mirror of
https://github.com/VK3FNG/soundmodem.git
synced 2025-12-06 03:01:59 +01:00
503 lines
12 KiB
C++
503 lines
12 KiB
C++
/*
|
|
* Matrix operations library
|
|
*
|
|
* Copyright (C) 1999-2000, 2003
|
|
* Thomas Sailer, <t.sailer@alumni.ethz.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifndef _MAT_HH
|
|
#define _MAT_HH
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* AIX requires this to be the first thing in the file. */
|
|
#ifndef __GNUC__
|
|
# if HAVE_ALLOCA_H
|
|
# include <alloca.h>
|
|
# else
|
|
# ifdef _AIX
|
|
#pragma alloca
|
|
# else
|
|
# ifndef alloca /* predefined by HP cc +Olibcalls */
|
|
char *alloca ();
|
|
# endif
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#include <exception>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
class matrix_exception : public exception
|
|
{
|
|
public:
|
|
matrix_exception(const string& e) throw() : err(e) {}
|
|
virtual ~matrix_exception() throw() {}
|
|
virtual const char* what() const throw() { return err.c_str(); }
|
|
private:
|
|
const string err;
|
|
};
|
|
|
|
|
|
/*
|
|
* Simple matrix operations
|
|
*/
|
|
|
|
template<typename T> void madd(T *c, const T *a, const T *b, unsigned int d1, unsigned int d2)
|
|
{
|
|
unsigned int i, j = d1 * d2;
|
|
for (i = 0; i < j; i++)
|
|
c[i] = a[i] + b[i];
|
|
}
|
|
|
|
template<typename T> void msub(T *c, const T *a, const T *b, unsigned int d1, unsigned int d2)
|
|
{
|
|
unsigned int i, j = d1 * d2;
|
|
for (i = 0; i < j; i++)
|
|
c[i] = a[i] - b[i];
|
|
}
|
|
|
|
/* c el R^{d1 x d3}, a el R^{d1 x d2}, b el R^{d2 x d3} */
|
|
template<typename T> void mmul(T *c, const T *a, const T *b, unsigned int d1, unsigned int d2, unsigned int d3)
|
|
{
|
|
T *r = c, s;
|
|
unsigned int i, j, k;
|
|
if (c == a || c == b)
|
|
r = (T *)alloca(d1 * d3 * sizeof(r[0]));
|
|
for (i = 0; i < d1; i++)
|
|
for (k = 0; k < d3; k++) {
|
|
for (s = 0, j = 0; j < d2; j++)
|
|
s += a[i*d2+j] * b[j*d3+k];
|
|
r[i*d3+k] = s;
|
|
}
|
|
if (r != c)
|
|
memcpy(c, r, d1 * d3 * sizeof(c[0]));
|
|
}
|
|
|
|
template<typename T> void mdet(const T *c, unsigned int d)
|
|
{
|
|
T *c2;
|
|
unsigned int i, j, k, l;
|
|
T det = 0, dr;
|
|
|
|
if (!d)
|
|
return 0;
|
|
if (d == 1)
|
|
return c[0];
|
|
if (d == 2)
|
|
return c[0] * c[3] - c[1] * c[2];
|
|
c2 = alloca(sizeof(T)*(d-1)*(d-1));
|
|
for (i = 0; i < d; i++) {
|
|
for (j = k = 0; j < d; j++) {
|
|
if (j == i)
|
|
continue;
|
|
for (l = 0; l < d-1; l++)
|
|
c2[l*(d-1)+k] = c[(l+1)*d+j];
|
|
k++;
|
|
}
|
|
dr = mdet(c2, d-1);
|
|
if (i & 1)
|
|
det -= dr * c[i];
|
|
else
|
|
det += dr * c[i];
|
|
}
|
|
return det;
|
|
}
|
|
|
|
/* Transpose a matrix (a el C^{d1 x d2}, b el C^{d2 x d1}) */
|
|
template<typename T> void mtranspose(T *b, const T *a, unsigned int d1, unsigned int d2)
|
|
{
|
|
const T *c = a;
|
|
unsigned int ci, bi, i, j;
|
|
|
|
if (b == a) {
|
|
void *cc = alloca(d1 * d2 * sizeof(c[0]));
|
|
memcpy(cc, a, d1 * d2 * sizeof(c[0]));
|
|
c = (const T *)cc;
|
|
