#include "stdafx.h" #include "Emu/Cell/PPUModule.h" #include "Emu/Cell/lv2/sys_event.h" #include "Emu/Cell/lv2/sys_process.h" #include "cellSync.h" LOG_CHANNEL(cellSync); template <> void fmt_class_string::format(std::string& out, u64 arg) { format_enum(out, arg, [](auto error) { switch (error) { STR_CASE(CELL_SYNC_ERROR_AGAIN); STR_CASE(CELL_SYNC_ERROR_INVAL); STR_CASE(CELL_SYNC_ERROR_NOSYS); STR_CASE(CELL_SYNC_ERROR_NOMEM); STR_CASE(CELL_SYNC_ERROR_SRCH); STR_CASE(CELL_SYNC_ERROR_NOENT); STR_CASE(CELL_SYNC_ERROR_NOEXEC); STR_CASE(CELL_SYNC_ERROR_DEADLK); STR_CASE(CELL_SYNC_ERROR_PERM); STR_CASE(CELL_SYNC_ERROR_BUSY); STR_CASE(CELL_SYNC_ERROR_ABORT); STR_CASE(CELL_SYNC_ERROR_FAULT); STR_CASE(CELL_SYNC_ERROR_CHILD); STR_CASE(CELL_SYNC_ERROR_STAT); STR_CASE(CELL_SYNC_ERROR_ALIGN); STR_CASE(CELL_SYNC_ERROR_NULL_POINTER); STR_CASE(CELL_SYNC_ERROR_NOT_SUPPORTED_THREAD); STR_CASE(CELL_SYNC_ERROR_NO_NOTIFIER); STR_CASE(CELL_SYNC_ERROR_NO_SPU_CONTEXT_STORAGE); } return unknown; }); } error_code cellSyncMutexInitialize(vm::ptr mutex) { cellSync.trace("cellSyncMutexInitialize(mutex=*0x%x)", mutex); if (!mutex) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!mutex.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } mutex->ctrl.exchange({0, 0}); return CELL_OK; } error_code cellSyncMutexLock(ppu_thread& ppu, vm::ptr mutex) { cellSync.trace("cellSyncMutexLock(mutex=*0x%x)", mutex); if (!mutex) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!mutex.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // Increase acq value and remember its old value const auto order = mutex->ctrl.atomic_op(&CellSyncMutex::Counter::lock_begin); // Wait until rel value is equal to old acq value while (mutex->ctrl.load().rel != order) { if (ppu.test_stopped()) { return 0; } } atomic_fence_acq_rel(); return CELL_OK; } error_code cellSyncMutexTryLock(vm::ptr mutex) { cellSync.trace("cellSyncMutexTryLock(mutex=*0x%x)", mutex); if (!mutex) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!mutex.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } if (!mutex->ctrl.atomic_op(&CellSyncMutex::Counter::try_lock)) { return not_an_error(CELL_SYNC_ERROR_BUSY); } return CELL_OK; } error_code cellSyncMutexUnlock(vm::ptr mutex) { cellSync.trace("cellSyncMutexUnlock(mutex=*0x%x)", mutex); if (!mutex) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!mutex.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } mutex->ctrl.atomic_op(&CellSyncMutex::Counter::unlock); return CELL_OK; } error_code cellSyncBarrierInitialize(vm::ptr barrier, u16 total_count) { cellSync.trace("cellSyncBarrierInitialize(barrier=*0x%x, total_count=%d)", barrier, total_count); if (!barrier) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!barrier.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } if (!total_count || total_count > 32767) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } // clear current value, write total_count and sync barrier->ctrl.exchange({0, total_count}); return CELL_OK; } error_code cellSyncBarrierNotify(ppu_thread& ppu, vm::ptr barrier) { cellSync.trace("cellSyncBarrierNotify(barrier=*0x%x)", barrier); if (!barrier) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!barrier.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } while (!barrier->ctrl.atomic_op(&CellSyncBarrier::try_notify)) { if (ppu.test_stopped()) { return 0; } } return CELL_OK; } error_code cellSyncBarrierTryNotify(vm::ptr barrier) { cellSync.trace("cellSyncBarrierTryNotify(barrier=*0x%x)", barrier); if (!barrier) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!barrier.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } atomic_fence_acq_rel(); if (!barrier->ctrl.atomic_op(&CellSyncBarrier::try_notify)) { return not_an_error(CELL_SYNC_ERROR_BUSY); } return CELL_OK; } error_code cellSyncBarrierWait(ppu_thread& ppu, vm::ptr barrier) { cellSync.trace("cellSyncBarrierWait(barrier=*0x%x)", barrier); if (!barrier) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!barrier.