget(); // component type if (type==-1) error("unexpected end of file"); header[cend++]=type; // component type int size=compsize[type]; if (size<1) error("Invalid component type"); if (cend+size>header.isize()-8) error("COMP list too big"); for (int j=1; jget(); } if ((header[cend++]=in2->get())!=0) error("missing COMP END"); // Insert a guard gap and read HCOMP hbegin=hend=cend+128; while (hendget(); if (op==-1) error("unexpected end of file"); header[hend++]=op; } if ((header[hend++]=in2->get())!=0) error("missing HCOMP END"); assert(cend>=7 && cendhbegin && hend6); assert(output==0); assert(sha1==0); init(header[2], header[3]); // hh, hm } // Initialize machine state as PCOMP void ZPAQL::initp() { assert(header.isize()>6); init(header[4], header[5]); // ph, pm } // Flush pending output void ZPAQL::flush() { if (output) output->write(&outbuf[0], bufptr); if (sha1) for (int i=0; iput(U8(outbuf[i])); bufptr=0; } // Return memory requirement in bytes double ZPAQL::memory() { double mem=pow(2.0,header[2]+2)+pow(2.0,header[3]) // hh hm +pow(2.0,header[4]+2)+pow(2.0,header[5]) // ph pm +header.size(); int cp=7; // start of comp list for (int i=0; i0); assert(cend>=7); assert(hbegin>=cend+128); assert(hend>=hbegin); assert(hend0); h.resize(1, hbits); m.resize(1, mbits); r.resize(256); a=b=c=d=pc=f=0; } // Run program on input by interpreting header void ZPAQL::run0(U32 input) { assert(cend>6); assert(hbegin>=cend+128); assert(hend>=hbegin); assert(hend0); assert(h.size()>0); assert(header[0]+256*header[1]==cend+hend-hbegin-2); pc=hbegin; a=input; while (execute()) ; } // Execute one instruction, return 0 after HALT else 1 int ZPAQL::execute() { switch(header[pc++]) { case 0: err(); break; // ERROR case 1: ++a; break; // A++ case 2: --a; break; // A-- case 3: a = ~a; break; // A! case 4: a = 0; break; // A=0 case 7: a = r[header[pc++]]; break; // A=R N case 8: swap(b); break; // B<>A case 9: ++b; break; // B++ case 10: --b; break; // B-- case 11: b = ~b; break; // B! case 12: b = 0; break; // B=0 case 15: b = r[header[pc++]]; break; // B=R N case 16: swap(c); break; // C<>A case 17: ++c; break; // C++ case 18: --c; break; // C-- case 19: c = ~c; break; // C! case 20: c = 0; break; // C=0 case 23: c = r[header[pc++]]; break; // C=R N case 24: swap(d); break; // D<>A case 25: ++d; break; // D++ case 26: --d; break; // D-- case 27: d = ~d; break; // D! case 28: d = 0; break; // D=0 case 31: d = r[header[pc++]]; break; // D=R N case 32: swap(m(b)); break; // *B<>A case 33: ++m(b); break; // *B++ case 34: --m(b); break; // *B-- case 35: m(b) = ~m(b); break; // *B! case 36: m(b) = 0; break; // *B=0 case 39: if (f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JT N case 40: swap(m(c)); break; // *C<>A case 41: ++m(c); break; // *C++ case 42: --m(c); break; // *C-- case 43: m(c) = ~m(c); break; // *C! case 44: m(c) = 0; break; // *C=0 case 47: if (!f) pc+=((header[pc]+128)&255)-127; else ++pc; break; // JF N case 48: swap(h(d)); break; // *D<>A case 49: ++h(d); break; // *D++ case 50: --h(d); break; // *D-- case 51: h(d) = ~h(d); break; // *D! case 52: h(d) = 0; break; // *D=0 case 55: r[header[pc++]] = a; break; // R=A N case 56: return 0 ; // HALT case 57: outc(a&255); break; // OUT case 59: a = (a+m(b)+512)*773; break; // HASH case 60: h(d) = (h(d)+a+512)*773; break; // HASHD case 63: pc+=((header[pc]+128)&255)-127; break; // JMP N case 64: break; // A=A case 65: a = b; break; // A=B case 66: a = c; break; // A=C case 67: a = d; break; // A=D case 68: a = m(b); break; // A=*B case 69: a = m(c); break; // A=*C case 70: a = h(d); break; // A=*D case 71: a = header[pc++]; break; // A= N case 72: b = a; break; // B=A case 73: break; // B=B case 74: b = c; break; // B=C case 75: b = d; break; // B=D case 76: b = m(b); break; // B=*B case 77: b = m(c); break; // B=*C case 78: b = h(d); break; // B=*D case 79: b = header[pc++]; break; // B= N case 80: c = a; break; // C=A case 81: c = b; break; // C=B case 82: break; // C=C case 83: c = d; break; // C=D case 84: c = m(b); break; // C=*B case 85: c = m(c); break; // C=*C case 86: c = h(d); break; // C=*D case 87: c = header[pc++]; break; // C= N case 88: d = a; break; // D=A case 89: d = b; break; // D=B case 90: d = c; break; // D=C case 91: break; // D=D case 92: d = m(b); break; // D=*B case 93: d = m(c); break; // D=*C case 94: d = h(d); break; // D=*D case 95: d = header[pc++]; break; // D= N case 96: m(b) = a; break; // *B=A case 97: m(b) = b; break; // *B=B case 98: m(b) = c; break; // *B=C case 99: m(b) = d; break; // *B=D case 100: m(b) = m(b); break; // *B=*B case 101: m(b) = m(c); break; // *B=*C case 102: m(b) = h(d); break; // *B=*D case 103: m(b) = header[pc++]; break; // *B= N case 104: m(c) = a; break; // *C=A case 105: m(c) = b; break; // *C=B case 106: m(c) = c; break; // *C=C case 107: m(c) = d; break; // *C=D case 108: m(c) = m(b); break; // *C=*B case 109: m(c) = m(c); break; // *C=*C case 110: m(c) = h(d); break; // *C=*D case 111: m(c) = header[pc++]; break; // *C= N case 112: h(d) = a; break; // *D=A case 113: h(d) = b; break; // *D=B case 114: h(d) = c; break; // *D=C case 115: h(d) = d; break; // *D=D case 116: h(d) = m(b); break; // *D=*B case 117: h(d) = m(c); break; // *D=*C case 118: h(d) = h(d); break; // *D=*D case 119: h(d) = header[pc++]; break; // *D= N case 128: a += a; break; // A+=A case 129: a += b; break; // A+=B case 130: a += c; break; // A+=C case 131: a += d; break; // A+=D case 132: a += m(b); break; // A+=*B case 133: a += m(c); break; // A+=*C case 134: a += h(d); break; // A+=*D case 135: a += header[pc++]; break; // A+= N case 136: a -= a; break; // A-=A case 137: a -= b; break; // A-=B case 138: a -= c; break; // A-=C case 139: a -= d; break; // A-=D case 140: a -= m(b); break; // A-=*B case 141: a -= m(c); break; // A-=*C case 142: a -= h(d); break; // A-=*D case 143: a -= header[pc++]; break; // A-= N case 144: a *= a; break; // A*=A case 145: a *= b; break; // A*=B case 146: a *= c; break; // A*=C case 147: a *= d; break; // A*=D case 148: a *= m(b); break; // A*=*B case 149: a *= m(c); break; // A*=*C case 150: a *= h(d); break; // A*=*D case 151: a *= header[pc++]; break; // A*= N case 152: div(a); break; // A/=A case 153: div(b); break; // A/=B case 154: div(c); break; // A/=C case 155: div(d); break; // A/=D case 156: div(m(b)); break; // A/=*B case 157: div(m(c)); break; // A/=*C case 158: div(h(d)); break; // A/=*D case 159: div(header[pc++]); break; // A/= N case 160: mod(a); break; // A%=A case 161: mod(b); break; // A%=B case 162: mod(c); break; // A%=C case 163: mod(d); break; // A%=D case 164: mod(m(b)); break; // A%=*B case 165: mod(m(c)); break; // A%=*C case 166: mod(h(d)); break; // A%=*D case 167: mod(header[pc++]); break; // A%= N case 168: a &= a; break; // A&=A case 169: a &= b; break; // A&=B case 170: a &= c; break; // A&=C case 171: a &= d; break; // A&=D case 172: a &= m(b); break; // A&=*B case 173: a &= m(c); break; // A&=*C case 174: a &= h(d); break; // A&=*D case 175: a &= header[pc++]; break; // A&= N case 176: a &= ~ a; break; // A&~A case 177: a &= ~ b; break; // A&~B case 178: a &= ~ c; break; // A&~C case 179: a &= ~ d; break; // A&~D case 180: a &= ~ m(b); break; // A&~*B case 181: a &= ~ m(c); break; // A&~*C case 182: a &= ~ h(d); break; // A&~*D case 183: a &= ~ header[pc++]; break; // A&~ N case 184: a |= a; break; // A|=A case 185: a |= b; break; // A|=B case 186: a |= c; break; // A|=C case 187: a |= d; break; // A|=D case 188: a |= m(b); break; // A|=*B case 189: a |= m(c); break; // A|=*C case 190: a |= h(d); break; // A|=*D case 191: a |= header[pc++]; break; // A|= N case 192: a ^= a; break; // A^=A case 193: a ^= b; break; // A^=B case 194: a ^= c; break; // A^=C case 195: a ^= d; break; // A^=D case 196: a ^= m(b); break; // A^=*B case 197: a ^= m(c); break; // A^=*C case 198: a ^= h(d); break; // A^=*D case 199: a ^= header[pc++]; break; // A^= N case 200: a <<= (a&31); break; // A<<=A case 201: a <<= (b&31); break; // A<<=B case 202: a <<= (c&31); break; // A<<=C case 203: a <<= (d&31); break; // A<<=D case 204: a <<= (m(b)&31); break; // A<<=*B case 205: a <<= (m(c)&31); break; // A<<=*C case 206: a <<= (h(d)&31); break; // A<<=*D case 207: a <<= (header[pc++]&31); break; // A<<= N case 208: a >>= (a&31); break; // A>>=A case 209: a >>= (b&31); break; // A>>=B case 210: a >>= (c&31); break; // A>>=C case 211: a >>= (d&31); break; // A>>=D case 212: a >>= (m(b)&31); break; // A>>=*B case 213: a >>= (m(c)&31); break; // A>>=*C case 214: a >>= (h(d)&31); break; // A>>=*D case 215: a >>= (header[pc++]&31); break; // A>>= N case 216: f = (true); break; // A==A case 217: f = (a == b); break; // A==B case 218: f = (a == c); break; // A==C case 219: f = (a == d); break; // A==D case 220: f = (a == U32(m(b))); break; // A==*B case 221: f = (a == U32(m(c))); break; // A==*C case 222: f = (a == h(d)); break; // A==*D case 223: f = (a == U32(header[pc++])); break; // A== N case 224: f = (false); break; // AA case 233: f = (a > b); break; // A>B case 234: f = (a > c); break; // A>C case 235: f = (a > d); break; // A>D case 236: f = (a > U32(m(b))); break; // A>*B case 237: f = (a > U32(m(c))); break; // A>*C case 238: f = (a > h(d)); break; // A>*D case 239: f = (a > U32(header[pc++])); break; // A> N case 255: if((pc=hbegin+header[pc]+256*header[pc+1])>=hend)err();break;//LJ default: err(); } return 1; } // Print illegal instruction error message and exit void ZPAQL::err() { error("ZPAQL execution error"); } ///////////////////////// Predictor ///////////////////////// // Initailize model-independent tables Predictor::Predictor(ZPAQL& zr): c8(1), hmap4(1), z(zr) { assert(sizeof(U8)==1); assert(sizeof(U16)==2); assert(sizeof(U32)==4); assert(sizeof(U64)==8); assert(sizeof(short)==2); assert(sizeof(int)==4); // Initialize tables dt2k[0]=0; for (int i=1; i<256; ++i) dt2k[i]=2048/i; for (int i=0; i<1024; ++i) dt[i]=(1<<17)/(i*2+3)*2; for (int i=0; i<32768; ++i) stretcht[i]=int(log((i+0.5)/(32767.5-i))*64+0.5+100000)-100000; for (int i=0; i<4096; ++i) squasht[i]=int(32768.0/(1+exp((i-2048)*(-1.0/64)))); // Verify floating point math for squash() and stretch() U32 sqsum=0, stsum=0; for (int i=32767; i>=0; --i) stsum=stsum*3+stretch(i); for (int i=4095; i>=0; --i) sqsum=sqsum*3+squash(i-2048); assert(stsum==3887533746u); assert(sqsum==2278286169u); pcode=0; pcode_size=0; } Predictor::~Predictor() { allocx(pcode, pcode_size, 0); // free executable memory } // Initialize the predictor with a new model in z void Predictor::init() { // Clear old JIT code if any allocx(pcode, pcode_size, 0); // Initialize context hash function z.inith(); // Initialize predictions for (int i=0; i<256; ++i) h[i]=p[i]=0; // Initialize components for (int i=0; i<256; ++i) // clear old model comp[i].init(); int n=z.header[6]; // hsize[0..1] hh hm ph pm n (comp)[n] END 0[128] (hcomp) END const U8* cp=&z.header[7]; // start of component list for (int i=0; i&z.header[0] && cp<&z.header[z.header.isize()-8]); Component& cr=comp[i]; switch(cp[0]) { case CONS: // c p[i]=(cp[1]-128)*4; break; case CM: // sizebits limit if (cp[1]>32) error("max size for CM is 32"); cr.cm.resize(1, cp[1]); // packed CM (22 bits) + CMCOUNT (10 bits) cr.limit=cp[2]*4; for (size_t j=0; j26) error("max size for ICM is 26"); cr.limit=1023; cr.cm.resize(256); cr.ht.resize(64, cp[1]); for (size_t j=0; j32 || cp[2]>32) error("max size for MATCH is 32 32"); cr.cm.resize(1, cp[1]); // index cr.ht.resize(1, cp[2]); // buf cr.ht(0)=1; break; case AVG: // j k wt if (cp[1]>=i) error("AVG j >= i"); if (cp[2]>=i) error("AVG k >= i"); break; case MIX2: // sizebits j k rate mask if (cp[1]>32) error("max size for MIX2 is 32"); if (cp[3]>=i) error("MIX2 k >= i"); if (cp[2]>=i) error("MIX2 j >= i"); cr.c=(size_t(1)<32) error("max size for MIX is 32"); if (cp[2]>=i) error("MIX j >= i"); if (cp[3]<1 || cp[3]>i-cp[2]) error("MIX m not in 1..i-j"); int m=cp[3]; // number of inputs assert(m>=1); cr.c=(size_t(1)<32) error("max size for ISSE is 32"); if (cp[2]>=i) error("ISSE j >= i"); cr.ht.resize(64, cp[1]); cr.cm.resize(512); for (int j=0; j<256; ++j) { cr.cm[j*2]=1<<15; cr.cm[j*2+1]=clamp512k(stretch(st.cminit(j)>>8)<<10); } break; case SSE: // sizebits j start limit if (cp[1]>32) error("max size for SSE is 32"); if (cp[2]>=i) error("SSE j >= i"); if (cp[3]>cp[4]*4) error("SSE start > limit*4"); cr.cm.resize(32, cp[1]); cr.limit=cp[4]*4; for (size_t j=0; j0); cp+=compsize[*cp]; assert(cp>=&z.header[7] && cp<&z.header[z.cend]); } } // Return next bit prediction using interpreted COMP code int Predictor::predict0() { assert(c8>=1 && c8<=255); // Predict next bit int n=z.header[6]; assert(n>0 && n<=255); const U8* cp=&z.header[7]; assert(cp[-1]==n); for (int i=0; i&z.header[0] && cp<&z.header[z.header.isize()-8]); Component& cr=comp[i]; switch(cp[0]) { case CONS: // c break; case CM: // sizebits limit cr.cxt=h[i]^hmap4; p[i]=stretch(cr.cm(cr.cxt)>>17); break; case ICM: // sizebits assert((hmap4&15)>0); if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8); cr.cxt=cr.ht[cr.c+(hmap4&15)]; p[i]=stretch(cr.cm(cr.cxt)>>8); break; case MATCH: // sizebits bufbits: a=len, b=offset, c=bit, cxt=bitpos, // ht=buf, limit=pos assert(cr.cm.size()==(size_t(1)<>(7-cr.cxt))&1; // predicted bit p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767); } break; case AVG: // j k wt p[i]=(p[cp[1]]*cp[3]+p[cp[2]]*(256-cp[3]))>>8; break; case MIX2: { // sizebits j k rate mask // c=size cm=wt[size] cxt=input cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1)); assert(cr.cxt=0 && w<65536); p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16; assert(p[i]>=-2048 && p[i]<2048); } break; case MIX: { // sizebits j m rate mask // c=size cm=wt[size][m] cxt=index of wt in cm int m=cp[3]; assert(m>=1 && m<=i); cr.cxt=h[i]+(c8&cp[5]); cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights assert(cr.cxt<=cr.cm.size()-m); int* wt=(int*)&cr.cm[cr.cxt]; p[i]=0; for (int j=0; j>8)*p[cp[2]+j]; p[i]=clamp2k(p[i]>>8); } break; case ISSE: { // sizebits j -- c=hi, cxt=bh assert((hmap4&15)>0); if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8); cr.cxt=cr.ht[cr.c+(hmap4&15)]; // bit history int *wt=(int*)&cr.cm[cr.cxt*2]; p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16); } break; case SSE: { // sizebits j start limit cr.cxt=(h[i]+c8)*32; int pq=p[cp[2]]+992; if (pq<0) pq=0; if (pq>1983) pq=1983; int wt=pq&63; pq>>=6; assert(pq>=0 && pq<=30); cr.cxt+=pq; p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt)+(cr.cm(cr.cxt+1)>>10)*wt)>>13); cr.cxt+=wt>>5; } break; default: error("component predict not implemented"); } cp+=compsize[cp[0]]; assert(cp<&z.header[z.cend]); assert(p[i]>=-2048 && p[i]<2048); } assert(cp[0]==NONE); return squash(p[n-1]); } // Update model with decoded bit y (0...1) void Predictor::update0(int y) { assert(y==0 || y==1); assert(c8>=1 && c8<=255); assert(hmap4>=1 && hmap4<=511); // Update components const U8* cp=&z.header[7]; int n=z.header[6]; assert(n>=1 && n<=255); assert(cp[-1]==n); for (int i=0; i>8))>>2; } break; case MATCH: // sizebits bufbits: // a=len, b=offset, c=bit, cm=index, cxt=bitpos // ht=buf, limit=pos { assert(cr.a<=255); assert(cr.c==0 || cr.c==1); assert(cr.cxt<8); assert(cr.cm.size()==(size_t(1)<>5; int w=cr.a16[cr.cxt]; w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13; if (w<0) w=0; if (w>65535) w=65535; cr.a16[cr.cxt]=w; } break; case MIX: { // sizebits j m rate mask // cm=wt[size][m], cxt=input int m=cp[3]; assert(m>0 && m<=i); assert(cr.cm.size()==m*cr.c); assert(cr.cxt+m<=cr.cm.size()); int err=(y*32767-squash(p[i]))*cp[4]>>4; int* wt=(int*)&cr.cm[cr.cxt]; for (int j=0; j>13)); } break; case ISSE: { // sizebits j -- c=hi, cxt=bh assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]); int err=y*32767-squash(p[i]); int *wt=(int*)&cr.cm[cr.cxt*2]; wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13)); wt[1]=clamp512k(wt[1]+((err+16)>>5)); cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y); } break; case SSE: // sizebits j start limit train(cr, y); break; default: assert(0); } cp+=compsize[cp[0]]; assert(cp>=&z.header[7] && cp<&z.header[z.cend] && cp<&z.header[z.header.isize()-8]); } assert(cp[0]==NONE); // Save bit y in c8, hmap4 c8+=c8+y; if (c8>=256) { z.run(c8-256); hmap4=1; c8=1; for (int i=0; i=16 && c8<32) hmap4=(hmap4&0xf)<<5|y<<4|1; else hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf); } // Find cxt row in hash table ht. ht has rows of 16 indexed by the // low sizebits of cxt with element 0 having the next higher 8 bits for // collision detection. If not found after 3 adjacent tries, replace the // row with lowest element 1 as priority. Return index of row. size_t Predictor::find(Array& ht, int sizebits, U32 cxt) { assert(ht.size()==size_t(16)<>sizebits&255; size_t h0=(cxt*16)&(ht.size()-16); if (ht[h0]==chk) return h0; size_t h1=h0^16; if (ht[h1]==chk) return h1; size_t h2=h0^32; if (ht[h2]==chk) return h2; if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1]) return memset(&ht[h0], 0, 16), ht[h0]=chk, h0; else if (ht[h1+1]get(); if (c<0) error("unexpected end of input"); curr=curr<<8|c; } } U32 n=buf.size(); if (n>curr) n=curr; high=in->read(&buf[0], n); curr-=high; low=0; } // Return next bit of decoded input, which has 16 bit probability p of being 1 int Decoder::decode(int p) { assert(p>=0 && p<65536); assert(high>low && low>0); if (currhigh) error("archive corrupted"); assert(curr>=low && curr<=high); U32 mid=low+U32(((high-low)*U64(U32(p)))>>16); // split range assert(high>mid && mid>=low); int y=curr<=mid; if (y) high=mid; else low=mid+1; // pick half while ((high^low)<0x1000000) { // shift out identical leading bytes high=high<<8|255; low=low<<8; low+=(low==0); int c=in->get(); if (c<0) error("unexpected end of file"); curr=curr<<8|c; } return y; } // Decompress 1 byte or -1 at end of input int Decoder::decompress() { if (pr.isModeled()) { // n>0 components? if (curr==0) { // segment initialization for (int i=0; i<4; ++i) curr=curr<<8|in->get(); } if (decode(0)) { if (curr!=0) error("decoding end of stream"); return -1; } else { int c=1; while (c<256) { // get 8 bits int p=pr.predict()*2+1; c+=c+decode(p); pr.update(c&1); } return c-256; } } else { if (low==high) loadbuf(); if (low==high) return -1; return buf[low++]&255; } } // Find end of compressed data and return next byte int Decoder::skip() { int c=-1; if (pr.isModeled()) { while (curr==0) // at start? curr=in->get(); while (curr && (c=in->get())>=0) // find 4 zeros curr=curr<<8|c; while ((c=in->get())==0) ; // might be more than 4 return c; } else { if (curr==0) // at start? for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c; while (curr>0) { U32 n=BUFSIZE; if (n>curr) n=curr; U32 n1=in->read(&buf[0], n); curr-=n1; if (n1!=n) return -1; if (curr==0) for (int i=0; i<4 && (c=in->get())>=0; ++i) curr=curr<<8|c; } if (c>=0) c=in->get(); return c; } } ////////////////////// PostProcessor ////////////////////// // Copy ph, pm from block header void PostProcessor::init(int h, int m) { state=hsize=0; ph=h; pm=m; z.clear(); } // (PASS=0 | PROG=1 psize[0..1] pcomp[0..psize-1]) data... EOB=-1 // Return state: 1=PASS, 2..4=loading PROG, 5=PROG loaded int PostProcessor::write(int c) { assert(c>=-1 && c<=255); switch (state) { case 0: // initial state if (c<0) error("Unexpected EOS"); state=c+1; // 1=PASS, 2=PROG if (state>2) error("unknown post processing type"); if (state==1) z.clear(); break; case 1: // PASS z.outc(c); break; case 2: // PROG if (c<0) error("Unexpected EOS"); hsize=c; // low byte of size state=3; break; case 3: // PROG psize[0] if (c<0) error("Unexpected EOS"); hsize+=c*256; // high byte of psize z.header.resize(hsize+300); z.cend=8; z.hbegin=z.hend=z.cend+128; z.header[4]=ph; z.header[5]=pm; state=4; break; case 4: // PROG psize[0..1] pcomp[0...] if (c<0) error("Unexpected EOS"); assert(z.hend>8; z.initp(); state=5; } break; case 5: // PROG ... data z.run(c); if (c<0) z.flush(); break; } return state; } /////////////////////// Decompresser ///////////////////// // Find the start of a block and return true if found. Set memptr // to memory used. bool Decompresser::findBlock(double* memptr) { assert(state==BLOCK); // Find start of block U32 h1=0x3D49B113, h2=0x29EB7F93, h3=0x2614BE13, h4=0x3828EB13; // Rolling hashes initialized to hash of first 13 bytes int c; while ((c=dec.in->get())!=-1) { h1=h1*12+c; h2=h2*20+c; h3=h3*28+c; h4=h4*44+c; if (h1==0xB16B88F1 && h2==0xFF5376F1 && h3==0x72AC5BF1 && h4==0x2F909AF1) break; // hash of 16 byte string } if (c==-1) return false; // Read header if ((c=dec.in->get())!=1 && c!=2) error("unsupported ZPAQ level"); if (dec.in->get()!=1) error("unsupported ZPAQL type"); z.read(dec.in); if (c==1 && z.header.isize()>6 && z.header[6]==0) error("ZPAQ level 1 requires at least 1 component"); if (memptr) *memptr=z.memory(); state=FILENAME; decode_state=FIRSTSEG; return true; } // Read the start of a segment (1) or end of block code (255). // If a segment is found, write the filename and return true, else false. bool Decompresser::findFilename(Writer* filename) { assert(state==FILENAME); int c=dec.in->get(); if (c==1) { // segment found while (true) { c=dec.in->get(); if (c==-1) error("unexpected EOF"); if (c==0) { state=COMMENT; return true; } if (filename) filename->put(c); } } else if (c==255) { // end of block found state=BLOCK; return false; } else error("missing segment or end of block"); return false; } // Read the comment from the segment header void Decompresser::readComment(Writer* comment) { assert(state==COMMENT); state=DATA; while (true) { int c=dec.in->get(); if (c==-1) error("unexpected EOF"); if (c==0) break; if (comment) comment->put(c); } if (dec.in->get()!=0) error("missing reserved byte"); } // Decompress n bytes, or all if n < 0. Return false if done bool Decompresser::decompress(int n) { assert(state==DATA); assert(decode_state!=SKIP); // Initialize models to start decompressing block if (decode_state==FIRSTSEG) { dec.init(); assert(z.header.size()>5); pp.init(z.header[4], z.header[5]); decode_state=SEG; } // Decompress and load PCOMP into postprocessor while ((pp.getState()&3)!=1) pp.write(dec.decompress()); // Decompress n bytes, or all if n < 0 while (n) { int c=dec.decompress(); pp.write(c); if (c==-1) { state=SEGEND; return false; } if (n>0) --n; } return true; } // Read end of block. If a SHA1 checksum is present, write 1 and the // 20 byte checksum into sha1string, else write 0 in first byte. // If sha1string is 0 then discard it. void Decompresser::readSegmentEnd(char* sha1string) { assert(state==DATA || state==SEGEND); // Skip remaining data if any and get next byte int c=0; if (state==DATA) { c=dec.skip(); decode_state=SKIP; } else if (state==SEGEND) c=dec.in->get(); state=FILENAME; // Read checksum if (c==254) { if (sha1string) sha1string[0]=0; // no checksum } else if (c==253) { if (sha1string) sha1string[0]=1; for (int i=1; i<=20; ++i) { c=dec.in->get(); if (sha1string) sha1string[i]=c; } } else error("missing end of segment marker"); } /////////////////////////// decompress() ///////////////////// void decompress(Reader* in, Writer* out) { Decompresser d; d.setInput(in); d.setOutput(out); while (d.findBlock()) { // don't calculate memory while (d.findFilename()) { // discard filename d.readComment(); // discard comment d.decompress(); // to end of segment d.readSegmentEnd(); // discard sha1string } } } ////////////////////// Encoder //////////////////// // Initialize for start of block void Encoder::init() { low=1; high=0xFFFFFFFF; pr.init(); if (!pr.isModeled()) low=0, buf.resize(1<<16); } // compress bit y having probability p/64K void Encoder::encode(int y, int p) { assert(out); assert(p>=0 && p<65536); assert(y==0 || y==1); assert(high>low && low>0); U32 mid=low+U32(((high-low)*U64(U32(p)))>>16); // split range assert(high>mid && mid>=low); if (y) high=mid; else low=mid+1; // pick half while ((high^low)<0x1000000) { // write identical leading bytes out->put(high>>24); // same as low>>24 high=high<<8|255; low=low<<8; low+=(low==0); // so we don't code 4 0 bytes