#include "stdafx.h" #include "BufferUtils.h" #include "../rsx_methods.h" #include "Utilities/sysinfo.h" #define DEBUG_VERTEX_STREAMING 0 const bool s_use_ssse3 = #ifdef _MSC_VER utils::has_ssse3(); #elif __SSSE3__ true; #else false; #define _mm_shuffle_epi8 #endif namespace { // FIXME: GSL as_span break build if template parameter is non const with current revision. // Replace with true as_span when fixed. template gsl::span as_span_workaround(gsl::span unformated_span) { return{ (T*)unformated_span.data(), ::narrow(unformated_span.size_bytes() / sizeof(T)) }; } template gsl::span as_const_span(gsl::span unformated_span) { return{ (T*)unformated_span.data(), ::narrow(unformated_span.size_bytes() / sizeof(T)) }; } } namespace { /** * Convert CMP vector to RGBA16. * A vector in CMP (compressed) format is stored as X11Y11Z10 and has a W component of 1. * X11 and Y11 channels are int between -1024 and 1023 interpreted as -1.f, 1.f * Z10 is int between -512 and 511 interpreted as -1.f, 1.f */ std::array decode_cmp_vector(u32 encoded_vector) { u16 Z = encoded_vector >> 22; Z = Z << 6; u16 Y = (encoded_vector >> 11) & 0x7FF; Y = Y << 5; u16 X = encoded_vector & 0x7FF; X = X << 5; return{ X, Y, Z, 1 }; } inline void stream_data_to_memory_swapped_u32(void *dst, const void *src, u32 vertex_count, u8 stride) { const __m128i mask = _mm_set_epi8( 0xC, 0xD, 0xE, 0xF, 0x8, 0x9, 0xA, 0xB, 0x4, 0x5, 0x6, 0x7, 0x0, 0x1, 0x2, 0x3); __m128i* dst_ptr = (__m128i*)dst; __m128i* src_ptr = (__m128i*)src; const u32 dword_count = (vertex_count * (stride >> 2)); const u32 iterations = dword_count >> 2; const u32 remaining = dword_count % 4; if (LIKELY(s_use_ssse3)) { for (u32 i = 0; i < iterations; ++i) { const __m128i vector = _mm_loadu_si128(src_ptr); const __m128i shuffled_vector = _mm_shuffle_epi8(vector, mask); _mm_stream_si128(dst_ptr, shuffled_vector); src_ptr++; dst_ptr++; } } else { for (u32 i = 0; i < iterations; ++i) { const __m128i vec0 = _mm_loadu_si128(src_ptr); const __m128i vec1 = _mm_or_si128(_mm_slli_epi16(vec0, 8), _mm_srli_epi16(vec0, 8)); const __m128i vec2 = _mm_or_si128(_mm_slli_epi32(vec1, 16), _mm_srli_epi32(vec1, 16)); _mm_stream_si128(dst_ptr, vec2); src_ptr++; dst_ptr++; } } if (remaining) { u32 *src_ptr2 = (u32 *)src_ptr; u32 *dst_ptr2 = (u32 *)dst_ptr; for (u32 i = 0; i < remaining; ++i) dst_ptr2[i] = se_storage::swap(src_ptr2[i]); } } inline void stream_data_to_memory_swapped_u16(void *dst, const void *src, u32 vertex_count, u8 stride) { const __m128i mask = _mm_set_epi8( 0xE, 0xF, 0xC, 0xD, 0xA, 0xB, 0x8, 0x9, 0x6, 0x7, 0x4, 0x5, 0x2, 0x3, 0x0, 0x1); __m128i* dst_ptr = (__m128i*)dst; __m128i* src_ptr = (__m128i*)src; const u32 word_count = (vertex_count * (stride >> 1)); const u32 iterations = word_count >> 3; const u32 remaining = word_count % 8; if (LIKELY(s_use_ssse3)) { for (u32 i = 0; i < iterations; ++i) { const __m128i vector = _mm_loadu_si128(src_ptr); const __m128i shuffled_vector = _mm_shuffle_epi8(vector, mask); _mm_stream_si128(dst_ptr, shuffled_vector); src_ptr++; dst_ptr++; } } else { for (u32 i = 0; i < iterations; ++i) { const __m128i vec0 = _mm_loadu_si128(src_ptr); const __m128i vec1 = _mm_or_si128(_mm_slli_epi16(vec0, 8), _mm_srli_epi16(vec0, 8)); _mm_stream_si128(dst_ptr, vec1); src_ptr++; dst_ptr++; } } if (remaining) { u16 *src_ptr2 = (u16 *)src_ptr; u16 *dst_ptr2 = (u16 *)dst_ptr; for (u32 i = 0; i < remaining; ++i) dst_ptr2[i] = se_storage::swap(src_ptr2[i]); } } inline void stream_data_to_memory_swapped_u32_non_continuous(void *dst, const void *src, u32 vertex_count, u8 dst_stride, u8 src_stride) { const __m128i mask = _mm_set_epi8( 0xC, 0xD, 0xE, 0xF, 0x8, 0x9, 0xA, 0xB, 0x4, 0x5, 0x6, 0x7, 0x0, 0x1, 0x2, 0x3); char *src_ptr = (char *)src; char *dst_ptr = (char *)dst; //Count vertices to copy const bool is_128_aligned = !