}
|
|
for (i = 0; i < d1; i++)
|
|
for (j = 0; j < d2; j++) {
|
|
ci = i*d2+j;
|
|
bi = j*d1+i;
|
|
b[bi] = c[ci];
|
|
}
|
|
}
|
|
|
|
/* Transpose a matrix (a el C^{d1 x d2}, b el C^{d2 x d1}) */
|
|
template<typename T> void mhermtranspose(complex<T> *b, const complex<T> *a, unsigned int d1, unsigned int d2)
|
|
{
|
|
const complex<T> *c = a;
|
|
unsigned int ci, bi, i, j;
|
|
|
|
if (b == a) {
|
|
void *cc = alloca(d1 * d2 * sizeof(c[0]));
|
|
memcpy(cc, a, d1 * d2 * sizeof(c[0]));
|
|
c = (const complex<T> *)cc;
|
|
}
|
|
for (i = 0; i < d1; i++)
|
|
for (j = 0; j < d2; j++) {
|
|
ci = i*d2+j;
|
|
bi = j*d1+i;
|
|
b[bi] = conj(c[ci]);
|
|
}
|
|
}
|
|
|
|
template<typename T> void mconj(complex<T> *c, const complex<T> *a, unsigned int d1, unsigned int d2)
|
|
{
|
|
unsigned int i, j = d1 * d2;
|
|
for (i = 0; i < j; i++)
|
|
c[i] = conj(a[i]);
|
|
}
|
|
|
|
/*
|
|
* complex cholesky factorization
|
|
*/
|
|
|
|
/*
|
|
* A el C^{d x d}
|
|
* This routine calculates G*G^H = A, where G is lower triangular, and then uses this to solve
|
|
* A*c=b for c
|
|
* G*G^H*c=b
|
|
* G*t=b
|
|
* G^H*c=t
|
|
*/
|
|
|
|
template<typename T> inline T complex_pwr(complex<T> c)
|
|
{
|
|
return real(c) * real(c) + imag(c) * imag(c);
|
|
}
|
|
|
|
template<typename T> void mcholfactor(const complex<T> *a, complex<T> *g, unsigned int d)
|
|
{
|
|
unsigned int i, j, k;
|
|
complex<T> sc;
|
|
T s;
|
|
|
|
memset(g, 0, d*d*sizeof(g[0]));
|
|
for (i = 0; i < d; i++) {
|
|
s = real(a[i*d+i]);
|
|
for (j = 0; j < i; j++)
|
|
s -= complex_pwr(g[i*d+j]);
|
|
if (s <= 0 || imag(a[i*d+i]) != 0) {
|
|
ostringstream os;
|
|
os << "mcholfactor: matrix not positive definite a[" << i << "][" << i << "]=" << a[i*d+i] << " s=" << s << "\n";
|
|
throw matrix_exception(os.str());
|
|
}
|
|
s = T(1) / sqrt(s);
|
|
g[i*d+i] = s;
|
|
for (j = i+1; j < d; j++) {
|
|
sc = a[j*d+i];
|
|
for (k = 0; k < i; k++)
|
|
sc -= g[j*d+k] * conj(g[i*d+k]);
|
|
g[j*d+i] = sc * s;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> void mcholapply(const complex<T> *g, const complex<T> *b, complex<T> *c, unsigned int d)
|
|
{
|
|
complex<T> *t, s, s2;
|
|
unsigned int i, j;
|
|
|
|
t = alloca(d*sizeof(t[0]));
|
|
for (i = 0; i < d; i++) {
|
|
s = b[i];
|
|
for (j = 0; j < i; j++)
|
|
s -= g[i*d+j] * t[j];
|
|
/* g's diagonal is real, therefore we have a division by a real */
|
|
t[i] = s * real(g[i*d+i]);
|
|
}
|
|
for (i = d; i > 0; i--) {
|
|
s = t[i-1];
|
|
for (j = i; j < d; j++)
|
|
s -= conj(g[j*d+(i-1)]) * c[j];
|
|
/* g's diagonal is real, therefore we have a division by a real */
|
|
c[i-1] = s * real(g[(i-1)*d+(i-1)]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* real cholesky factorization
|
|
*/
|
|
|
|
/*
|
|
* A el R^{d x d}
|
|
* This routine calculates G*G^T = A, where G is lower triangular, and then uses this to solve
|
|
* A*c=b for c
|
|
* G*G^T*c=b
|
|
* G*t=b
|
|
* G^T*c=t
|
|
*/
|
|
|
|
template<typename T> void mcholfactor(const T *a, T *g, unsigned int d)