in a row } } // compress byte c (0..255 or -1=EOS) void Encoder::compress(int c) { assert(out); if (pr.isModeled()) { if (c==-1) encode(1, 0); else { assert(c>=0 && c<=255); encode(0, 0); for (int i=7; i>=0; --i) { int p=pr.predict()*2+1; assert(p>0 && p<65536); int y=c>>i&1; encode(y, p); pr.update(y); } } } else { if (c<0 || low==buf.size()) { out->put((low>>24)&255); out->put((low>>16)&255); out->put((low>>8)&255); out->put(low&255); out->write(&buf[0], low); low=0; } if (c>=0) buf[low++]=c; } } ///////////////////// Compressor ////////////////////// // Write 13 byte start tag // "\x37\x6B\x53\x74\xA0\x31\x83\xD3\x8C\xB2\x28\xB0\xD3" void Compressor::writeTag() { assert(state==INIT); enc.out->put(0x37); enc.out->put(0x6b); enc.out->put(0x53); enc.out->put(0x74); enc.out->put(0xa0); enc.out->put(0x31); enc.out->put(0x83); enc.out->put(0xd3); enc.out->put(0x8c); enc.out->put(0xb2); enc.out->put(0x28); enc.out->put(0xb0); enc.out->put(0xd3); } void Compressor::startBlock(int level) { // Model 1 - min.cfg static const char models[]={ 26,0,1,2,0,0,2,3,16,8,19,0,0,96,4,28, 59,10,59,112,25,10,59,10,59,112,56,0, // Model 2 - mid.cfg 69,0,3,3,0,0,8,3,5,8,13,0,8,17,1,8, 18,2,8,18,3,8,19,4,4,22,24,7,16,0,7,24, (char)-1,0,17,104,74,4,95,1,59,112,10,25,59,112,10,25, 59,112,10,25,59,112,10,25,59,112,10,25,59,10,59,112, 25,69,(char)-49,8,112,56,0, // Model 3 - max.cfg (char)-60,0,5,9,0,0,22,1,(char)-96,3,5,8,13,1,8,16, 2,8,18,3,8,19,4,8,19,5,8,20,6,4,22,24, 3,17,8,19,9,3,13,3,13,3,13,3,14,7,16,0, 15,24,(char)-1,7,8,0,16,10,(char)-1,6,0,15,16,24,0,9, 8,17,32,(char)-1,6,8,17,18,16,(char)-1,9,16,19,32,(char)-1,6, 0,19,20,16,0,0,17,104,74,4,95,2,59,112,10,25, 59,112,10,25,59,112,10,25,59,112,10,25,59,112,10,25, 59,10,59,112,10,25,59,112,10,25,69,(char)-73,32,(char)-17,64,47, 14,(char)-25,91,47,10,25,60,26,48,(char)-122,(char)-105,20,112,63,9,70, (char)-33,0,39,3,25,112,26,52,25,25,74,10,4,59,112,25, 10,4,59,112,25,10,4,59,112,25,65,(char)-113,(char)-44,72,4,59, 112,8,(char)-113,(char)-40,8,68,(char)-81,60,60,25,69,(char)-49,9,112,25,25, 25,25,25,112,56,0, 0,0}; // 0,0 = end of list if (level<1) error("compression level must be at least 1"); const char* p=models; int i; for (i=1; iput('z'); enc.out->put('P'); enc.out->put('Q'); enc.out->put(1+(len>6 && hcomp[6]==0)); // level 1 or 2 enc.out->put(1); for (int i=0; iput(hcomp[i]); MemoryReader m(hcomp); z.read(&m); state=BLOCK1; } // Write a segment header void Compressor::startSegment(const char* filename, const char* comment) { assert(state==BLOCK1 || state==BLOCK2); enc.out->put(1); while (filename && *filename) enc.out->put(*filename++); enc.out->put(0); while (comment && *comment) enc.out->put(*comment++); enc.out->put(0); enc.out->put(0); if (state==BLOCK1) state=SEG1; if (state==BLOCK2) state=SEG2; } // Initialize encoding and write pcomp to first segment // If len is 0 then length is encoded in pcomp[0..1] void Compressor::postProcess(const char* pcomp, int len) { assert(state==SEG1); enc.init(); if (pcomp) { enc.compress(1); if (len<=0) { len=toU16(pcomp); pcomp+=2; } enc.compress(len&255); enc.compress((len>>8)&255); for (int i=0; iget())>=0) { enc.compress(ch); if (n>0) --n; } return ch>=0; } // End segment, write sha1string if present void Compressor::endSegment(const char* sha1string) { assert(state==SEG2); enc.compress(-1); enc.out->put(0); enc.out->put(0); enc.out->put(0); enc.out->put(0); if (sha1string) { enc.out->put(253); for (int i=0; i<20; ++i) enc.out->put(sha1string[i]); } else enc.out->put(254); state=BLOCK2; } // End block void Compressor::endBlock() { assert(state==BLOCK2); enc.out->put(255); state=INIT; } /////////////////////////// compress() /////////////////////// void compress(Reader* in, Writer* out, int level) { assert(level>=1); Compressor c; c.setInput(in); c.setOutput(out); c.startBlock(level); c.startSegment(); c.postProcess(); c.compress(); c.endSegment(); c.endBlock(); } //////////////////////// ZPAQL::assemble() //////////////////// #ifndef NOJIT /* assemble(); Assembles the ZPAQL code in hcomp[0..hlen-1] and stores x86-32 or x86-64 code in rcode[0..rcode_size-1]. Execution begins at rcode[0]. It will not write beyond the end of rcode, but in any case it returns the number of bytes that would have been written. It returns 0 in case of error. The assembled code implements run() and returns 1 if successful or 0 if the ZPAQL code executes an invalid instruction or jumps out of bounds. A ZPAQL virtual machine has the following state. All values are unsigned and initially 0: a, b, c, d: 32 bit registers (pointed to by their respective parameters) f: 1 bit flag register (pointed to) r[0..255]: 32 bit registers m[0..msize-1]: 8 bit registers, where msize is a power of 2 h[0..hsize-1]: 32 bit registers, where hsize is a power of 2 out: pointer to a Writer sha1: pointer to a SHA1 Generally a ZPAQL machine is used to compute contexts which are placed in h. A second machine might post-process, and write its output to out and sha1. In either case, a machine is called with its input in a, representing a single byte (0..255) or (for a postprocessor) EOF (0xffffffff). Execution returs after a ZPAQL halt instruction. ZPAQL instructions are 1 byte unless the last 3 bits are 1. In this case, a second operand byte follows. Opcode 255 is the only 3 byte instruction. They are organized: 00dddxxx = unary opcode xxx on destination ddd (ddd < 111) 00111xxx = special instruction xxx 01dddsss = assignment: ddd = sss (ddd < 111) 1xxxxsss = operation sxxx from sss to a The meaning of sss and ddd are as follows: 000 = a (accumulator) 001 = b 010 = c 011 = d 100 = *b (means m[b mod msize]) 101 = *c (means m[c mod msize]) 110 = *d (means h[d mod hsize]) 111 = n (constant 0..255 in second byte of instruction) For example, 01001110 assigns *d to b. The other instructions xxx are as follows: Group 00dddxxx where ddd < 111 and xxx is: 000 = ddd<>a, swap with a (except 00000000 is an error, and swap with *b or *c leaves the high bits of a unchanged) 001 = ddd++, increment 010 = ddd--, decrement 011 = ddd!, not (invert all bits) 100 = ddd=0, clear (set all bits of ddd to 0) 101 = not used (error) 110 = not used 111 = ddd=r n, assign from r[n] to ddd, n=0..255 in next opcode byte Except: 00100111 = jt n, jump if f is true (n = -128..127, relative to next opcode) 00101111 = jf n, jump if f is false (n = -128..127) 00110111 = r=a n, assign r[n] = a (n = 0..255) Group 00111xxx where xxx is: 000 = halt (return) 001 = output a 010 = not used 011 = hash: a = (a + *b + 512) * 773 100 = hashd: *d = (*d + a + 512) * 773 101 = not used 110 = not used 111 = unconditional jump (n = -128 to 127, relative to next opcode) Group 1xxxxsss where xxxx is: 0000 = a += sss (add, subtract, multiply, divide sss to a) 0001 = a -= sss 0010 = a *= sss 0011 = a /= sss (unsigned, except set a = 0 if sss is 0) 0100 = a %= sss (remainder, except set a = 0 if sss is 0) 0101 = a &= sss (bitwise AND) 0110 = a &= ~sss (bitwise AND with complement of sss) 0111 = a |= sss (bitwise OR) 1000 = a ^= sss (bitwise XOR) 1001 = a <<= (sss % 32) (left shift by low 5 bits of sss) 1010 = a >>= (sss % 32) (unsigned, zero bits shifted in) 1011 = a == sss (compare, set f = true if equal or false otherwise) 1100 = a < sss (unsigned compare, result in f) 1101 = a > sss (unsigned compare) 1110 = not used 1111 = not used except 11111111 is a 3 byte jump to the absolute address in the next 2 bytes in little-endian (LSB first) order. assemble() translates ZPAQL to 32 bit x86 code to be executed by run(). Registers are mapped as follows: eax = source sss from *b, *c, *d or sometimes n ecx = pointer to destination *b, *c, *d, or spare edx = a ebx = f (1 for true, 0 for false) esp = stack pointer ebp = d esi = b edi = c run() saves non-volatile registers (ebp, esi, edi, ebx) on the stack, loads a, b, c, d, f, and executes the translated instructions. A halt instruction saves a, b, c, d, f, pops the saved registers and returns. Invalid instructions or jumps outside of the range of the ZPAQL code call