((dst_stride | src_stride) & 15); u32 min_block_size = std::min(src_stride, dst_stride); if (min_block_size == 0) min_block_size = dst_stride; u32 iterations = 0; u32 remainder = is_128_aligned ? 0 : 1 + ((16 - min_block_size) / min_block_size); if (vertex_count > remainder) iterations = vertex_count - remainder; else remainder = vertex_count; if (LIKELY(s_use_ssse3)) { for (u32 i = 0; i < iterations; ++i) { const __m128i vector = _mm_loadu_si128((__m128i*)src_ptr); const __m128i shuffled_vector = _mm_shuffle_epi8(vector, mask); _mm_storeu_si128((__m128i*)dst_ptr, shuffled_vector); src_ptr += src_stride; dst_ptr += dst_stride; } } else { for (u32 i = 0; i < iterations; ++i) { const __m128i vec0 = _mm_loadu_si128((__m128i*)src_ptr); const __m128i vec1 = _mm_or_si128(_mm_slli_epi16(vec0, 8), _mm_srli_epi16(vec0, 8)); const __m128i vec2 = _mm_or_si128(_mm_slli_epi32(vec1, 16), _mm_srli_epi32(vec1, 16)); _mm_storeu_si128((__m128i*)dst_ptr, vec2); src_ptr += src_stride; dst_ptr += dst_stride; } } if (remainder) { const u8 attribute_sz = min_block_size >> 2; for (u32 n = 0; n < remainder; ++n) { for (u32 v= 0; v < attribute_sz; ++v) ((u32*)dst_ptr)[v] = ((be_t*)src_ptr)[v]; src_ptr += src_stride; dst_ptr += dst_stride; } } } inline void stream_data_to_memory_swapped_u16_non_continuous(void *dst, const void *src, u32 vertex_count, u8 dst_stride, u8 src_stride) { const __m128i mask = _mm_set_epi8( 0xE, 0xF, 0xC, 0xD, 0xA, 0xB, 0x8, 0x9, 0x6, 0x7, 0x4, 0x5, 0x2, 0x3, 0x0, 0x1); char *src_ptr = (char *)src; char *dst_ptr = (char *)dst; const bool is_128_aligned = !((dst_stride | src_stride) & 15); u32 min_block_size = std::min(src_stride, dst_stride); if (min_block_size == 0) min_block_size = dst_stride; u32 iterations = 0; u32 remainder = is_128_aligned ? 0 : 1 + ((16 - min_block_size) / min_block_size); if (vertex_count > remainder) iterations = vertex_count - remainder; else remainder = vertex_count; if (LIKELY(s_use_ssse3)) { for (u32 i = 0; i < iterations; ++i) { const __m128i vector = _mm_loadu_si128((__m128i*)src_ptr); const __m128i shuffled_vector = _mm_shuffle_epi8(vector, mask); _mm_storeu_si128((__m128i*)dst_ptr, shuffled_vector); src_ptr += src_stride; dst_ptr += dst_stride; } } else { for (u32 i = 0; i < iterations; ++i) { const __m128i vec0 = _mm_loadu_si128((__m128i*)src_ptr); const __m128i vec1 = _mm_or_si128(_mm_slli_epi16(vec0, 8), _mm_srli_epi16(vec0, 8)); _mm_storeu_si128((__m128i*)dst_ptr, vec1); src_ptr += src_stride; dst_ptr += dst_stride; } } if (remainder) { const u8 attribute_sz = min_block_size >> 1; for (u32 n = 0; n < remainder; ++n) { for (u32 v = 0; v < attribute_sz; ++v) ((u16*)dst_ptr)[v] = ((be_t*)src_ptr)[v]; src_ptr += src_stride; dst_ptr += dst_stride; } } } inline void stream_data_to_memory_u8_non_continuous(void *dst, const void *src, u32 vertex_count, u8 attribute_size, u8 dst_stride, u8 src_stride) { char *src_ptr = (char *)src; char *dst_ptr = (char *)dst; switch (attribute_size) { case 4: { //Read one dword every iteration for (u32 vertex = 0; vertex < vertex_count; ++vertex) { *(u32*)dst_ptr = *(u32*)src_ptr; dst_ptr += dst_stride; src_ptr += src_stride; } break; } case 3: { //Read one word and one byte for (u32 vertex = 0; vertex < vertex_count; ++vertex) { *(u16*)dst_ptr = *(u16*)src_ptr; dst_ptr[2] = src_ptr[2]; dst_ptr += dst_stride; src_ptr += src_stride; } break; } case 2: { //Copy u16 blocks for (u32 vertex = 0; vertex < vertex_count; ++vertex) { *(u32*)dst_ptr = *(u32*)src_ptr; dst_ptr += dst_stride; src_ptr += src_stride; } break; } case 1: { for (u32 vertex = 0; vertex < vertex_count; ++vertex) { dst_ptr[0] = src_ptr[0]; dst_ptr += dst_stride; src_ptr += src_stride; } break; } } } template void copy_whole_attribute_array_impl(void *raw_dst, void *raw_src, u8 dst_stride, u32 src_stride, u32 vertex_count) { char *src_ptr = (char *)raw_src; char *dst_ptr = (char *)raw_dst; for (u32 vertex = 0; vertex < vertex_count; ++vertex) { T* typed_dst = (T*)dst_ptr; U* typed_src = (U*)src_ptr; for (u32 i = 0; i < N; ++i) { typed_dst[i] = typed_src[i]; } src_ptr += src_stride; dst_ptr += dst_stride; } } /* * Copies a number of src vertices, repeated over and over to fill the dst * e.g repeat 2 vertices over a range of 16 verts, so 8 reps */ template void copy_whole_attribute_array_repeating_impl(void *raw_dst, void *raw_src, const u8 dst_stride, const u32 src_stride, const u32 vertex_count, const u32 src_vertex_count) { char *src_ptr = (char *)raw_src; char *dst_ptr = (char *)raw_dst; u32 src_offset = 0; u32 src_limit = src_stride * src_vertex_count; for (u32 vertex = 0; vertex < vertex_count; ++vertex) { T* typed_dst = (T*)dst_ptr; U* typed_src = (U*)(src_ptr + src_offset); for (u32 i = 0; i < N; ++i) { typed_dst[i] = typed_src[i]; } src_offset = (src_offset + src_stride) % src_limit; dst_ptr += dst_stride; } } template void copy_whole_attribute_array(void *raw_dst, void *raw_src, const u8 attribute_size, const u8 dst_stride, const u32 src_stride, const u32 vertex_count, const u32 src_vertex_count) { //Eliminate the inner loop by templating the inner loop counter N if (src_vertex_count == vertex_count) { switch (attribute_size) { case 1: copy_whole_attribute_array_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count); break; case 2: copy_whole_attribute_array_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count); break; case 3: copy_whole_attribute_array_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count); break; case 4: copy_whole_attribute_array_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count); break; } } else { switch (attribute_size) { case 1: copy_whole_attribute_array_repeating_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count, src_vertex_count); break; case 2: copy_whole_attribute_array_repeating_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count, src_vertex_count); break; case 3: copy_whole_attribute_array_repeating_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count, src_vertex_count); break; case 4: copy_whole_attribute_array_repeating_impl(raw_dst, raw_src, dst_stride, src_stride, vertex_count, src_vertex_count); break; } } } } void write_vertex_array_data_to_buffer(gsl::span raw_dst_span, gsl::span src_ptr, u32 count, rsx::vertex_base_type type, u32 vector_element_count, u32 attribute_src_stride, u8 dst_stride, bool swap_endianness) { verify(HERE), (vector_element_count > 0); const u32 src_read_stride = rsx::get_vertex_type_size_on_host(type, vector_element_count); bool use_stream_no_stride = false; bool use_stream_with_stride = false; //If stride is not defined, we have a packed array if (attribute_src_stride == 0) attribute_src_stride = src_read_stride; //Sometimes, we get a vertex attribute to be repeated. Just copy the supplied vertices only //TODO: Stop these requests from getting here in the first place! //TODO: Check if it is possible to have a repeating array with more than one attribute instance const u32 real_count = (u32)src_ptr.size_bytes() / attribute_src_stride; if (real_count == 1) attribute_src_stride = 0; //Always fetch src[0] //TODO: Determine favourable vertex threshold where vector setup costs become negligible //Tests show that even with 4 vertices, using traditional bswap is significantly slower over a large number of calls const u64 src_address = (u64)src_ptr.data(); const bool sse_aligned = ((src_address & 