|
|
{
|
|
unsigned int i, j, k;
|
|
T s, s1;
|
|
|
|
memset(g, 0, d*d*sizeof(g[0]));
|
|
for (i = 0; i < d; i++) {
|
|
s = a[i*d+i];
|
|
for (j = 0; j < i; j++)
|
|
s -= g[i*d+j] * g[i*d+j];
|
|
if (s <= 0) {
|
|
ostringstream os;
|
|
os << "mcholfactor: matrix not positive definite a[" << i << "][" << i << "]=" << a[i*d+i] << " s=" << s << "\n";
|
|
throw matrix_exception(os.str());
|
|
}
|
|
s = T(1) / sqrt(s);
|
|
g[i*d+i] = s;
|
|
for (j = i+1; j < d; j++) {
|
|
s1 = a[j*d+i];
|
|
for (k = 0; k < i; k++)
|
|
s1 -= g[j*d+k] * g[i*d+k];
|
|
g[j*d+i] = s * s1;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> void mcholapply(const T *g, const T *b, T *c, unsigned int d)
|
|
{
|
|
T *t;
|
|
unsigned int i, j;
|
|
float s1;
|
|
|
|
t = (T *)alloca(d*sizeof(t[0]));
|
|
for (i = 0; i < d; i++) {
|
|
s1 = b[i];
|
|
for (j = 0; j < i; j++)
|
|
s1 -= g[i*d+j] * t[j];
|
|
t[i] = s1 * g[i*d+i];
|
|
}
|
|
for (i = d; i > 0; i--) {
|
|
s1 = t[i-1];
|
|
for (j = i; j < d; j++)
|
|
s1 -= g[j*d+(i-1)] * c[j];
|
|
c[i-1] = s1 * g[(i-1)*d+(i-1)];
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T> void mchol(const T *a, const T *b, T *c, unsigned int d)
|
|
{
|
|
T *g;
|
|
g = (T *)alloca(d*d*sizeof(g[0]));
|
|
mcholfactor(a, g, d);
|
|
mcholapply(g, b, c, d);
|
|
}
|
|
|
|
/*
|
|
* Complex Gaussian Elimination
|
|
*/
|
|
|
|
/*
|
|
* Golub/van Loan, 3.1.3, p 112; PA=LU factorization with partial pivoting
|
|
*/
|
|
|
|
template<typename T> inline void swap(T& a, T& b)
|
|
{
|
|
T c = a;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
template<typename T> void mlufact(complex<T> *u, unsigned int *p, const complex<T> *a, unsigned int d)
|
|
{
|
|
unsigned int i, j, k, mu;
|
|
complex<T> fm;
|
|
T f1, f2;
|
|
|
|
if (u != a)
|
|
memcpy(u, a, d*d*sizeof(u[0]));
|
|
for (k = 0; k < d-1; k++) {
|
|
/* search pivot index */
|
|
for (f1 = 0, i = mu = k; i < d; i++) {
|
|
f2 = complex_pwr(u[i*d+k]);
|
|
if (f2 > f1) {
|
|
f1 = f2;
|
|
mu = i;
|
|
}
|
|
}
|
|
/* exchange rows */
|
|
p[k] = mu;
|
|
for (i = k; i < d; i++)
|
|
swap(u[k*d+i], u[mu*d+i]);
|
|
fm = u[k*d+k];
|
|
if (real(fm) != 0 || imag(fm) != 0) {
|
|
fm = T(1) / fm;
|
|
for (i = k+1; i < d; i++)
|
|
u[i*d+k] *= fm;
|
|
for (i = k+1; i < d; i++)
|
|
for (j = k+1; j < d; j++)
|
|
u[i*d+j] -= u[i*d+k] * u[k*d+j];
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> void mlusolve(complex<T> *x, const complex<T> *b, const complex<T> *u, const unsigned int *p, unsigned int d)
|
|
{
|
|
complex<T> *y, s;
|
|
unsigned int k, i;
|
|
|
|
y = alloca(d * sizeof(y[0]));
|
|
memcpy(y, b, d * sizeof(y[0]));
|
|
for (k = 0; k < d-1; k++) {
|
|
i = p[k];
|
|
if (i != k)
|
|
swap(y[k], y[i]);
|
|
if (real(y[k]) == 0 && imag(y[k]) == 0)
|
|
continue;
|
|
for (i = k+1; i < d; i++)
|
|
y[i] -= y[k] * u[i*d+k];
|
|
}
|
|
/* solve Ux=y */
|
|
for (k = d; k > 0; k--) {
|
|
s = y[k-1];
|
|
for (i = k; i < d; i++)
|
|
s -= u[(k-1)*d+i] * x[i];
|
|