libzpaq::error(). In 64 bit mode, the following additional registers are used: r12 = h r14 = r r15 = m */ // Called by out static void flush1(ZPAQL* z) { z->flush(); } // return true if op is an undefined ZPAQL instruction static bool iserr(int op) { return op==0 || (op>=120 && op<=127) || (op>=240 && op<=254) || op==58 || (op<64 && (op%8==5 || op%8==6)); } // Write k bytes of x to rcode[o++] MSB first static void put(U8* rcode, int n, int& o, U32 x, int k) { while (k-->0) { if (o>(k*8))&255; ++o; } } // Write 4 bytes of x to rcode[o++] LSB first static void put4lsb(U8* rcode, int n, int& o, U32 x) { for (int k=0; k<4; ++k) { if (o>(k*8))&255; ++o; } } // Write a 1-4 byte x86 opcode without or with an 4 byte operand // to rcode[o...] #define put1(x) put(rcode, rcode_size, o, (x), 1) #define put2(x) put(rcode, rcode_size, o, (x), 2) #define put3(x) put(rcode, rcode_size, o, (x), 3) #define put4(x) put(rcode, rcode_size, o, (x), 4) #define put5(x,y) put4(x), put1(y) #define put6(x,y) put4(x), put2(y) #define put4r(x) put4lsb(rcode, rcode_size, o, x) #define puta(x) t=U32(size_t(x)), put4r(t) #define put1a(x,y) put1(x), puta(y) #define put2a(x,y) put2(x), puta(y) #define put3a(x,y) put3(x), puta(y) #define put4a(x,y) put4(x), puta(y) #define put5a(x,y,z) put4(x), put1(y), puta(z) #define put2l(x,y) put2(x), t=U32(size_t(y)), put4r(t), \ t=U32(size_t(y)>>(S*4)), put4r(t) // Assemble ZPAQL in in the HCOMP section of header to rcode, // but do not write beyond rcode_size. Return the number of // bytes output or that would have been output. // Execution starts at rcode[0] and returns 1 if successful or 0 // in case of a ZPAQL execution error. int ZPAQL::assemble() { // x86? (not foolproof) const int S=sizeof(char*); // 4 = x86, 8 = x86-64 U32 t=0x12345678; if (*(char*)&t!=0x78 || (S!=4 && S!=8)) error("JIT supported only for x86-32 and x86-64"); const U8* hcomp=&header[hbegin]; const int hlen=hend-hbegin+1; const int msize=m.size(); const int hsize=h.size(); const int regcode[8]={2,6,7,5}; // a,b,c,d.. -> edx,esi,edi,ebp,eax.. Array it(hlen); // hcomp -> rcode locations int done=0; // number of instructions assembled (0..hlen) int o=5; // rcode output index, reserve space for jmp // Code for the halt instruction (restore registers and return) const int halt=o; if (S==8) { put2l(0x48b9, &a); // mov rcx, a put2(0x8911); // mov [rcx], edx put2l(0x48b9, &b); // mov rcx, b put2(0x8931); // mov [rcx], esi put2l(0x48b9, &c); // mov rcx, c put2(0x8939); // mov [rcx], edi put2l(0x48b9, &d); // mov rcx, d put2(0x8929); // mov [rcx], ebp put2l(0x48b9, &f); // mov rcx, f put2(0x8919); // mov [rcx], ebx put4(0x4883c438); // add rsp, 56 put2(0x415f); // pop r15 put2(0x415e); // pop r14 put2(0x415d); // pop r13 put2(0x415c); // pop r12 } else { put2a(0x8915, &a); // mov [a], edx put2a(0x8935, &b); // mov [b], esi put2a(0x893d, &c); // mov [c], edi put2a(0x892d, &d); // mov [d], ebp put2a(0x891d, &f); // mov [f], ebx put3(0x83c43c); // add esp, 60 } put1(0x5d); // pop ebp put1(0x5b); // pop ebx put1(0x5f); // pop edi put1(0x5e); // pop esi put1(0xc3); // ret // Code for the out instruction. // Store a=edx at outbuf[bufptr++]. If full, call flush1(). const int outlabel=o; if (S==8) { put2l(0x48b8, &outbuf[0]);// mov rax, outbuf.p put2l(0x49ba, &bufptr); // mov r10, &bufptr put3(0x418b0a); // mov ecx, [r10] put3(0x891408); // mov [rax+rcx], edx put2(0xffc1); // inc ecx put3(0x41890a); // mov [r10], ecx put2a(0x81f9, outbuf.size()); // cmp ecx, outbuf.size() put2(0x7401); // jz L1 put1(0xc3); // ret put4(0x4883ec30); // L1: sub esp, 48 ; call flush1(this) put4(0x48893c24); // mov [rsp], rdi put5(0x48897424,8); // mov [rsp+8], rsi put5(0x48895424,16); // mov [rsp+16], rdx put5(0x48894c24,24); // mov [rsp+24], rcx #ifndef _WIN32 put2l(0x48bf, this); // mov rdi, this #else // Windows put2l(0x48b9, this); // mov rcx, this #endif put2l(0x49bb, &flush1); // mov r11, &flush1 put3(0x41ffd3); // call r11 put5(0x488b4c24,24); // mov rcx, [rsp+24] put5(0x488b5424,16); // mov rdx, [rsp+16] put5(0x488b7424,8); // mov rsi, [rsp+8] put4(0x488b3c24); // mov rdi, [rsp] put4(0x4883c430); // add esp, 48 put1(0xc3); // ret } else { put1a(0xb8, &outbuf[0]); // mov eax, outbuf.p put2a(0x8b0d, &bufptr); // mov ecx, [bufptr] put3(0x891408); // mov [eax+ecx], edx put2(0xffc1); // inc ecx put2a(0x890d, &bufptr); // mov [bufptr], ecx put2a(0x81f9, outbuf.size()); // cmp ecx, outbuf.size() put2(0x7401); // jz L1 put1(0xc3); // ret put3(0x83ec08); // L1: sub esp, 8 put4(0x89542404); // mov [esp+4], edx put3a(0xc70424, this); // mov [esp], this put1a(0xb8, &flush1); // mov eax, &flush1 put2(0xffd0); // call eax put4(0x8b542404); // mov edx, [esp+4] put3(0x83c408); // add esp, 8 put1(0xc3); // ret } // Set it[i]=1 for each ZPAQL instruction reachable from the previous // instruction + 2 if reachable by a jump (or 3 if both). it[0]=2; assert(hlen>0 && hcomp[hlen-1]==0); // ends with error do { done=0; const int NONE=0x80000000; for (int i=0; i>24);// jt,jf,jmp if (op==63) next1=NONE; // jmp if ((next2<0 || next2>=hlen) && next2!=NONE) next2=hlen-1; // error if (next1!=NONE && !(it[next1]&1)) it[next1]|=1, ++done; if (next2!=NONE && !(it[next2]&2)) it[next2]|=2, ++done; } } } while (done>0); // Set it[i] bits 2-3 to 4, 8, or 12 if a comparison // (<, >, == respectively) does not need to save the result in f, // or if a conditional jump (jt, jf) does not need to read f. // This is true if a comparison is followed directly by a jt/jf, // the jt/jf is not a jump target, the byte before is not a jump // target (for a 2 byte comparison), and for the comparison instruction // if both paths after the jt/jf lead to another comparison or error // before another jt/jf. At most hlen steps are traced because after // that it must be an infinite loop. for (int i=0; i=216 && op1<240 && (op2==39 || op2==47) && it[i2]==1 && (i2==i+1 || it[i+1]==0)) { int code=(op1-208)/8*4; // 4,8,12 is ==,<,> it[i2]+=code; // OK to test CF, ZF instead of f for (int j=0; j<2 && code; ++j) { // trace each path from i2 int k=i2+2; // branch not taken if (j==1) k=i2+2+(hcomp[i2+1]<<24>>24); // branch taken for (int l=0; l=hlen) break; // out of bounds, pass const int op=hcomp[k]; if (op==39 || op==47) code=0; // jt,jf, fail else if (op>=216 && op<240) break; // ==,<,>, pass else if (iserr(op)) break; // error, pass else if (op==255) k=hcomp[k+1]+256*hcomp[k+2]; // lj else if (op==63) k=k+2+(hcomp[k+1]<<24>>24); // jmp else if (op==56) k=0; // halt else k=k+1+(op%8==7); // ordinary instruction } } it[i]+=code; // if > 0 then OK to not save flags in f (bl) } } // Start of run(): Save x86 and load ZPAQL registers const int start=o; assert(start>=16); put1(0x56); // push esi/rsi put1(0x57); // push edi/rdi put1(0x53); // push ebx/rbx put1(0x55); // push ebp/rbp if (S==8) { put2(0x4154); // push r12 put2(0x4155); // push r13 put2(0x4156); // push r14 put2(0x4157); // push r15 put4(0x4883ec38); // sub rsp, 56 put2l(0x48b8, &a); // mov rax, a put2(0x8b10); // mov edx, [rax] put2l(0x48b8, &b); // mov rax, b put2(0x8b30); // mov esi, [rax] put2l(0x48b8, &c); // mov rax, c put2(0x8b38); // mov edi, [rax] put2l(0x48b8, &d); // mov rax, d put2(0x8b28); // mov ebp, [rax] put2l(0x48b8, &f); // mov rax, f put2(0x8b18); // mov ebx, [rax] put2l(0x49bc, &h[0]); // mov r12, h put2l(0x49bd, &outbuf[0]); // mov r13, outbuf.p put2l(0x49be, &r[0]); // mov r14, r put2l(0x49bf, &m[0]); // mov r15, m } else { put3(0x83ec3c); // sub esp, 60 put2a(0x8b15, &a); // mov edx, [a] put2a(0x8b35, &b); // mov esi, [b] put2a(0x8b3d, &c); // mov edi, [c] put2a(0x8b2d, &d); // mov ebp, [d] put2a(0x8b1d, &f); // mov ebx, [f] } // Assemble in multiple passes until every byte of hcomp has a translation for (int istart=0; istarti); assert(i>=0 && i=16) { if (i>istart) { int a=code-o; if (a>-120 && a<120) put2(0xeb00+((a-2)&255)); // jmp short o else put1a(0xe9, a-5); // jmp near o } break; } // Else assemble the instruction at hcode[i] to rcode[o] else { assert(i>=0 && i0 && it[i]<16); assert(o>=16); it[i]=o; ++done; const