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } atomic_fence_acq_rel(); while (!barrier->ctrl.atomic_op(&CellSyncBarrier::try_wait)) { if (ppu.test_stopped()) { return 0; } } return CELL_OK; } error_code cellSyncBarrierTryWait(vm::ptr barrier) { cellSync.trace("cellSyncBarrierTryWait(barrier=*0x%x)", barrier); if (!barrier) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!barrier.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } atomic_fence_acq_rel(); if (!barrier->ctrl.atomic_op(&CellSyncBarrier::try_wait)) { return not_an_error(CELL_SYNC_ERROR_BUSY); } return CELL_OK; } error_code cellSyncRwmInitialize(vm::ptr rwm, vm::ptr buffer, u32 buffer_size) { cellSync.trace("cellSyncRwmInitialize(rwm=*0x%x, buffer=*0x%x, buffer_size=0x%x)", rwm, buffer, buffer_size); if (!rwm || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!rwm.aligned() || !buffer.aligned(128)) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } if (buffer_size % 128 || buffer_size > 0x4000) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } // clear readers and writers, write buffer_size, buffer addr and sync rwm->ctrl.store({0, 0}); rwm->size = buffer_size; rwm->buffer = buffer; atomic_fence_acq_rel(); return CELL_OK; } error_code cellSyncRwmRead(ppu_thread& ppu, vm::ptr rwm, vm::ptr buffer) { cellSync.trace("cellSyncRwmRead(rwm=*0x%x, buffer=*0x%x)", rwm, buffer); if (!rwm || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!rwm.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // wait until `writers` is zero, increase `readers` while (!rwm->ctrl.atomic_op(&CellSyncRwm::try_read_begin)) { if (ppu.test_stopped()) { return 0; } } // copy data to buffer std::memcpy(buffer.get_ptr(), rwm->buffer.get_ptr(), rwm->size); // decrease `readers`, return error if already zero if (!rwm->ctrl.atomic_op(&CellSyncRwm::try_read_end)) { return CELL_SYNC_ERROR_ABORT; } return CELL_OK; } error_code cellSyncRwmTryRead(vm::ptr rwm, vm::ptr buffer) { cellSync.trace("cellSyncRwmTryRead(rwm=*0x%x, buffer=*0x%x)", rwm, buffer); if (!rwm || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!rwm.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // increase `readers` if `writers` is zero if (!rwm->ctrl.atomic_op(&CellSyncRwm::try_read_begin)) { return not_an_error(CELL_SYNC_ERROR_BUSY); } // copy data to buffer std::memcpy(buffer.get_ptr(), rwm->buffer.get_ptr(), rwm->size); // decrease `readers`, return error if already zero if (!rwm->ctrl.atomic_op(&CellSyncRwm::try_read_end)) { return CELL_SYNC_ERROR_ABORT; } return CELL_OK; } error_code cellSyncRwmWrite(ppu_thread& ppu, vm::ptr rwm, vm::cptr buffer) { cellSync.trace("cellSyncRwmWrite(rwm=*0x%x, buffer=*0x%x)", rwm, buffer); if (!rwm || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!rwm.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // wait until `writers` is zero, set to 1 while (!rwm->ctrl.atomic_op(&CellSyncRwm::try_write_begin)) { if (ppu.test_stopped()) { return 0; } } // wait until `readers` is zero while (rwm->ctrl.load().readers != 0) { if (ppu.test_stopped()) { return 0; } } // copy data from buffer std::memcpy(rwm->buffer.get_ptr(), buffer.get_ptr(), rwm->size); // sync and clear `readers` and `writers` rwm->ctrl.exchange({0, 0}); return CELL_OK; } error_code cellSyncRwmTryWrite(vm::ptr rwm, vm::cptr buffer) { cellSync.trace("cellSyncRwmTryWrite(rwm=*0x%x, buffer=*0x%x)", rwm, buffer); if (!rwm || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!rwm.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // set `writers` to 1 if `readers` and `writers` are zero if (!rwm->ctrl.compare_and_swap_test({0, 0}, {0, 1})) { return not_an_error(CELL_SYNC_ERROR_BUSY); } // copy data from buffer std::memcpy(rwm->buffer.get_ptr(), buffer.get_ptr(), rwm->size); // sync and clear `readers` and `writers` rwm->ctrl.exchange({0, 0}); return CELL_OK; } error_code cellSyncQueueInitialize(vm::ptr queue, vm::ptr buffer, u32 size, u32 depth) { cellSync.trace("cellSyncQueueInitialize(queue=*0x%x, buffer=*0x%x, size=0x%x, depth=0x%x)", queue, buffer, size, depth); if (!queue) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (size && !