x[k-1] = s / u[(k-1)*d+(k-1)];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Real Gaussian Elimination
|
|
*/
|
|
|
|
/*
|
|
* Golub/van Loan, 3.1.3, p 112; PA=LU factorization with partial pivoting
|
|
*/
|
|
|
|
template<typename T> void mlufact(T *u, unsigned int *p, const T *a, unsigned int d)
|
|
{
|
|
unsigned int i, j, k, mu;
|
|
T f1, f2;
|
|
|
|
if (u != a)
|
|
memcpy(u, a, d*d*sizeof(u[0]));
|
|
for (k = 0; k < d-1; k++) {
|
|
/* search pivot index */
|
|
for (f1 = 0, i = mu = k; i < d; i++) {
|
|
f2 = fabs(u[i*d+k]);
|
|
if (f2 > f1) {
|
|
f1 = f2;
|
|
mu = i;
|
|
}
|
|
}
|
|
/* exchange rows */
|
|
p[k] = mu;
|
|
for (i = k; i < d; i++)
|
|
swap(u[k*d+i], u[mu*d+i]);
|
|
f1 = u[k*d+k];
|
|
if (f1 != 0) {
|
|
f1 = 1 / f1;
|
|
for (i = k+1; i < d; i++)
|
|
u[i*d+k] *= f1;
|
|
for (i = k+1; i < d; i++)
|
|
for (j = k+1; j < d; j++)
|
|
u[i*d+j] -= u[i*d+k] * u[k*d+j];
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> void mlusolve(T *x, const T *b, const T *u, const unsigned int *p, unsigned int d)
|
|
{
|
|
T *y, s;
|
|
unsigned int k, i;
|
|
|
|
y = alloca(d * sizeof(y[0]));
|
|
memcpy(y, b, d * sizeof(y[0]));
|
|
for (k = 0; k < d-1; k++) {
|
|
i = p[k];
|
|
if (i != k)
|
|
swap(y[k], y[i]);
|
|
if (y[k] == 0)
|
|
continue;
|
|
for (i = k+1; i < d; i++)
|
|
y[i] -= y[k] * u[i*d+k];
|
|
}
|
|
/* solve Ux=y */
|
|
for (k = d; k > 0; k--) {
|
|
s = y[k-1];
|
|
for (i = k; i < d; i++)
|
|
s -= u[(k-1)*d+i] * x[i];
|
|
x[k-1] = s / u[(k-1)*d+(k-1)];
|
|
}
|
|
}
|
|
|
|
template<typename T> void minv(T *ainv, const T *a, unsigned int d)
|
|
{
|
|
T *u, *y;
|
|
unsigned int *p;
|
|
unsigned int k;
|
|
|
|
u = alloca(d * d * sizeof(u[0]));
|
|
p = alloca((d-1) * sizeof(p[0]));
|
|
mlufact(u, p, a, d);
|
|
for (k = 0; k < d; k++) {
|
|
y = &ainv[k*d];
|
|
memset(y, 0, d * sizeof(y[0]));
|
|
y[k] = T(1);
|
|
mlusolve(y, y, u, p, d);
|
|
}
|
|
mtranspose(ainv, ainv, d, d);
|
|
}
|
|
|
|
/*
|
|
* Gauss-Seidel iterative solver
|
|
*/
|
|
|
|
/*
|
|
* This routine calculates A*c=b iteratively, using the Gauss-Seidel iteration method
|
|
*/
|
|
|
|
template<typename T> void mgaussseidel(const complex<T> *a, const complex<T> *b, complex<T> *c, unsigned int d, unsigned int iter)
|
|
{
|
|
complex<T> *adiag;
|
|
unsigned int i, j, k;
|
|
complex<T> s;
|
|
|
|
adiag = alloca(d*sizeof(adiag[0]));
|
|
/* initial vector */
|
|
for (i = 1; i < d; i++)
|
|
c[i] = T(0);
|
|
c[0] = T(1);
|
|
/* check for diagonal */
|
|
for (i = 0; i < d; i++) {
|
|
if (a[i*d+i] == T(0)) {
|
|
ostringstream os;
|
|
os << "mgaussseidel: matrix diagonal zero a[" << i << "][" << i << "]=" << a[i*d+i] << "\n";
|
|
throw matrix_exception(os.str());
|
|
}
|
|
adiag[i] = T(1) / a[i*d+i];
|
|
}
|
|
/* iteration */
|
|
for (i = 0; i < iter; i++) {
|
|
for (j = 0; j < d; j++) {
|
|
s = b[j];
|
|
for (k = 0; k < j; k++)
|
|
s -= a[j*d+k] * c[k];
|
|
for (k = j+1; k < d; k++)
|
|
s -= a[j*d+k] * c[k];
|
|
c[j] = s * adiag[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* _MAT_H */
|