int op=hcomp[i]; const int arg=hcomp[i+1]+((op==255)?256*hcomp[i+2]:0); const int ddd=op/8%8; const int sss=op%8; // error instruction: return 0 if (iserr(op)) { put2(0x31c0); // xor eax, eax put1a(0xe9, halt-o-4); // jmp near halt continue; } // Load source *b, *c, *d, or hash (*b) into eax except: // {a,b,c,d}=*d, a{+,-,*,&,|,^,=,==,>,>}=*d: load address to eax // {a,b,c,d}={*b,*c}: load source into ddd if (op==59 || (op>=64 && op<240 && op%8>=4 && op%8<7)) { put2(0x89c0+8*regcode[sss-3+(op==59)]); // mov eax, {esi,edi,ebp} const int sz=(sss==6?hsize:msize)-1; if (sz>=128) put1a(0x25, sz); // and eax, dword msize-1 else put3(0x83e000+sz); // and eax, byte msize-1 const int move=(op>=64 && op<112); // = or else ddd is eax if (sss<6) { // ddd={a,b,c,d,*b,*c} if (S==8) put5(0x410fb604+8*move*regcode[ddd],0x07); // movzx ddd, byte [r15+rax] else put3a(0x0fb680+8*move*regcode[ddd], &m[0]); // movzx ddd, byte [m+eax] } else if ((0x06587000>>(op/8))&1) {// {*b,*c,*d,a/,a%,a&~,a<<,a>>}=*d if (S==8) put4(0x418b0484); // mov eax, [r12+rax*4] else put3a(0x8b0485, &h[0]); // mov eax, [h+eax*4] } } // Load destination address *b, *c, *d or hashd (*d) into ecx if ((op>=32 && op<56 && op%8<5) || (op>=96 && op<120) || op==60) { put2(0x89c1+8*regcode[op/8%8-3-(op==60)]);// mov ecx,{esi,edi,ebp} const int sz=(ddd==6||op==60?hsize:msize)-1; if (sz>=128) put2a(0x81e1, sz); // and ecx, dword sz else put3(0x83e100+sz); // and ecx, byte sz if (op/8%8==6 || op==60) { // *d if (S==8) put4(0x498d0c8c); // lea rcx, [r12+rcx*4] else put3a(0x8d0c8d, &h[0]); // lea ecx, [ecx*4+h] } else { // *b, *c if (S==8) put4(0x498d0c0f); // lea rcx, [r15+rcx] else put2a(0x8d89, &m[0]); // lea ecx, [ecx+h] } } // Translate by opcode switch((op/8)&31) { case 0: // ddd = a case 1: // ddd = b case 2: // ddd = c case 3: // ddd = d switch(sss) { case 0: // ddd<>a (swap) put2(0x87d0+regcode[ddd]); // xchg edx, ddd break; case 1: // ddd++ put2(0xffc0+regcode[ddd]); // inc ddd break; case 2: // ddd-- put2(0xffc8+regcode[ddd]); // dec ddd break; case 3: // ddd! put2(0xf7d0+regcode[ddd]); // not ddd break; case 4: // ddd=0 put2(0x31c0+9*regcode[ddd]); // xor ddd,ddd break; case 7: // ddd=r n if (S==8) put3a(0x418b86+8*regcode[ddd], arg*4); // mov ddd, [r14+n*4] else put2a(0x8b05+8*regcode[ddd], (&r[arg]));//mov ddd, [r+n] break; } break; case 4: // ddd = *b case 5: // ddd = *c switch(sss) { case 0: // ddd<>a (swap) put2(0x8611); // xchg dl, [ecx] break; case 1: // ddd++ put2(0xfe01); // inc byte [ecx] break; case 2: // ddd-- put2(0xfe09); // dec byte [ecx] break; case 3: // ddd! put2(0xf611); // not byte [ecx] break; case 4: // ddd=0 put2(0x31c0); // xor eax, eax put2(0x8801); // mov [ecx], al break; case 7: // jt, jf { assert(code>=0 && code<16); const int jtab[2][4]={{5,4,2,7},{4,5,3,6}}; // jnz,je,jb,ja, jz,jne,jae,jbe if (code<4) put2(0x84db); // test bl, bl if (arg>=128 && arg-257-i>=0 && o-it[arg-257-i]<120) put2(0x7000+256*jtab[op==47][code/4]); // jx short 0 else put2a(0x0f80+jtab[op==47][code/4], 0); // jx near 0 break; } } break; case 6: // ddd = *d switch(sss) { case 0: // ddd<>a (swap) put2(0x8711); // xchg edx, [ecx] break; case 1: // ddd++ put2(0xff01); // inc dword [ecx] break; case 2: // ddd-- put2(0xff09); // dec dword [ecx] break; case 3: // ddd! put2(0xf711); // not dword [ecx] break; case 4: // ddd=0 put2(0x31c0); // xor eax, eax put2(0x8901); // mov [ecx], eax break; case 7: // ddd=r n if (S==8) put3a(0x418996, arg*4); // mov [r14+n*4], edx else put2a(0x8915, &r[arg]); // mov [r+n], edx break; } break; case 7: // special switch(op) { case 56: // halt put1a(0xb8, 1); // mov eax, 1 put1a(0xe9, halt-o-4); // jmp near halt break; case 57: // out put1a(0xe8, outlabel-o-4);// call outlabel break; case 59: // hash: a = (a + *b + 512) * 773 put3a(0x8d8410, 512); // lea edx, [eax+edx+512] put2a(0x69d0, 773); // imul edx, eax, 773 break; case 60: // hashd: *d = (*d + a + 512) * 773 put2(0x8b01); // mov eax, [ecx] put3a(0x8d8410, 512); // lea eax, [eax+edx+512] put2a(0x69c0, 773); // imul eax, eax, 773 put2(0x8901); // mov [ecx], eax break; case 63: // jmp put1a(0xe9, 0); // jmp near 0 (fill in target later) break; } break; case 8: // a= case 9: // b= case 10: // c= case 11: // d= if (sss==7) // n put1a(0xb8+regcode[ddd], arg); // mov ddd, n else if (sss==6) { // *d if (S==8) put4(0x418b0484+(regcode[ddd]<<11)); // mov ddd, [r12+rax*4] else put3a(0x8b0485+(regcode[ddd]<<11),&h[0]);// mov ddd, [h+eax*4] } else if (sss<4) // a, b, c, d put2(0x89c0+regcode[ddd]+8*regcode[sss]);// mov ddd,sss break; case 12: // *b= case 13: // *c= if (sss==7) put3(0xc60100+arg); // mov byte [ecx], n else if (sss==0) put2(0x8811); // mov byte [ecx], dl else { if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss put2(0x8801); // mov byte [ecx], al } break; case 14: // *d= if (sss<7) put2(0x8901+8*regcode[sss]); // mov [ecx], sss else put2a(0xc701, arg); // mov dword [ecx], n break; case 15: break; // not used case 16: // a+= if (sss==6) { if (S==8) put4(0x41031484); // add edx, [r12+rax*4] else put3a(0x031485, &h[0]); // add edx, [h+eax*4] } else if (sss<7) put2(0x01c2+8*regcode[sss]);// add edx, sss else if (arg>128) put2a(0x81c2, arg); // add edx, n else put3(0x83c200+arg); // add edx, byte n break; case 17: // a-= if (sss==6) { if (S==8) put4(0x412b1484); // sub edx, [r12+rax*4] else put3a(0x2b1485, &h[0]); // sub edx, [h+eax*4] } else if (sss<7) put2(0x29c2+8*regcode[sss]);// sub edx, sss else if (arg>=128) put2a(0x81ea, arg); // sub edx, n else put3(0x83ea00+arg); // sub edx, byte n break; case 18: // a*= if (sss==6) { if (S==8) put5(0x410faf14,0x84); // imul edx, [r12+rax*4] else put4a(0x0faf1485, &h[0]); // imul edx, [h+eax*4] } else if (sss<7) put3(0x0fafd0+regcode[sss]);// imul edx, sss else if (arg>=128) put2a(0x69d2, arg); // imul edx, n else put3(0x6bd200+arg); // imul edx, byte n break; case 19: // a/= case 20: // a%= if (sss<7) put2(0x89c1+8*regcode[sss]); // mov ecx, sss else put1a(0xb9, arg); // mov ecx, n put2(0x85c9); // test ecx, ecx put3(0x0f44d1); // cmovz edx, ecx put2(0x7408-2*(op/8==20)); // jz (over rest) put2(0x89d0); // mov eax, edx put2(0x31d2); // xor edx, edx put2(0xf7f1); // div ecx if (op/8==19) put2(0x89c2); // mov edx, eax break; case 21: // a&= if (sss==6) { if (S==8) put4(0x41231484); // and edx, [r12+rax*4] else put3a(0x231485, &h[0]); // and edx, [h+eax*4] } else if (sss<7) put2(0x21c2+8*regcode[sss]);// and edx, sss else if (arg>=128) put2a(0x81e2, arg); // and edx, n else put3(0x83e200+arg); // and edx, byte n break; case 22: // a&~ if (sss==7) { if (arg<128) put3(0x83e200+(~arg&255));// and edx, byte ~n else put2a(0x81e2, ~arg); // and edx, ~n } else { if (sss<4) put2(0x89c0+8*regcode[sss]);// mov eax, sss put2(0xf7d0); // not eax put2(0x21c2); // and edx, eax } break; case 23: // a|= if (sss==6) { if (S==8) put4(0x410b1484); // or edx, [r12+rax*4] else put3a(0x0b1485, &h[0]); // or edx, [h+eax*4] } else if (sss<7) put2(0x09c2+8*regcode[sss]);// or edx, sss else if (arg>=128) put2a(0x81ca, arg); // or edx, n else put3(0x83ca00+arg); // or edx, byte n break; case 24: // a^= if (sss==6) { if (S==8) put4(0x41331484); // xor edx, [r12+rax*4] else put3a(0x331485, &h[0]); // xor edx, [h+eax*4] } else if (sss<7) put2(0x31c2+8*regcode[sss]);// xor edx, sss else if (arg>=128) put2a(0x81f2, arg); // xor edx, byte n else put3(0x83f200+arg); // xor edx, n break; case 25: // a<<= case 26: // a>>= if (sss==7) // sss = n put3(0xc1e200+8*256*(op/8==26)+arg); // shl/shr n else { put2(0x89c1+8*regcode[sss]); // mov ecx, sss put2(0xd3e2+8*(op/8==26)); // shl/shr edx, cl } break; case 27: // a== case 28: // a< case 29: // a> if (sss==6) { if (S==8) put4(0x413b1484); // cmp edx, [r12+rax*4] else put3a(0x3b1485, &h[0]); // cmp edx, [h+eax*4] } else if (sss==7) // sss = n put2a(0x81fa, arg); // cmp edx, dword n else put2(0x39c2+8*regcode[sss]); // cmp edx, sss if (code<4) { if (op/8==27) put3(0x0f94c3); // setz bl if (op/8==28) put3(0x0f92c3); // setc bl if (op/8==29) put3(0x0f97c3); // seta bl } break; case 