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned() || !buffer.aligned(16)) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } if (!depth || size % 16) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } // clear sync var, write size, depth, buffer addr and sync queue->ctrl.store({}); queue->size = size; queue->depth = depth; queue->buffer = buffer; atomic_fence_acq_rel(); return CELL_OK; } error_code cellSyncQueuePush(ppu_thread& ppu, vm::ptr queue, vm::cptr buffer) { cellSync.trace("cellSyncQueuePush(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_push_begin(ctrl, depth, &position); })) { if (ppu.test_stopped()) { return 0; } } // copy data from the buffer at the position std::memcpy(&queue->buffer[position * queue->size], buffer.get_ptr(), queue->size); queue->ctrl.atomic_op(&CellSyncQueue::push_end); return CELL_OK; } error_code cellSyncQueueTryPush(vm::ptr queue, vm::cptr buffer) { cellSync.trace("cellSyncQueueTryPush(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_push_begin(ctrl, depth, &position); })) { return not_an_error(CELL_SYNC_ERROR_BUSY); } // copy data from the buffer at the position std::memcpy(&queue->buffer[position * queue->size], buffer.get_ptr(), queue->size); queue->ctrl.atomic_op(&CellSyncQueue::push_end); return CELL_OK; } error_code cellSyncQueuePop(ppu_thread& ppu, vm::ptr queue, vm::ptr buffer) { cellSync.trace("cellSyncQueuePop(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_pop_begin(ctrl, depth, &position); })) { if (ppu.test_stopped()) { return 0; } } // copy data at the position to the buffer std::memcpy(buffer.get_ptr(), &queue->buffer[position % depth * queue->size], queue->size); queue->ctrl.atomic_op(&CellSyncQueue::pop_end); return CELL_OK; } error_code cellSyncQueueTryPop(vm::ptr queue, vm::ptr buffer) { cellSync.trace("cellSyncQueueTryPop(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_pop_begin(ctrl, depth, &position); })) { return not_an_error(CELL_SYNC_ERROR_BUSY); } // copy data at the position to the buffer std::memcpy(buffer.get_ptr(), &queue->buffer[position % depth * queue->size], queue->size); queue->ctrl.atomic_op(&CellSyncQueue::pop_end); return CELL_OK; } error_code cellSyncQueuePeek(ppu_thread& ppu, vm::ptr queue, vm::ptr buffer) { cellSync.trace("cellSyncQueuePeek(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_peek_begin(ctrl, depth, &position); })) { if (ppu.test_stopped()) { return 0; } } // copy data at the position to the buffer std::memcpy(buffer.get_ptr(), &queue->buffer[position % depth * queue->size], queue->size); queue->ctrl.atomic_op(&CellSyncQueue::pop_end); return CELL_OK; } error_code cellSyncQueueTryPeek(vm::ptr queue, vm::ptr buffer) { cellSync.trace("cellSyncQueueTryPeek(queue=*0x%x, buffer=*0x%x)", queue, buffer); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } const u32 depth = queue->check_depth(); u32 position; while (!queue->ctrl.atomic_op([&](CellSyncQueue::ctrl_t& ctrl) { return CellSyncQueue::try_peek_begin(ctrl, depth, &position); })) { return not_an_error(CELL_SYNC_ERROR_BUSY); } // copy data at the position to the buffer std::memcpy(buffer.get_ptr(), &queue->buffer[position % depth * queue->size], queue->size); queue->ctrl.atomic_op(&CellSyncQueue::pop_end); return CELL_OK; } error_code cellSyncQueueSize(vm::ptr queue) { cellSync.trace("cellSyncQueueSize(queue=*0x%x)", queue); if (!queue) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } queue->check_depth(); return not_an_error(queue->ctrl.load().count & 0xffffff); } error_code cellSyncQueueClear(ppu_thread& ppu, vm::ptr