#!/usr/bin/python -u """jupiter-fan-controller""" import signal import os import sys import subprocess import time import math import yaml from PID import PID # quadratic function RPM = AT^2 + BT + C class Quadratic(): '''quadratic function controller''' def __init__(self, A, B, C, T_threshold = 0) -> None: '''constructor''' self.A = A self.B = B self.C = C self.T_threshold = T_threshold self.output = 0 def update(self, temp_input, _) -> int: '''update output''' if temp_input < self.T_threshold: self.output = 0 else: self.output = int(self.A * math.pow(temp_input, 2) + self.B * temp_input + self.C) return self.output class FeedForward(): '''RPM predicted by APU power is fed forward + PID output stage''' def __init__(self, Kp, Ki, Kd, windup, winddown, a_ff, b_ff, temp_setpoint) -> None: '''constructor''' self.a_ff = a_ff self.b_ff = b_ff self.temp_setpoint = temp_setpoint self.pid = PID(Kp, Ki, Kd) self.pid.SetPoint = temp_setpoint self.pid.setWindup(windup) self.pid.setWinddown(winddown) self.output = 0 def print_ff_state(self, ff_output, pid_output) -> str: '''prints state variables of FF and PID, helpful for debug''' print(f"FeedForward Controller - FF:{ff_output:.0f} PID: {-1 * self.pid.PTerm:.0f} {-1 * self.pid.Ki * self.pid.ITerm:.0f} {-1 * self.pid.Kd * self.pid.DTerm:.0f} = {pid_output:.0f}") def get_ff_setpoint(self, power_input) -> int: '''returns the feed forward portion of the controller output''' rpm_setpoint = int(self.a_ff * power_input + self.b_ff) return rpm_setpoint def update(self, temp_input, power_input) -> int: '''run controller to update output''' pid_output = self.pid.update(temp_input) ff_output = self.get_ff_setpoint(power_input) self.output = int(pid_output + ff_output) # self.print_ff_state(ff_output, pid_output) return self.output class FeedForwardMin(): '''FF with an additional min curve''' def __init__(self, Kp, Ki, Kd, windup, winddown, a_ff, b_ff, temp_setpoint, a_min, b_min) -> None: '''constructor''' self.a_ff = a_ff self.b_ff = b_ff self.a_min = a_min self.b_min = b_min self.temp_setpoint = temp_setpoint self.pid = PID(Kp, Ki, Kd) self.pid.SetPoint = temp_setpoint self.pid.setWindup(windup) self.pid.setWinddown(winddown) self.output = 0 def print_ff_state(self, ff_output, pid_output, min_setpoint) -> str: '''prints state variables of FF and PID, helpful for debug''' print(f"FeedForward Controller - Min:{min_setpoint} FF:{ff_output:.0f} PID:{-1 * self.pid.PTerm:.0f}/{-1 * self.pid.Ki * self.pid.ITerm:.0f}/{-1 * self.pid.Kd * self.pid.DTerm:.0f} = {ff_output + pid_output:.0f}") def get_ff_setpoint(self, power_input) -> int: '''returns the feed forward portion of the controller output''' rpm_setpoint = int(self.a_ff * power_input + self.b_ff) return rpm_setpoint def get_min_setpoint(self, temp_input) -> int: '''returns a minimum rpm speed for the given temperature''' rpm_setpoint = int(self.a_min * temp_input + self.b_min) return rpm_setpoint def update(self, temp_input, power_input) -> int: '''run controller to update output''' pid_output = int(self.pid.update(temp_input)) ff_output = self.get_ff_setpoint(power_input) min_setpoint = self.get_min_setpoint(temp_input) self.output = max(min_setpoint,(pid_output + ff_output)) self.print_ff_state(ff_output, pid_output, min_setpoint) return self.output class FeedForwardQuad(): '''FF with an additional min curve''' def __init__(self, a_quad, b_quad, c_quad, a_ff, b_ff) -> None: '''constructor''' self.a_ff = a_ff self.b_ff = b_ff # self.temp_setpoint = temp_setpoint self.ff_deadzone = 300 self.ff_last_setpoint = 0 self.quad = Quadratic(a_quad, b_quad, c_quad) self.output = 0 def print_ff_state(self, ff_output, quad_output): '''prints state variables of FF and PID, helpful for debug''' print(f"FeedForward Controller - Quad:{quad_output} FF:{ff_output:.0f}") def get_ff_setpoint(self, power_input) -> int: '''returns the feed forward portion of the controller output''' rpm_setpoint = int(self.a_ff * power_input + self.b_ff) if abs(rpm_setpoint - self.ff_last_setpoint) > self.ff_deadzone: self.ff_last_setpoint = rpm_setpoint return rpm_setpoint return self.ff_last_setpoint def update(self, temp_input, power_input) -> int: '''run controller to update output''' quad_output = int(self.quad.update(temp_input, None)) ff_output = self.get_ff_setpoint(power_input) # min_setpoint = self.get_min_setpoint(temp_input) self.output = quad_output + ff_output self.print_ff_state(ff_output, quad_output) return self.output class Fan(): '''fan object controls all jupiter hwmon parameters''' def __init__(self, fan_path, config, debug = False) -> None: '''constructor''' self.debug = debug self.fan_path = fan_path self.charge_state_path = config["charge_state_path"] self.min_speed = config["fan_min_speed"] self.threshold_speed = config["fan_threshold_speed"] self.max_speed = config["fan_max_speed"] self.gain = config["fan_gain"] self.ec_ramp_rate = config["ec_ramp_rate"] self.fc_speed = 0 self.measured_speed = 0 self.charge_state = False self.charge_min_speed = 2000 self.has_std_bios = self.bios_compatibility_check() self.take_control_from_ec() self.set_speed(3000) @staticmethod def bios_compatibility_check() -> bool: """returns True for bios versions >= 106, false for earlier versions""" version = subprocess.check_output(["dmidecode", "-s", "bios-version"]) # b'F7A0104T06\n' version = int(version[3:7]) if version >= 106: return True else: return False def take_control_from_ec(self) -> None: '''take over fan control from ec mcu''' if self.has_std_bios: return else: with open(self.fan_path + "gain", 'w', encoding="utf8") as f: f.write(str(self.gain)) with open(self.fan_path + "ramp_rate", 'w', encoding="utf8") as f: f.write(str(self.ec_ramp_rate)) with open(self.fan_path + "recalculate", 'w', encoding="utf8") as f: f.write(str(1)) def return_to_ec_control(self) -> None: '''reset EC to generate fan values internally''' if self.has_std_bios: with open(self.fan_path + "fan1_target", 'w', encoding="utf8") as f: f.write(str(int(0))) else: with open(self.fan_path + "gain", 'w', encoding="utf8") as f: f.write(str(10)) with open(self.fan_path + "ramp_rate", 'w', encoding="utf8") as f: f.write(str(20)) with open(self.fan_path + "recalculate", 'w', encoding="utf8") as f: f.write(str(0)) def get_speed(self) -> int: '''returns the measured (real) fan speed''' with open(self.fan_path + "fan1_input", 'r', encoding="utf8") as f: self.measured_speed = int(f.read().strip()) return self.measured_speed def get_charge_state(self) -> bool: '''updates min rpm depending on charge state''' with open(self.charge_state_path, 'r', encoding="utf8") as f: state = f.read().strip() if state == "Charging": self.charge_state = True else: self.charge_state = False return self.charge_state def set_speed(self, speed) -> None: '''sets a new target speed''' if speed > self.max_speed: speed = self.max_speed elif self.charge_state: if speed < self.charge_min_speed: speed = self.charge_min_speed elif speed < self.threshold_speed: speed = self.min_speed self.fc_speed = speed with open(self.fan_path + "fan1_target", 'w', encoding="utf8") as f: f.write(str(int(self.fc_speed))) class Device(): '''devices are sources of heat - CPU, GPU, etc.''' def __init__(self, base_path, config, fan_max_speed, n_sample_avg, debug = False) -> None: '''constructor''' self.file_path = get_full_path(base_path, config["hwmon_name"]) + config["file"] self.debug = debug self.fan_max_speed = fan_max_speed self.n_sample_avg = n_sample_avg self.nice_name = config["nice_name"] self.max_temp = config["max_temp"] self.temp_deadzone = config["temp_deadzone"] self.temp = 0 self.control_temp = 0 # deadzone temp self.control_output = 0 # controller output if > 0, max fan speed if max temp reached self.buffer_full = False self.control_temps = [] self.avg_control_temp = 0 # instantiate controller depending on type self.type = config["type"] if self.type == "pid": self.controller = PID(float(config["Kp"]), float(config["Ki"]), float(config["Kd"])) self.controller.SetPoint = config["T_setpoint"] self.controller.setWindup(config["windup_limit"]) # windup limits the I term of the output elif self.type == "quadratic": self.controller = Quadratic(float(config["A"]), float(config["B"]), float(config["C"]), float(config["T_threshold"])) elif self.type == "feedforward": self.controller = FeedForward(float(config["Kp"]), float(config["Ki"]), float(config["Kd"]), int(config["windup"]), int(config["winddown"]), float(config["A_ff"]), float(config["B_ff"]), float(config["T_setpoint"])) elif self.type == "ffmin": self.controller = FeedForwardMin(float(config["Kp"]), float(config["Ki"]), float(config["Kd"]), int(config["windup"]), int(config["winddown"]), float(config["A_ff"]), float(config["B_ff"]), float(config["T_setpoint"]), float(config["A_min"]), float(config["B_min"])) elif self.type == "ffquad": self.controller = FeedForwardQuad(float(config["A_quad"]), float(config["B_quad"]), float(config["C_quad"]), float(config["A_ff"]), float(config["B_ff"])) else: print("error loading device controller \n") exit(1) def get_temp(self) -> None: '''updates temperatures''' with open(self.file_path, 'r', encoding="utf8") as f: self.temp = int(f.read().strip()) / 1000 # only update the control temp if it's outside temp_deadzone if math.fabs(self.temp - self.control_temp) >= self.temp_deadzone: self.control_temp = self.temp return self.control_temp def get_avg_temp(self): '''updates temperature list + generates average value''' self.control_temps.append(self.get_temp()) if self.buffer_full: self.control_temps.pop(0) elif