15) == 0); #if !DEBUG_VERTEX_STREAMING if (swap_endianness) { if (real_count >= count || real_count == 1) { if (attribute_src_stride == dst_stride && src_read_stride == dst_stride) use_stream_no_stride = true; else use_stream_with_stride = true; } } #endif switch (type) { case rsx::vertex_base_type::ub: case rsx::vertex_base_type::ub256: { if (use_stream_no_stride) memcpy(raw_dst_span.data(), src_ptr.data(), count * dst_stride); else if (use_stream_with_stride) stream_data_to_memory_u8_non_continuous(raw_dst_span.data(), src_ptr.data(), count, vector_element_count, dst_stride, attribute_src_stride); else copy_whole_attribute_array((void *)raw_dst_span.data(), (void *)src_ptr.data(), vector_element_count, dst_stride, attribute_src_stride, count, real_count); return; } case rsx::vertex_base_type::s1: case rsx::vertex_base_type::sf: case rsx::vertex_base_type::s32k: { if (use_stream_no_stride && sse_aligned) stream_data_to_memory_swapped_u16(raw_dst_span.data(), src_ptr.data(), count, attribute_src_stride); else if (use_stream_with_stride) stream_data_to_memory_swapped_u16_non_continuous(raw_dst_span.data(), src_ptr.data(), count, dst_stride, attribute_src_stride); else if (swap_endianness) copy_whole_attribute_array, u16>((void *)raw_dst_span.data(), (void *)src_ptr.data(), vector_element_count, dst_stride, attribute_src_stride, count, real_count); else copy_whole_attribute_array((void *)raw_dst_span.data(), (void *)src_ptr.data(), vector_element_count, dst_stride, attribute_src_stride, count, real_count); return; } case rsx::vertex_base_type::f: { if (use_stream_no_stride && sse_aligned) stream_data_to_memory_swapped_u32(raw_dst_span.data(), src_ptr.data(), count, attribute_src_stride); else if (use_stream_with_stride) stream_data_to_memory_swapped_u32_non_continuous(raw_dst_span.data(), src_ptr.data(), count, dst_stride, attribute_src_stride); else if (swap_endianness) copy_whole_attribute_array, u32>((void *)raw_dst_span.data(), (void *)src_ptr.data(), vector_element_count, dst_stride, attribute_src_stride, count, real_count); else copy_whole_attribute_array((void *)raw_dst_span.data(), (void *)src_ptr.data(), vector_element_count, dst_stride, attribute_src_stride, count, real_count); return; } case rsx::vertex_base_type::cmp: { gsl::span dst_span = as_span_workaround(raw_dst_span); for (u32 i = 0; i < count; ++i) { u32 src_value; memcpy(&src_value, src_ptr.subspan(attribute_src_stride * i).data(), sizeof(u32)); if (swap_endianness) src_value = se_storage::swap(src_value); const auto& decoded_vector = decode_cmp_vector(src_value); dst_span[i * dst_stride / sizeof(u16)] = decoded_vector[0]; dst_span[i * dst_stride / sizeof(u16) + 1] = decoded_vector[1]; dst_span[i * dst_stride / sizeof(u16) + 2] = decoded_vector[2]; dst_span[i * dst_stride / sizeof(u16) + 3] = decoded_vector[3]; } return; } } } namespace { template std::tuple upload_untouched(gsl::span> src, gsl::span dst, bool is_primitive_restart_enabled, u32 primitive_restart_index, u32 base_index) { u32 min_index = -1; u32 max_index = 0; verify(HERE), (dst.size_bytes() >= src.size_bytes()); u32 dst_idx = 0; for (T index : src) { if (is_primitive_restart_enabled && (u32)index == primitive_restart_index) { // List types do not need primitive restart. Just skip over this instead if (rsx::method_registers.current_draw_clause.is_disjoint_primitive) continue; dst[dst_idx++] = -1u; } else { const u32 new_index = rsx::get_index_from_base((u32)index, base_index); max_index = std::max(max_index, new_index); min_index = std::min(min_index, new_index); dst[dst_idx++] = new_index; } } return std::make_tuple(min_index, max_index, dst_idx); } template std::tuple expand_indexed_triangle_fan(gsl::span> src, gsl::span dst, bool