queue) { cellSync.trace("cellSyncQueueClear(queue=*0x%x)", queue); if (!queue) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } queue->check_depth(); while (!queue->ctrl.atomic_op(&CellSyncQueue::try_clear_begin_1)) { if (ppu.test_stopped()) { return 0; } } while (!queue->ctrl.atomic_op(&CellSyncQueue::try_clear_begin_2)) { if (ppu.test_stopped()) { return 0; } } queue->ctrl.store({}); return CELL_OK; } // LFQueue functions void syncLFQueueInitialize(vm::ptr queue, vm::cptr buffer, u32 size, u32 depth, u32 direction, vm::ptr eaSignal) { queue->m_size = size; queue->m_depth = depth; queue->m_buffer = buffer; queue->m_direction = direction; memset(queue->m_hs1, 0, sizeof(queue->m_hs1)); memset(queue->m_hs2, 0, sizeof(queue->m_hs2)); queue->m_eaSignal = eaSignal; if (direction == CELL_SYNC_QUEUE_ANY2ANY) { queue->pop1.store({}); queue->push1.store({}); queue->m_buffer.set(queue->m_buffer.addr() | 1); queue->m_bs[0] = -1; queue->m_bs[1] = -1; // m_bs[2] // m_bs[3] queue->m_v1 = -1; queue->push2.store({0xffff}); queue->pop2.store({0xffff}); } else { queue->pop1.store({0, 0, queue->pop1.load().m_h3, 0}); queue->push1.store({0, 0, queue->push1.load().m_h7, 0}); queue->m_bs[0] = -1; // written as u32 queue->m_bs[1] = -1; queue->m_bs[2] = -1; queue->m_bs[3] = -1; queue->m_v1 = 0; queue->push2.store({}); queue->pop2.store({}); } queue->m_v2 = 0; queue->m_eq_id = 0; } error_code cellSyncLFQueueInitialize(vm::ptr queue, vm::cptr buffer, u32 size, u32 depth, u32 direction, vm::ptr eaSignal) { cellSync.warning("cellSyncLFQueueInitialize(queue=*0x%x, buffer=*0x%x, size=0x%x, depth=0x%x, direction=%d, eaSignal=*0x%x)", queue, buffer, size, depth, direction, eaSignal); if (!queue) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (size) { if (!buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (size > 0x4000 || size % 16) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } } if (!depth || depth > 0x7fff || direction > 3) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } if (!queue.aligned() || !buffer.aligned(16)) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } // get sdk version of current process s32 sdk_ver; if (s32 ret = process_get_sdk_version(process_getpid(), sdk_ver)) { return not_an_error(ret); } if (sdk_ver == -1) { sdk_ver = 0x460000; } // reserve `init` u32 old_value; while (true) { const auto old = queue->init.load(); auto init = old; if (old) { if (sdk_ver > 0x17ffff && old != 2) [[unlikely]] { return CELL_SYNC_ERROR_STAT; } old_value = old; } else { if (sdk_ver > 0x17ffff) { for (const auto& data : vm::_ref(queue.addr())) { if (data) [[unlikely]] { return CELL_SYNC_ERROR_STAT; } } } init = 1; old_value = 1; } if (queue->init.compare_and_swap_test(old, init)) break; } if (old_value == 2) { if (queue->m_size != size || queue->m_depth != depth || queue->m_buffer != buffer) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } if (sdk_ver > 0x17ffff) { if (queue->m_eaSignal != eaSignal || queue->m_direction != direction) [[unlikely]] { return CELL_SYNC_ERROR_INVAL; } } atomic_fence_acq_rel(); } else { syncLFQueueInitialize(queue, buffer, size, depth, direction, eaSignal); queue->init.exchange(0); } return CELL_OK; } error_code _cellSyncLFQueueGetPushPointer(ppu_thread& ppu, vm::ptr queue, vm::ptr pointer, u32 isBlocking, u32 useEventQueue) { cellSync.warning("_cellSyncLFQueueGetPushPointer(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue); if (queue->m_direction != CELL_SYNC_QUEUE_PPU2SPU) [[unlikely]] { return CELL_SYNC_ERROR_PERM; } const s32 depth = queue->m_depth; u32 var1 = 0; while (true) { while (true) { const auto old = queue->push1.load(); auto push = old; if (var1) { push.m_h7 = 0; } if (isBlocking && useEventQueue && std::bit_cast(queue->m_bs) == -1) { return CELL_SYNC_ERROR_STAT; } s32 var2 = static_cast(push.m_h8); s32 res; if (useEventQueue && (+push.m_h5 != var2 || push.m_h7)) { res = CELL_SYNC_ERROR_BUSY; } else { var2 -= queue->pop1.load().m_h1; if (var2 < 0) { var2 += depth * 2; } if (var2 < depth) { const s32 _pointer = static_cast(push.m_h8); *pointer = _pointer; if (_pointer + 1 >= depth * 2) { push.m_h8 = 0; } else { push.m_h8++; } res = CELL_OK; } else if (!isBlocking) { return CELL_SYNC_ERROR_AGAIN; } else if (!useEventQueue) { continue; } else { res = CELL_OK; push.m_h7 = 3; if (isBlocking != 3) { break; } } } if (queue->push1.compare_and_swap_test(old, push)) { if (!push.m_h7 || res) { return not_an_error(res); } break; } } ensure(sys_event_queue_receive(ppu, queue->m_eq_id, vm::null, 0) == CELL_OK); var1 = 1; } } error_code _cellSyncLFQueueGetPushPointer2(ppu_thread& /*ppu*/, vm::ptr queue, vm::ptr pointer, u32 isBlocking, u32 useEventQueue) { // arguments copied from _cellSyncLFQueueGetPushPointer cellSync.todo("_cellSyncLFQueueGetPushPointer2(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue); return CELL_OK; } error_code _cellSyncLFQueueCompletePushPointer(ppu_thread& ppu, vm::ptr queue, s32 pointer, vm::ptr fpSendSignal) { cellSync.warning("_cellSyncLFQueueCompletePushPointer(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x)", queue, pointer, fpSendSignal); if (queue->m_direction != CELL_SYNC_QUEUE_PPU2SPU) [[unlikely]] { return CELL_SYNC_ERROR_PERM; } const s32 depth = queue->m_depth; while (true) { const auto old = queue->push2.load(); auto push2 = old; // Loads must be in this order const auto old2 = queue->push3.load(); auto push3 = old2; s32 var1 = pointer - push3.m_h5; if (var1 < 0) { var1 += depth * 2; } s32 var2 = static_cast(queue->pop1.load().m_h4) - queue->pop1.load().m_h1; if (var2 < 0) { var2 += depth * 2; } s32 var9_ = 15 - var1; // calculate (u16)(1 slw (15 - var1)) if (var9_ & 0x30) { var9_ = 0; } else { var9_ = 1 << var9_; } s32 var9 = std::countl_zero(static_cast(~(var9_ | push3.m_h6))) - 16; // count leading zeros in u16 s32 var5 = push3.m_h6 | var9_; if (var9 & 0x30) { var5 = 0; } else { var5 <<= var9; } s32 var3 = push3.m_h5 + var9; if (var3 >= depth * 2) { var3 -= depth * 2; } u16 pack = push2.pack; // three packed 5-bit fields s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f); if (var4 < 0) { var4 += 0x1e; } u32 var6; if (var2 + var4 <= 15 && ((pack >> 10) & 0x1f) != (pack & 0x1f)) { s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f); if (var8 < 0) { var8 += 0x1e; } if (var9 > 1 && static_cast(var8) > 1) { ensure((16 - var2 <= 1)); } s32 var11 = (pack >> 10) & 0x1f; if (var11 >= 15) { var11 -= 15; } u16 var12 = (pack >> 10) & 0x1f; if (var12 == 0x1d) { var12 = 0; } else { var12 = (var12 + 1) << 10; } push2.pack = (pack & 0x83ff) | var12; var6 = queue->m_hs1[var11]; } else { var6 = -1; } push3.m_h5 = static_cast(var3); push3.m_h6 = static_cast(var5); if (queue->push2.compare_and_swap_test(old, push2)) { ensure((var2 + var4 < 16)); if (var6 != umax) { ensure((queue->push3.compare_and_swap_test(old2, push3))); ensure((fpSendSignal)); return not_an_error(fpSendSignal(ppu, vm::cast(queue->m_eaSignal.addr()), var6)); } else { pack = queue->push2.load().pack; if ((pack & 0x1f) == ((pack >> 10) & 0x1f)) { if (queue->push3.compare_and_swap_test(old2, push3)) { return CELL_OK; } } } } } } error_code _cellSyncLFQueueCompletePushPointer2(ppu_thread&, vm::ptr queue, s32 pointer, vm::ptr fpSendSignal) { // arguments copied from _cellSyncLFQueueCompletePushPointer cellSync.todo("_cellSyncLFQueueCompletePushPointer2(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x)", queue, pointer, fpSendSignal); return CELL_OK; } error_code _cellSyncLFQueuePushBody(ppu_thread& ppu, vm::ptr queue, vm::cptr buffer, u32 isBlocking) { // cellSyncLFQueuePush has 1 in isBlocking param, cellSyncLFQueueTryPush has 0 cellSync.warning("_cellSyncLFQueuePushBody(queue=*0x%x, buffer=*0x%x, isBlocking=%d)", queue, buffer, isBlocking); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned() || !buffer.aligned(16)) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } vm::var