len(self.control_temps) >= self.n_sample_avg: self.buffer_full = True self.avg_control_temp = math.fsum(self.control_temps) / len(self.control_temps) return self.avg_control_temp def get_output(self, temp_input, power_input) -> int: '''updates the device controller and returns bounded output''' self.controller.update(temp_input, power_input) self.control_output = max(self.controller.output, 0) if(temp_input > self.max_temp): self.control_output = self.fan_max_speed return self.control_output class Sensor(): '''sensor for measuring non-temperature values''' def __init__(self, base_path, config, debug = False) -> None: self.file_path = get_full_path(base_path, config["hwmon_name"]) + config["file"] self.debug = debug self.nice_name = config["nice_name"] self.n_sample_avg = config["n_sample_avg"] self.value = 0 self.avg_value = 0 self.buffer_full = False self.values = [] def get_value(self) -> float: '''returns instantaneous value''' with open(self.file_path, 'r', encoding='utf-8') as f: self.value = int(f.read().strip()) / 1000000 return self.value def get_avg_value(self) -> float: '''returns average value''' self.values.append(self.get_value()) if self.buffer_full: self.values.pop(0) elif len(self.values) >= self.n_sample_avg: self.buffer_full = True self.avg_value = math.fsum(self.values) / len(self.values) return self.avg_value def get_full_path(base_path, name) -> str: '''helper function to find correct hwmon* path for a given device name''' for directory in os.listdir(base_path): full_path = base_path + directory + '/' test_name = open(full_path + "name", encoding="utf8").read().strip() if test_name == name: return full_path print(f"failed to find device {name}") class FanController(): '''main FanController class''' def __init__(self, debug, config_file): self.debug = debug # read in config yaml file if debug: print("reading config file") with open(config_file, "r", encoding="utf8") as f: try: self.config = yaml.safe_load(f) except yaml.YAMLError as exc: print("error loading config file \n", exc) exit(1) # store global parameters self.base_hwmon_path = self.config["base_hwmon_path"] self.loop_interval = self.config["loop_interval"] self.control_loop_ratio = self.config["control_loop_ratio"] # initialize fan fan_path = get_full_path(self.base_hwmon_path, self.config["fan_hwmon_name"]) self.fan = Fan(fan_path, self.config, self.debug) # initialize list of devices self.devices = [ Device(self.base_hwmon_path, device_config, self.fan.max_speed, self.control_loop_ratio, self.debug) for device_config in self.config["devices"] ] # initialize APU power sensor self.power_sensor = Sensor(self.base_hwmon_path, self.config["sensors"][0], self.debug) # exit handler signal.signal(signal.SIGTERM, self.on_exit) def print_single(self, source_name): '''pretty print all device values, temp source, and output''' for device in self.devices: print(f"{device.nice_name}: {device.temp:.1f}/{device.control_output:.0f} ", end = '') #print("{}: {} ".format(device.nice_name, device.temp), end = '') print(f"{self.power_sensor.nice_name}: {self.power_sensor.value:.1f}/{self.power_sensor.avg_value:.1f} ", end = '') print(f"Fan[{source_name}]: {int(self.fan.fc_speed)}/{self.fan.measured_speed}") def loop_read_sensors(self): '''internal loop to measure device temps and sensor value''' start_time = time.time() self.power_sensor.get_avg_value() for device in self.devices: device.get_avg_temp() sleep_time = self.loop_interval - (time.time() - start_time) if sleep_time > 0: time.sleep(sleep_time) def loop_control(self): '''main control loop''' print("jupiter-fan-control starting up ...") while True: fan_error = abs(self.fan.fc_speed - self.fan.get_speed()) if fan_error > 500: self.fan.take_control_from_ec() # read device temps and power sensor for _ in range(self.control_loop_ratio): self.loop_read_sensors() # read charge state self.fan.get_charge_state() for device in self.devices: device.get_output(device.avg_control_temp, self.power_sensor.avg_value) max_output = max(device.control_output for device in self.devices) self.fan.set_speed(max_output) # find source name for the max control output source_name = next(device for device in self.devices if device.control_output == max_output).nice_name # print all values self.print_single(source_name) def on_exit(self, signum, frame): '''exit handler''' self.fan.return_to_ec_control() print("returning fan to EC control loop") exit() # main if __name__ == '__main__': # specify config file path CONFIG_FILE_PATH = "/usr/share/jupiter-fan-control/jupiter-fan-control-config.yaml" controller = FanController(debug = False, config_file = CONFIG_FILE_PATH) args = sys.argv if len(args) == 2: command = args[1] if command == "--run": controller.loop_control() # otherwise, exit cleanly controller.on_exit(None, None)