is_primitive_restart_enabled, u32 primitive_restart_index, u32 base_index) { const u32 invalid_index = -1u; u32 min_index = invalid_index; u32 max_index = 0; verify(HERE), (dst.size() >= 3 * (src.size() - 2)); u32 dst_idx = 0; u32 src_idx = 0; bool needs_anchor = true; u32 anchor = invalid_index; u32 last_index = invalid_index; for (size_t src_idx = 0; src_idx < src.size(); ++src_idx) { u32 index = src[src_idx]; index = rsx::get_index_from_base(index, base_index); if (needs_anchor) { if (is_primitive_restart_enabled && (u32)src[src_idx] == primitive_restart_index) continue; anchor = index; needs_anchor = false; continue; } if (is_primitive_restart_enabled && (u32)src[src_idx] == primitive_restart_index) { needs_anchor = true; last_index = invalid_index; continue; } max_index = std::max(max_index, index); min_index = std::min(min_index, index); if (last_index == invalid_index) { //Need at least one anchor and one outer index to create a triangle last_index = index; continue; } dst[dst_idx++] = anchor; dst[dst_idx++] = last_index; dst[dst_idx++] = index; last_index = index; } return std::make_tuple(min_index, max_index, dst_idx); } template std::tuple expand_indexed_quads(gsl::span> src, gsl::span dst, bool is_primitive_restart_enabled, u32 primitive_restart_index, u32 base_index) { u32 min_index = -1; u32 max_index = 0; verify(HERE), (4 * dst.size_bytes() >= 6 * src.size_bytes()); u32 dst_idx = 0; u8 set_size = 0; u32 tmp_indices[4]; for (int src_idx = 0; src_idx < src.size(); ++src_idx) { u32 index = src[src_idx]; index = rsx::get_index_from_base(index, base_index); if (is_primitive_restart_enabled && (u32)src[src_idx] == primitive_restart_index) { //empty temp buffer set_size = 0; continue; } tmp_indices[set_size++] = index; max_index = std::max(max_index, index); min_index = std::min(min_index, index); if (set_size == 4) { // First triangle dst[dst_idx++] = tmp_indices[0]; dst[dst_idx++] = tmp_indices[1]; dst[dst_idx++] = tmp_indices[2]; // Second triangle dst[dst_idx++] = tmp_indices[2]; dst[dst_idx++] = tmp_indices[3]; dst[dst_idx++] = tmp_indices[0]; set_size = 0; } } return std::make_tuple(min_index, max_index, dst_idx); } } // Only handle quads and triangle fan now bool is_primitive_native(rsx::primitive_type draw_mode) { switch (draw_mode) { case rsx::primitive_type::points: case rsx::primitive_type::lines: case rsx::primitive_type::line_strip: case rsx::primitive_type::triangles: case rsx::primitive_type::triangle_strip: case rsx::primitive_type::quad_strip: return true; case rsx::primitive_type::line_loop: case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: case rsx::primitive_type::quads: return false; case rsx::primitive_type::invalid: break; } fmt::throw_exception("Wrong primitive type" HERE); } /** We assume that polygon is convex in polygon mode (constraints in OpenGL) *In such case polygon triangulation equates to triangle fan with arbitrary start vertex * see http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/polygon-triangulation-r3334 */ u32 get_index_count(rsx::primitive_type draw_mode, u32 initial_index_count) { // Index count if (is_primitive_native(draw_mode)) return initial_index_count; switch (draw_mode) { case rsx::primitive_type::line_loop: return initial_index_count + 1; case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: return (initial_index_count - 2) * 3; case rsx::primitive_type::quads: return (6 * initial_index_count) / 4; default: return 0; } } u32 get_index_type_size(rsx::index_array_type type) { switch (type) { case rsx::index_array_type::u16: return sizeof(u16); case rsx::index_array_type::u32: return sizeof(u32); } fmt::throw_exception("Wrong index type" HERE); } void