position; while (true) { s32 res; if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY) { res = _cellSyncLFQueueGetPushPointer(ppu, queue, position, isBlocking, 0); } else { res = _cellSyncLFQueueGetPushPointer2(ppu, queue, position, isBlocking, 0); } if (!isBlocking || res + 0u != CELL_SYNC_ERROR_AGAIN) { if (res) return not_an_error(res); break; } if (ppu.test_stopped()) { return 0; } } const s32 depth = queue->m_depth; const s32 size = queue->m_size; const s32 pos = *position; const u32 addr = vm::cast((queue->m_buffer.addr() & ~1ull) + size * (pos >= depth ? pos - depth : pos)); std::memcpy(vm::base(addr), buffer.get_ptr(), size); if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY) { return _cellSyncLFQueueCompletePushPointer(ppu, queue, pos, vm::null); } else { return _cellSyncLFQueueCompletePushPointer2(ppu, queue, pos, vm::null); } } error_code _cellSyncLFQueueGetPopPointer(ppu_thread& ppu, vm::ptr queue, vm::ptr pointer, u32 isBlocking, u32 arg4, u32 useEventQueue) { cellSync.warning("_cellSyncLFQueueGetPopPointer(queue=*0x%x, pointer=*0x%x, isBlocking=%d, arg4=%d, useEventQueue=%d)", queue, pointer, isBlocking, arg4, useEventQueue); if (queue->m_direction != CELL_SYNC_QUEUE_SPU2PPU) [[unlikely]] { return CELL_SYNC_ERROR_PERM; } const s32 depth = queue->m_depth; u32 var1 = 0; while (true) { while (true) { const auto old = queue->pop1.load(); auto pop = old; if (var1) { pop.m_h3 = 0; } if (isBlocking && useEventQueue && std::bit_cast(queue->m_bs) == -1) { return CELL_SYNC_ERROR_STAT; } s32 var2 = static_cast(pop.m_h4); s32 res; if (useEventQueue && (static_cast(pop.m_h1) != var2 || pop.m_h3)) { res = CELL_SYNC_ERROR_BUSY; } else { var2 = queue->push1.load().m_h5 - var2; if (var2 < 0) { var2 += depth * 2; } if (var2 > 0) { const s32 _pointer = static_cast(pop.m_h4); *pointer = _pointer; if (_pointer + 1 >= depth * 2) { pop.m_h4 = 0; } else { pop.m_h4++; } res = CELL_OK; } else if (!isBlocking) { return CELL_SYNC_ERROR_AGAIN; } else if (!useEventQueue) { continue; } else { res = CELL_OK; pop.m_h3 = 3; if (isBlocking != 3) { break; } } } if (queue->pop1.compare_and_swap_test(old, pop)) { if (!pop.m_h3 || res) { return not_an_error(res); } break; } } ensure((sys_event_queue_receive(ppu, queue->m_eq_id, vm::null, 0) == CELL_OK)); var1 = 1; } } error_code _cellSyncLFQueueGetPopPointer2(ppu_thread&, vm::ptr queue, vm::ptr pointer, u32 isBlocking, u32 useEventQueue) { // arguments copied from _cellSyncLFQueueGetPopPointer cellSync.todo("_cellSyncLFQueueGetPopPointer2(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue); return CELL_OK; } error_code _cellSyncLFQueueCompletePopPointer(ppu_thread& ppu, vm::ptr queue, s32 pointer, vm::ptr fpSendSignal, u32 noQueueFull) { // arguments copied from _cellSyncLFQueueCompletePushPointer + unknown argument (noQueueFull taken from LFQueue2CompletePopPointer) cellSync.warning("_cellSyncLFQueueCompletePopPointer(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x, noQueueFull=%d)", queue, pointer, fpSendSignal, noQueueFull); if (queue->m_direction != CELL_SYNC_QUEUE_SPU2PPU) [[unlikely]] { return CELL_SYNC_ERROR_PERM; } const s32 depth = queue->m_depth; while (true) { const auto old = queue->pop2.load(); auto pop2 = old; // Loads must be in this order const auto old2 = queue->pop3.load(); auto pop3 = old2; s32 var1 = pointer - pop3.m_h1; if (var1 < 0) { var1 += depth * 2; } s32 var2 = static_cast(queue->push1.load().m_h8) - queue->push1.load().m_h5; if (var2 < 0) { var2 += depth * 2; } s32 var9_ = 15 - var1; // calculate (u16)(1 slw (15 - var1)) if (var9_ & 0x30) { var9_ = 0; } else { var9_ = 1 << var9_; } s32 var9 = std::countl_zero(static_cast(~(var9_ | pop3.m_h2))) - 16; // count leading zeros in u16 s32 var5 = pop3.m_h2 | var9_; if (var9 & 0x30) { var5 = 0; } else { var5 <<= var9; } s32 var3 = pop3.m_h1 + var9; if (var3 >= depth * 2) { var3 -= depth * 2; } u16 