30: // not used case 31: // 255 = lj if (op==255) put1a(0xe9, 0); // jmp near break; } } } } // Finish first pass const int rsize=o; if (o>rcode_size) return rsize; // Fill in jump addresses (second pass) for (int i=0; i=128) target-=256; target+=i+2; } if (target<0 || target>=hlen) target=hlen-1; // runtime ZPAQL error o=it[i]; assert(o>=16 && o skip test assert(o>=16 && o=0x72 && op<0x78) || op==0xeb) { // jx, jmp short --target; if (target<-128 || target>127) error("Cannot code x86 short jump"); assert(o=0x82 && op<0x88) || op==0xe9) // jx, jmp near { target-=4; puta(target); } else assert(false); // not a x86 jump } } // Jump to start o=0; put1a(0xe9, start-5); // jmp near start return rsize; } //////////////////////// Predictor::assemble_p() ///////////////////// // Assemble the ZPAQL code in the HCOMP section of z.header to pcomp and // return the number of bytes of x86 or x86-64 code written, or that would // be written if pcomp were large enough. The code for predict() begins // at pr.pcomp[0] and update() at pr.pcomp[5], both as jmp instructions. // The assembled code is equivalent to int predict(Predictor*) // and void update(Predictor*, int y); The Preditor address is placed in // edi/rdi. The update bit y is placed in ebp/rbp. int Predictor::assemble_p() { Predictor& pr=*this; U8* rcode=pr.pcode; // x86 output array int rcode_size=pcode_size; // output size int o=0; // output index in pcode const int S=sizeof(char*); // 4 or 8 U8* hcomp=&pr.z.header[0]; // The code to translate #define off(x) ((char*)&(pr.x)-(char*)&pr) #define offc(x) ((char*)&(pr.comp[i].x)-(char*)&pr) // test for little-endian (probably x86) U32 t=0x12345678; if (*(char*)&t!=0x78 || (S!=4 && S!=8)) error("JIT supported only for x86-32 and x86-64"); // Initialize for predict(). Put predictor address in edi/rdi put1a(0xe9, 5); // jmp predict put1a(0, 0x90909000); // reserve space for jmp update put1(0x53); // push ebx/rbx put1(0x55); // push ebp/rbp put1(0x56); // push esi/rsi put1(0x57); // push edi/rdi if (S==4) put4(0x8b7c2414); // mov edi,[esp+0x14] ; pr else { #ifdef _WIN32 put3(0x4889cf); // mov rdi, rcx (1st arg in Win64) #endif } // Code predict() for each component const int n=hcomp[6]; // number of components U8* cp=hcomp+7; for (int i=0; i=pr.z.cend) error("comp too big"); if (cp[0]<1 || cp[0]>9) error("invalid component"); assert(compsize[cp[0]]>0 && compsize[cp[0]]<8); switch (cp[0]) { case CONS: // c break; case CM: // sizebits limit // Component& cr=comp[i]; // cr.cxt=h[i]^hmap4; // p[i]=stretch(cr.cm(cr.cxt)>>17); put2a(0x8b87, off(h[i])); // mov eax, [edi+&h[i]] put2a(0x3387, off(hmap4)); // xor eax, [edi+&hmap4] put1a(0x25, (1<rsi) put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm] put3(0x8b0486); // mov eax, [esi+eax*4] put3(0xc1e811); // shr eax, 17 put4a(0x0fbf8447, off(stretcht)); // movsx eax,word[edi+eax*2+..] put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax break; case ISSE: // sizebits j -- c=hi, cxt=bh // assert((hmap4&15)>0); // if (c8==1 || (c8&0xf0)==16) // cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8); // cr.cxt=cr.ht[cr.c+(hmap4&15)]; // bit history // int *wt=(int*)&cr.cm[cr.cxt*2]; // p[i]=clamp2k((wt[0]*p[cp[2]]+wt[1]*64)>>16); case ICM: // sizebits // assert((hmap4&15)>0); // if (c8==1 || (c8&0xf0)==16) cr.c=find(cr.ht, cp[1]+2, h[i]+16*c8); // cr.cxt=cr.ht[cr.c+(hmap4&15)]; // p[i]=stretch(cr.cm(cr.cxt)>>8); // // Find cxt row in hash table ht. ht has rows of 16 indexed by the low // sizebits of cxt with element 0 having the next higher 8 bits for // collision detection. If not found after 3 adjacent tries, replace // row with lowest element 1 as priority. Return index of row. // // size_t Predictor::find(Array& ht, int sizebits, U32 cxt) { // assert(ht.size()==size_t(16)<>sizebits&255; // size_t h0=(cxt*16)&(ht.size()-16); // if (ht[h0]==chk) return h0; // size_t h1=h0^16; // if (ht[h1]==chk) return h1; // size_t h2=h0^32; // if (ht[h2]==chk) return h2; // if (ht[h0+1]<=ht[h1+1] && ht[h0+1]<=ht[h2+1]) // return memset(&ht[h0], 0, 16), ht[h0]=chk, h0; // else if (ht[h1+1]>(7-cr.cxt))&1; // predicted bit // p[i]=stretch(dt2k[cr.a]*(cr.c*-2+1)&32767); // } if (S==8) put1(0x48); // rex.w put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht] // If match length (a) is 0 then p[i]=0 put2a(0x8b87, offc(a)); // mov eax, [edi+&a] put2(0x85c0); // test eax, eax put2(0x7449); // jz L2 ; p[i]=0 // Else put predicted bit in c put1a(0xb9, 7); // mov ecx, 7 put2a(0x2b8f, offc(cxt)); // sub ecx, [edi+&cxt] put2a(0x8b87, offc(limit)); // mov eax, [edi+&limit] put2a(0x2b87, offc(b)); // sub eax, [edi+&b] put1a(0x25, (1<>8; put2a(0x8b87, off(p[cp[1]])); // mov eax, [edi+&p[j]] put2a(0x2b87, off(p[cp[2]])); // sub eax, [edi+&p[k]] put2a(0x69c0, cp[3]); // imul eax, wt put3(0xc1f808); // sar eax, 8 put2a(0x0387, off(p[cp[2]])); // add eax, [edi+&p[k]] put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax break; case MIX2: // sizebits j k rate mask // c=size cm=wt[size] cxt=input // cr.cxt=((h[i]+(c8&cp[5]))&(cr.c-1)); // assert(cr.cxt=0 && w<65536); // p[i]=(w*p[cp[2]]+(65536-w)*p[cp[3]])>>16; // assert(p[i]>=-2048 && p[i]<2048); put2(0x8b07); // mov eax, [edi] ; c8 put1a(0x25, cp[5]); // and eax, mask put2a(0x0387, off(h[i])); // add eax, [edi+&h[i]] put1a(0x25, (1<=1 && m<=i); // cr.cxt=h[i]+(c8&cp[5]); // cr.cxt=(cr.cxt&(cr.c-1))*m; // pointer to row of weights // assert(cr.cxt<=cr.cm.size()-m); // int* wt=(int*)&cr.cm[cr.cxt]; // p[i]=0; // for (int j=0; j>8)*p[cp[2]+j]; // p[i]=clamp2k(p[i]>>8); put2(0x8b07); // mov eax, [edi] ; c8 put1a(0x25, cp[5]); // and eax, mask put2a(0x0387, off(h[i])); // add eax, [edi+&h[i]] put1a(0x25, (1<3) put4a(0xf30f6f96, k*4+16);//movdqu xmm2, [esi+k*4+16] put5(0x660f72e1,0x08); // psrad xmm1, 8 if (tail>3) put5(0x660f72e2,0x08); // psrad xmm2, 8 put4(0x660f6bca); // packssdw xmm1, xmm2 put4a(0xf30f6f9f, off(p[cp[2]+k])); // movdqu xmm3, [edi+&p[j+k]] if (tail>3) put4a(0xf30f6fa7,off(p[cp[2]+k+4]));//movdqu xmm4, [edi+&p[j+k+4]] put4(0x660f6bdc); // packssdw, xmm3, xmm4 if (tail>0 && tail<8) { // last loop, mask extra weights put4(0x660f76ed); // pcmpeqd xmm5, xmm5 ; -1 put5(0x660f73dd, 16-tail*2); // psrldq xmm5, 16-tail*2 put4(0x660fdbcd); // pand xmm1, xmm5 } if (k==0) { // first loop, initialize sum in xmm0 put4(0xf30f6fc1); // movdqu xmm0, xmm1 put4(0x660ff5c3); // pmaddwd xmm0, xmm3 } else { // accumulate sum in xmm0 put4(0xf30f6fd1); // movdqu xmm2, xmm1 put4(0x660ff5d3); // pmaddwd xmm2, xmm3 put4(0x660ffec2); // paddd, xmm0, xmm2 } } // Add up the 4 elements of xmm0 = p[i] in the first element put4(0xf30f6fc8); // movdqu xmm1, xmm0 put5(0x660f73d9,0x08); // psrldq xmm1, 8 put4(0x660ffec1); // paddd xmm0, xmm1 put4(0xf30f6fc8); // movdqu xmm1, xmm0 put5(0x660f73d9,0x04); // psrldq xmm1, 4 put4(0x660ffec1); // paddd xmm0, xmm1 put4(0x660f7ec0); // movd eax, xmm0 ; p[i] put3(0xc1f808); // sar eax, 8 put1a(0xb9, 2047); // mov ecx, 2047 ; clamp2k put2(0x39c8); // cmp eax, ecx put3(0x0f4fc1); // cmovg eax, ecx put2(0xf7d1); // not ecx ; -2048 put2(0x39c8); // cmp eax, ecx put3(0x0f4cc1); // cmovl eax, ecx put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax break; case SSE: // sizebits j start limit // cr.cxt=(h[i]+c8)*32; // int pq=p[cp[2]]+992; // if (pq<0) pq=0; // if (pq>1983) pq=1983; // int wt=pq&63; // pq>>=6; // assert(pq>=0 && pq<=30); // cr.cxt+=pq; // p[i]=stretch(((cr.cm(cr.cxt)>>10)*(64-wt) // p0 // +(cr.cm(cr.cxt+1)>>10)*wt)>>13); // p1 // // p = p0*(64-wt)+p1*wt = (p1-p0)*wt + p0*64 // cr.cxt+=wt>>5; put2a(0x8b8f, off(h[i])); // mov ecx, [edi+&h[i]] put2(0x030f); // add ecx, [edi] ; c0 put2a(0x81e1, (1<>5 put2a(0x898f, offc(cxt)); // mov [edi+cxt], ecx ; cxt saved put3(0xc1e80a); // shr eax, 10 ; p0 = cm[cxt]>>10 put3(0xc1eb0a); // shr ebx, 10 ; p1 = cm[cxt+1]>>10 put2(0x29c3); // sub ebx, eax, ; p1-p0 put3(0x0fafda); // imul ebx, edx ; (p1-p0)*wt put3(0xc1e006); // shr eax, 6 put2(0x01d8); // add eax, ebx ; p in 0..2^28-1 put3(0xc1e80d); // shr eax, 13 ; p in 0..32767 