/* * Matrix operations library * * Copyright (C) 1999-2000 * Thomas Sailer, * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #endif /* AIX requires this to be the first thing in the file. */ #ifndef __GNUC__ # if HAVE_ALLOCA_H # include # else # ifdef _AIX #pragma alloca # else # ifndef alloca /* predefined by HP cc +Olibcalls */ char *alloca (); # endif # endif # endif #endif #include "mat.h" #include #include #include /* * A el C^{d x d} * This routine calculates G*G^H = A, where G is lower triangular, and then uses this to solve * A*c=b for c * G*G^H*c=b * G*t=b * G^H*c=t */ static inline double pwr(cplxdouble_t c) { return real(c) * real(c) + imag(c) * imag(c); } int dccholfactor(const cplxdouble_t *a, cplxdouble_t *g, unsigned int d) { unsigned int i, j, k; cplxdouble_t sc, co; double s; memset(g, 0, d*d*sizeof(g[0])); for (i = 0; i < d; i++) { s = real(a[i*d+i]); for (j = 0; j < i; j++) s -= pwr(g[i*d+j]); if (s <= 0 || imag(a[i*d+i]) != 0) { fprintf(stderr, "dccholfactor: matrix not positive definite a[%u][%u]=%g%+gi s=%g\n", i, i, real(a[i*d+i]), imag(a[i*d+i]), s); return -1; } s = 1/sqrt(s); cplx(g[i*d+i], s, 0); for (j = i+1; j < d; j++) { sc = a[j*d+i]; for (k = 0; k < i; k++) { conj(co, g[i*d+k]); cmsub(sc, g[j*d+k], co); } cmuls(g[j*d+i], sc, s); } } return 0; } void dccholapply(const cplxdouble_t *g, const cplxdouble_t *b, cplxdouble_t *c, unsigned int d) { cplxdouble_t *t, s, s2; unsigned int i, j; t = alloca(d*sizeof(t[0])); for (i = 0; i < d; i++) { s = b[i]; for (j = 0; j < i; j++) cmsub(s, g[i*d+j], t[j]); /* g's diagonal is real, therefore we have a division by a real */ cmuls(t[i], s, real(g[i*d+i])); } for (i = d; i > 0; i--) { s = t[i-1]; for (j = i; j < d; j++) { conj(s2, g[j*d+(i-1)]); cmsub(s, s2, c[j]); } /* g's diagonal is real, therefore we have a division by a real */ cmuls(c[i-1], s, real(g[(i-1)*d+(i-1)])); } } int dcchol(const cplxdouble_t *a, const cplxdouble_t *b, cplxdouble_t *c, unsigned int d) { cplxdouble_t *g; g = alloca(d*d*sizeof(g[0])); if (dccholfactor(a, g, d)) { memset(c, 0, d*sizeof(c[0])); return -1; } dccholapply(g, b, c, d); return 0; }