pack = pop2.pack; // three packed 5-bit fields s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f); if (var4 < 0) { var4 += 0x1e; } u32 var6; if (noQueueFull || var2 + var4 > 15 || ((pack >> 10) & 0x1f) == (pack & 0x1f)) { var6 = -1; } else { s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f); if (var8 < 0) { var8 += 0x1e; } if (var9 > 1 && static_cast(var8) > 1) { ensure((16 - var2 <= 1)); } s32 var11 = (pack >> 10) & 0x1f; if (var11 >= 15) { var11 -= 15; } u16 var12 = (pack >> 10) & 0x1f; if (var12 == 0x1d) { var12 = 0; } else { var12 = (var12 + 1) << 10; } pop2.pack = (pack & 0x83ff) | var12; var6 = queue->m_hs2[var11]; } pop3.m_h1 = static_cast(var3); pop3.m_h2 = static_cast(var5); if (queue->pop2.compare_and_swap_test(old, pop2)) { if (var6 != umax) { ensure((queue->pop3.compare_and_swap_test(old2, pop3))); ensure((fpSendSignal)); return not_an_error(fpSendSignal(ppu, vm::cast(queue->m_eaSignal.addr()), var6)); } else { pack = queue->pop2.load().pack; if ((pack & 0x1f) == ((pack >> 10) & 0x1f)) { if (queue->pop3.compare_and_swap_test(old2, pop3)) { return CELL_OK; } } } } } } error_code _cellSyncLFQueueCompletePopPointer2(ppu_thread&, vm::ptr queue, s32 pointer, vm::ptr fpSendSignal, u32 noQueueFull) { // arguments copied from _cellSyncLFQueueCompletePopPointer cellSync.todo("_cellSyncLFQueueCompletePopPointer2(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x, noQueueFull=%d)", queue, pointer, fpSendSignal, noQueueFull); return CELL_OK; } error_code _cellSyncLFQueuePopBody(ppu_thread& ppu, vm::ptr queue, vm::ptr buffer, u32 isBlocking) { // cellSyncLFQueuePop has 1 in isBlocking param, cellSyncLFQueueTryPop has 0 cellSync.warning("_cellSyncLFQueuePopBody(queue=*0x%x, buffer=*0x%x, isBlocking=%d)", queue, buffer, isBlocking); if (!queue || !buffer) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned() || !buffer.aligned(16)) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } vm::var position; while (true) { s32 res; if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY) { res = _cellSyncLFQueueGetPopPointer(ppu, queue, position, isBlocking, 0, 0); } else { res = _cellSyncLFQueueGetPopPointer2(ppu, queue, position, isBlocking, 0); } if (!isBlocking || res + 0u != CELL_SYNC_ERROR_AGAIN) { if (res) return not_an_error(res); break; } if (ppu.test_stopped()) { return 0; } } const s32 depth = queue->m_depth; const s32 size = queue->m_size; const s32 pos = *position; const u32 addr = vm::cast((queue->m_buffer.addr() & ~1) + size * (pos >= depth ? pos - depth : pos)); std::memcpy(buffer.get_ptr(), vm::base(addr), size); if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY) { return _cellSyncLFQueueCompletePopPointer(ppu, queue, pos, vm::null, 0); } else { return _cellSyncLFQueueCompletePopPointer2(ppu, queue, pos, vm::null, 0); } } error_code cellSyncLFQueueClear(vm::ptr queue) { cellSync.warning("cellSyncLFQueueClear(queue=*0x%x)", queue); if (!queue) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } while (true) { const auto old = queue->pop1.load(); auto pop = old; // Loads must be in this order const auto push = queue->push1.load(); s32 var1, var2; if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY) { var1 = var2 = queue->pop2.load().pack; } else { var1 = push.m_h7; var2 = pop.m_h3; } if (static_cast(pop.m_h4) != +pop.m_h1 || static_cast(push.m_h8) != +push.m_h5 || ((var2 >> 10) & 0x1f) != (var2 & 0x1f) || ((var1 >> 10) & 0x1f) != (var1 & 0x1f)) { return CELL_SYNC_ERROR_BUSY; } pop.m_h1 = push.m_h5; pop.m_h2 = push.m_h6; pop.m_h3 = push.m_h7; pop.m_h4 = push.m_h8; if (queue->pop1.compare_and_swap_test(old, pop)) break; } return CELL_OK; } error_code cellSyncLFQueueSize(vm::ptr queue, vm::ptr size) { cellSync.warning("cellSyncLFQueueSize(queue=*0x%x, size=*0x%x)", queue, size); if (!queue || !size) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } while (true) { const auto old = queue->pop3.load(); // Loads