put4a(0x0fbf8447, off(stretcht)); // movsx eax, word [edi+eax*2+...] put2a(0x8987, off(p[i])); // mov [edi+&p[i]], eax break; default: error("invalid ZPAQ component"); } } // return squash(p[n-1]) put2a(0x8b87, off(p[n-1])); // mov eax, [edi+...] put1a(0x05, 0x800); // add eax, 2048 put4a(0x0fbf8447, off(squasht[0])); // movsx eax, word [edi+eax*2+...] put1(0x5f); // pop edi put1(0x5e); // pop esi put1(0x5d); // pop ebp put1(0x5b); // pop ebx put1(0xc3); // ret // Initialize for update() Put predictor address in edi/rdi // and bit y=0..1 in ebp int save_o=o; o=5; put1a(0xe9, save_o-10); // jmp update o=save_o; put1(0x53); // push ebx/rbx put1(0x55); // push ebp/rbp put1(0x56); // push esi/rsi put1(0x57); // push edi/rdi if (S==4) { put4(0x8b7c2414); // mov edi,[esp+0x14] ; (1st arg = pr) put4(0x8b6c2418); // mov ebp,[esp+0x18] ; (2nd arg = y) } else { #ifndef _WIN32 put3(0x4889f5); // mov rbp, rsi (2nd arg in Linux-64) #else put3(0x4889cf); // mov rdi, rcx (1st arg in Win64) put3(0x4889d5); // mov rbp, rdx (2nd arg) #endif } // Code update() for each component cp=hcomp+7; for (int i=0; i=1 && cp[0]<=9); assert(compsize[cp[0]]>0 && compsize[cp[0]]<8); switch (cp[0]) { case CONS: // c break; case SSE: // sizebits j start limit case CM: // sizebits limit // train(cr, y); // // reduce prediction error in cr.cm // void train(Component& cr, int y) { // assert(y==0 || y==1); // U32& pn=cr.cm(cr.cxt); // U32 count=pn&0x3ff; // int error=y*32767-(cr.cm(cr.cxt)>>17); // pn+=(error*dt[count]&-1024)+(countrsi) put2a(0x8bb7, offc(cm)); // mov esi,[edi+cm] ; cm put2a(0x8b87, offc(cxt)); // mov eax,[edi+cxt] ; cxt put1a(0x25, pr.comp[i].cm.size()-1); // and eax, size-1 if (S==8) put1(0x48); // rex.w put3(0x8d3486); // lea esi,[esi+eax*4] ; &cm[cxt] put2(0x8b06); // mov eax,[esi] ; cm[cxt] put2(0x89c2); // mov edx, eax ; cm[cxt] put3(0xc1e811); // shr eax, 17 ; cm[cxt]>>17 put2(0x89e9); // mov ecx, ebp ; y put3(0xc1e10f); // shl ecx, 15 ; y*32768 put2(0x29e9); // sub ecx, ebp ; y*32767 put2(0x29c1); // sub ecx, eax ; error put2a(0x81e2, 0x3ff); // and edx, 1023 ; count put3a(0x8b8497, off(dt)); // mov eax,[edi+edx*4+dt] ; dt[count] put3(0x0fafc8); // imul ecx, eax ; error*dt[count] put2a(0x81e1, 0xfffffc00); // and ecx, -1024 put2a(0x81fa, cp[2+2*(cp[0]==SSE)]*4); // cmp edx, limit*4 put2(0x110e); // adc [esi], ecx ; pn+=... break; case ICM: // sizebits: cxt=bh, ht[c][0..15]=bh row // cr.ht[cr.c+(hmap4&15)]=st.next(cr.ht[cr.c+(hmap4&15)], y); // U32& pn=cr.cm(cr.cxt); // pn+=int(y*32767-(pn>>8))>>2; case ISSE: // sizebits j -- c=hi, cxt=bh // assert(cr.cxt==cr.ht[cr.c+(hmap4&15)]); // int err=y*32767-squash(p[i]); // int *wt=(int*)&cr.cm[cr.cxt*2]; // wt[0]=clamp512k(wt[0]+((err*p[cp[2]]+(1<<12))>>13)); // wt[1]=clamp512k(wt[1]+((err+16)>>5)); // cr.ht[cr.c+(hmap4&15)]=st.next(cr.cxt, y); // update bit history bh to next(bh,y=ebp) in ht[c+(hmap4&15)] put3(0x8b4700+off(hmap4)); // mov eax, [edi+&hmap4] put3(0x83e00f); // and eax, 15 put2a(0x0387, offc(c)); // add eax [edi+&c] ; cxt if (S==8) put1(0x48); // rex.w put2a(0x8bb7, offc(ht)); // mov esi, [edi+&ht] put4(0x0fb61406); // movzx edx, byte [esi+eax] ; bh put4(0x8d5c9500); // lea ebx, [ebp+edx*4] ; index to st put4a(0x0fb69c1f, off(st)); // movzx ebx,byte[edi+ebx+st]; next bh put3(0x881c06); // mov [esi+eax], bl ; save next bh if (S==8) put1(0x48); // rex.w put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm] // ICM: update cm[cxt=edx=bit history] to reduce prediction error // esi = &cm if (cp[0]==ICM) { if (S==8) put1(0x48); // rex.w put3(0x8d3496); // lea esi, [esi+edx*4] ; &cm[bh] put2(0x8b06); // mov eax, [esi] ; pn put3(0xc1e808); // shr eax, 8 ; pn>>8 put2(0x89e9); // mov ecx, ebp ; y put3(0xc1e10f); // shl ecx, 15 put2(0x29e9); // sub ecx, ebp ; y*32767 put2(0x29c1); // sub ecx, eax put3(0xc1f902); // sar ecx, 2 put2(0x010e); // add [esi], ecx } // ISSE: update weights. edx=cxt=bit history (0..255), esi=cm[512] else { put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]] put1a(0x05, 2048); // add eax, 2048 put4a(0x0fb78447, off(squasht)); // movzx eax, word [edi+eax*2+..] put2(0x89e9); // mov ecx, ebp ; y put3(0xc1e10f); // shl ecx, 15 put2(0x29e9); // sub ecx, ebp ; y*32767 put2(0x29c1); // sub ecx, eax ; err put2a(0x8b87, off(p[cp[2]]));// mov eax, [edi+&p[j]] put3(0x0fafc1); // imul eax, ecx put1a(0x05, (1<<12)); // add eax, 4096 put3(0xc1f80d); // sar eax, 13 put3(0x0304d6); // add eax, [esi+edx*8] ; wt[0] put1a(0xbb, (1<<19)-1); // mov ebx, 524287 put2(0x39d8); // cmp eax, ebx put3(0x0f4fc3); // cmovg eax, ebx put2(0xf7d3); // not ebx ; -524288 put2(0x39d8); // cmp eax, ebx put3(0x0f4cc3); // cmovl eax, ebx put3(0x8904d6); // mov [esi+edx*8], eax put3(0x83c110); // add ecx, 16 ; err put3(0xc1f905); // sar ecx, 5 put4(0x034cd604); // add ecx, [esi+edx*8+4] ; wt[1] put1a(0xb8, (1<<19)-1); // mov eax, 524287 put2(0x39c1); // cmp ecx, eax put3(0x0f4fc8); // cmovg ecx, eax put2(0xf7d0); // not eax ; -524288 put2(0x39c1); // cmp ecx, eax put3(0x0f4cc8); // cmovl ecx, eax put4(0x894cd604); // mov [esi+edx*8+4], ecx } break; case MATCH: // sizebits bufbits: // a=len, b=offset, c=bit, cm=index, cxt=bitpos // ht=buf, limit=pos // assert(cr.a<=255); // assert(cr.c==0 || cr.c==1); // assert(cr.cxt<8); // assert(cr.cm.size()==(size_t(1)<>5; // int w=cr.a16[cr.cxt]; // w+=(err*(p[cp[2]]-p[cp[3]])+(1<<12))>>13; // if (w<0) w=0; // if (w>65535) w=65535; // cr.a16[cr.cxt]=w; // set ecx=err put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]] put1a(0x05, 2048); // add eax, 2048 put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht] put2(0x89e9); // mov ecx, ebp ; y put3(0xc1e10f); // shl ecx, 15 put2(0x29e9); // sub ecx, ebp ; y*32767 put2(0x29c1); // sub ecx, eax put2a(0x69c9, cp[4]); // imul ecx, rate put3(0xc1f905); // sar ecx, 5 ; err // Update w put2a(0x8b87, offc(cxt)); // mov eax, [edi+&cxt] if (S==8) put1(0x48); // rex.w put2a(0x8bb7, offc(a16)); // mov esi, [edi+&a16] if (S==8) put1(0x48); // rex.w put3(0x8d3446); // lea esi, [esi+eax*2] ; &w put2a(0x8b87, off(p[cp[2]])); // mov eax, [edi+&p[j]] put2a(0x2b87, off(p[cp[3]])); // sub eax, [edi+&p[k]] ; p[j]-p[k] put3(0x0fafc1); // imul eax, ecx ; * err put1a(0x05, 1<<12); // add eax, 4096 put3(0xc1f80d); // sar eax, 13 put3(0x0fb716); // movzx edx, word [esi] ; w put2(0x01d0); // add eax, edx put1a(0xba, 0xffff); // mov edx, 65535 put2(0x39d0); // cmp eax, edx put3(0x0f4fc2); // cmovg eax, edx put2(0x31d2); // xor edx, edx put2(0x39d0); // cmp eax, edx put3(0x0f4cc2); // cmovl eax, edx put3(0x668906); // mov word [esi], ax break; case MIX: // sizebits j m rate mask // cm=wt[size][m], cxt=input // int m=cp[3]; // assert(m>0 && m<=i); // assert(cr.cm.size()==m*cr.c); // assert(cr.cxt+m<=cr.cm.size()); // int err=(y*32767-squash(p[i]))*cp[4]>>4; // int* wt=(int*)&cr.cm[cr.cxt]; // for (int j=0; j>13)); // set ecx=err put2a(0x8b87, off(p[i])); // mov eax, [edi+&p[i]] put1a(0x05, 2048); // add eax, 2048 put4a(0x0fb78447, off(squasht));//movzx eax, word [edi+eax*2+&squasht] put2(0x89e9); // mov ecx, ebp ; y put3(0xc1e10f); // shl ecx, 15 put2(0x29e9); // sub ecx, ebp ; y*32767 put2(0x29c1); // sub ecx, eax put2a(0x69c9, cp[4]); // imul ecx, rate put3(0xc1f904); // sar ecx, 4 ; err // set esi=wt put2a(0x8b87, offc(cxt)); // mov eax, [edi+&cxt] ; cxt if (S==8) put1(0x48); // rex.w put2a(0x8bb7, offc(cm)); // mov esi, [edi+&cm] if (S==8) put1(0x48); // rex.w put3(0x8d3486); // lea esi, [esi+eax*4] ; wt for (int k=0; k=256) { z.run(c8-256); hmap4=1; c8=1; for (int i=0; i=16 && c8<32) hmap4=(hmap4&0xf)<<5|y<<4|1; else hmap4=(hmap4&0x1f0)|(((hmap4&0xf)*2+y)&0xf); #endif } // Execute the ZPAQL code with input byte or -1 for EOF. // Use JIT code at rcode if available, or else create it. void ZPAQL::run(U32 input) { #ifdef NOJIT run0(input); #else if (!rcode) { int n=assemble(); allocx(rcode, rcode_size, n); if (!rcode || n<10 || rcode_size<10 || n!=assemble()) error("run JIT failed"); } a=input; if (!((int(*)())(&rcode[0]))()) libzpaq::error("Bad ZPAQL opcode"); #endif } } // end namespace libzpaq