write_index_array_for_non_indexed_non_native_primitive_to_buffer(char* dst, rsx::primitive_type draw_mode, unsigned count) { unsigned short *typedDst = (unsigned short *)(dst); switch (draw_mode) { case rsx::primitive_type::line_loop: for (unsigned i = 0; i < count; ++i) typedDst[i] = i; typedDst[count] = 0; return; case rsx::primitive_type::triangle_fan: case rsx::primitive_type::polygon: for (unsigned i = 0; i < (count - 2); i++) { typedDst[3 * i] = 0; typedDst[3 * i + 1] = i + 2 - 1; typedDst[3 * i + 2] = i + 2; } return; case rsx::primitive_type::quads: for (unsigned i = 0; i < count / 4; i++) { // First triangle typedDst[6 * i] = 4 * i; typedDst[6 * i + 1] = 4 * i + 1; typedDst[6 * i + 2] = 4 * i + 2; // Second triangle typedDst[6 * i + 3] = 4 * i + 2; typedDst[6 * i + 4] = 4 * i + 3; typedDst[6 * i + 5] = 4 * i; } return; case rsx::primitive_type::quad_strip: case rsx::primitive_type::points: case rsx::primitive_type::lines: case rsx::primitive_type::line_strip: case rsx::primitive_type::triangles: case rsx::primitive_type::triangle_strip: fmt::throw_exception("Native primitive type doesn't require expansion" HERE); case rsx::primitive_type::invalid: break; } fmt::throw_exception("Tried to load invalid primitive type" HERE); } namespace { /** * Get first index and index count from a draw indexed clause. */ std::tuple get_first_count_from_draw_indexed_clause(const std::vector>& first_count_arguments) { u32 first = std::get<0>(first_count_arguments.front()); u32 count = std::get<0>(first_count_arguments.back()) + std::get<1>(first_count_arguments.back()) - first; return std::make_tuple(first, count); } // TODO: Unify indexed and non indexed primitive expansion ? template std::tuple write_index_array_data_to_buffer_impl(gsl::span dst, gsl::span> src, rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index, u32 base_index, std::function expands) { if (!expands(draw_mode)) return upload_untouched(src, dst, restart_index_enabled, restart_index, base_index); switch (draw_mode) { case rsx::primitive_type::line_loop: { const auto &returnvalue = upload_untouched(src, dst, restart_index_enabled, restart_index, base_index); const auto index_count = dst.size_bytes() / sizeof(T); dst[index_count] = src[0]; return returnvalue; } case rsx::primitive_type::polygon: case rsx::primitive_type::triangle_fan: return expand_indexed_triangle_fan(src, dst, restart_index_enabled, restart_index, base_index); case rsx::primitive_type::quads: return expand_indexed_quads(src, dst, restart_index_enabled, restart_index, base_index); default: fmt::throw_exception("Unknown draw mode (0x%x)" HERE, (u32)draw_mode); } } } std::tuple write_index_array_data_to_buffer(gsl::span dst_ptr, gsl::span src_ptr, rsx::index_array_type type, rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index, u32 base_index, std::function expands) { switch (type) { case rsx::index_array_type::u16: { return write_index_array_data_to_buffer_impl(as_span_workaround(dst_ptr), as_const_span>(src_ptr), draw_mode, restart_index_enabled, restart_index, base_index, expands); } case rsx::index_array_type::u32: { return write_index_array_data_to_buffer_impl(as_span_workaround(dst_ptr), as_const_span>(src_ptr), draw_mode, restart_index_enabled, restart_index, base_index, expands); } default: fmt::throw_exception("Unreachable" HERE); } } void stream_vector(void *dst, u32 x, u32 y, u32 z, u32 w) { __m128i vector = _mm_set_epi32(w, z, y, x); _mm_stream_si128((__m128i*)dst, vector); } void stream_vector(void *dst, f32 x, f32 y, f32 z, f32 w) { stream_vector(dst, (u32&)x, (u32&)y, (u32&)z, (u32&)w); } void stream_vector_from_memory(void *dst, void *src) { const __m128i &vector = _mm_loadu_si128((__m128i*)src); _mm_stream_si128((__m128i*)dst, vector); }