must be in this order u32 var1 = queue->pop1.load().m_h1; u32 var2 = queue->push1.load().m_h5; if (queue->pop3.compare_and_swap_test(old, old)) { if (var1 <= var2) { *size = var2 - var1; } else { *size = var2 - var1 + queue->m_depth * 2; } return CELL_OK; } } } error_code cellSyncLFQueueDepth(vm::ptr queue, vm::ptr depth) { cellSync.trace("cellSyncLFQueueDepth(queue=*0x%x, depth=*0x%x)", queue, depth); if (!queue || !depth) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } *depth = queue->m_depth; return CELL_OK; } error_code _cellSyncLFQueueGetSignalAddress(vm::cptr queue, vm::pptr ppSignal) { cellSync.trace("_cellSyncLFQueueGetSignalAddress(queue=*0x%x, ppSignal=**0x%x)", queue, ppSignal); if (!queue || !ppSignal) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } *ppSignal = queue->m_eaSignal; return CELL_OK; } error_code cellSyncLFQueueGetDirection(vm::cptr queue, vm::ptr direction) { cellSync.trace("cellSyncLFQueueGetDirection(queue=*0x%x, direction=*0x%x)", queue, direction); if (!queue || !direction) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } *direction = queue->m_direction; return CELL_OK; } error_code cellSyncLFQueueGetEntrySize(vm::cptr queue, vm::ptr entry_size) { cellSync.trace("cellSyncLFQueueGetEntrySize(queue=*0x%x, entry_size=*0x%x)", queue, entry_size); if (!queue || !entry_size) [[unlikely]] { return CELL_SYNC_ERROR_NULL_POINTER; } if (!queue.aligned()) [[unlikely]] { return CELL_SYNC_ERROR_ALIGN; } *entry_size = queue->m_size; return CELL_OK; } error_code _cellSyncLFQueueAttachLv2EventQueue(vm::ptr spus, u32 num, vm::ptr queue) { cellSync.todo("_cellSyncLFQueueAttachLv2EventQueue(spus=*0x%x, num=%d, queue=*0x%x)", spus, num, queue); return CELL_OK; } error_code _cellSyncLFQueueDetachLv2EventQueue(vm::ptr spus, u32 num, vm::ptr queue) { cellSync.todo("_cellSyncLFQueueDetachLv2EventQueue(spus=*0x%x, num=%d, queue=*0x%x)", spus, num, queue); return CELL_OK; } DECLARE(ppu_module_manager::cellSync)("cellSync", []() { REG_FUNC(cellSync, cellSyncMutexInitialize); REG_FUNC(cellSync, cellSyncMutexLock); REG_FUNC(cellSync, cellSyncMutexTryLock); REG_FUNC(cellSync, cellSyncMutexUnlock); REG_FUNC(cellSync, cellSyncBarrierInitialize); REG_FUNC(cellSync, cellSyncBarrierNotify); REG_FUNC(cellSync, cellSyncBarrierTryNotify); REG_FUNC(cellSync, cellSyncBarrierWait); REG_FUNC(cellSync, cellSyncBarrierTryWait); REG_FUNC(cellSync, cellSyncRwmInitialize); REG_FUNC(cellSync, cellSyncRwmRead); REG_FUNC(cellSync, cellSyncRwmTryRead); REG_FUNC(cellSync, cellSyncRwmWrite); REG_FUNC(cellSync, cellSyncRwmTryWrite); REG_FUNC(cellSync, cellSyncQueueInitialize); REG_FUNC(cellSync, cellSyncQueuePush); REG_FUNC(cellSync, cellSyncQueueTryPush); REG_FUNC(cellSync, cellSyncQueuePop); REG_FUNC(cellSync, cellSyncQueueTryPop); REG_FUNC(cellSync, cellSyncQueuePeek); REG_FUNC(cellSync, cellSyncQueueTryPeek); REG_FUNC(cellSync, cellSyncQueueSize); REG_FUNC(cellSync, cellSyncQueueClear); REG_FUNC(cellSync, cellSyncLFQueueGetEntrySize); REG_FUNC(cellSync, cellSyncLFQueueSize); REG_FUNC(cellSync, cellSyncLFQueueClear); REG_FUNC(cellSync, _cellSyncLFQueueCompletePushPointer2); REG_FUNC(cellSync, _cellSyncLFQueueGetPopPointer2); REG_FUNC(cellSync, _cellSyncLFQueueCompletePushPointer); REG_FUNC(cellSync, _cellSyncLFQueueAttachLv2EventQueue); REG_FUNC(cellSync, _cellSyncLFQueueGetPushPointer2); REG_FUNC(cellSync, _cellSyncLFQueueGetPopPointer); REG_FUNC(cellSync, _cellSyncLFQueueCompletePopPointer2); REG_FUNC(cellSync, _cellSyncLFQueueDetachLv2EventQueue); REG_FUNC(cellSync, cellSyncLFQueueInitialize); REG_FUNC(cellSync, _cellSyncLFQueueGetSignalAddress); REG_FUNC(cellSync, _cellSyncLFQueuePushBody); REG_FUNC(cellSync, cellSyncLFQueueGetDirection); REG_FUNC(cellSync, cellSyncLFQueueDepth); REG_FUNC(cellSync, _cellSyncLFQueuePopBody); REG_FUNC(cellSync, _cellSyncLFQueueGetPushPointer); REG_FUNC(cellSync, _cellSyncLFQueueCompletePopPointer); });