#include "atomic.hpp" #ifdef __linux__ #define USE_FUTEX #endif #include "Utilities/sync.h" #include "Utilities/asm.h" #ifdef USE_POSIX #include #endif #include #include #include #include #include #include // Hashtable size factor (can be set to 0 to stress-test collisions) static constexpr uint s_hashtable_power = 16; // Total number of entries, should be a power of 2. static constexpr std::uintptr_t s_hashtable_size = 1u << s_hashtable_power; // Pointer mask without bits used as hash, assuming signed 48-bit pointers. static constexpr u64 s_pointer_mask = s_hashtable_power > 7 ? 0xffff'ffff'ffff & ~((s_hashtable_size - 1)) : 0xffff'ffff'ffff; // Max number of waiters is 32767. static constexpr u64 s_waiter_mask = s_hashtable_power > 7 ? 0x7fff'0000'0000'0000 : 0x7f00'0000'0000'0000; // Bit indicates that more than one. static constexpr u64 s_collision_bit = 0x8000'0000'0000'0000; // Allocated slot with secondary table. static constexpr u64 s_slot_mask = ~(s_waiter_mask | s_pointer_mask | s_collision_bit); // Helper to get least significant set bit from 64-bit masks template static constexpr u64 one_v = Mask & (0 - Mask); namespace { struct sync_var { constexpr sync_var() noexcept = default; // Reference counter, owning pointer, collision bit and optionally selected slot atomic_t addr_ref{}; // Counter for waiting threads for the semaphore and allocated semaphore id atomic_t sema_var{}; }; } // Main hashtable for atomic wait. static sync_var s_hashtable[s_hashtable_size]{}; namespace { struct slot_info { constexpr slot_info() noexcept = default; // Branch extension sync_var branch[48 - s_hashtable_power]{}; }; } // Number of search groups (defines max slot branch count as gcount * 64) static constexpr u32 s_slot_gcount = (s_hashtable_power > 7 ? 4096 : 256) / 64; // Array of slot branch objects static slot_info s_slot_list[s_slot_gcount * 64]{}; // Allocation bits static atomic_t s_slot_bits[s_slot_gcount]{}; static u64 slot_alloc() { // Diversify search start points to reduce contention and increase immediate success chance #ifdef _WIN32 const u32 start = GetCurrentProcessorNumber(); #elif __linux__ const u32 start = sched_getcpu(); #else const u32 start = __rdtsc(); #endif for (u32 i = 0;; i++) { const u32 group = (i + start) % s_slot_gcount; const auto [bits, ok] = s_slot_bits[group].fetch_op([](u64& bits) { if (~bits) { // Set lowest clear bit bits |= bits + 1; return true; } return false; }); if (ok) { // Find lowest clear bit return group * 64 + utils::cnttz64(~bits, false); } } // TODO: unreachable std::abort(); return 0; } static sync_var* slot_get(std::uintptr_t iptr, sync_var* loc, u64 lv = 0) { if (!loc) { return nullptr; } const u64 value = loc->addr_ref.load(); if ((value & s_waiter_mask) == 0) { return nullptr; } if ((value & s_pointer_mask) == (iptr & s_pointer_mask)) { return loc; } if ((value & s_collision_bit) == 0) { return nullptr; } // Get the number of leading equal bits to determine subslot const u64 eq_bits = utils::cntlz64((((iptr ^ value) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16, true); // Proceed recursively, increment level return slot_get(iptr, s_slot_list[(value & s_slot_mask) / one_v].branch + eq_bits, eq_bits + 1); } static void slot_free(u64 id) { // Reset allocation bit id = (id & s_slot_mask) / one_v; s_slot_bits[id / 64] &= ~(1ull << (id % 64)); } static void slot_free(std::uintptr_t iptr, sync_var* loc, u64 lv = 0) { const u64 value = loc->addr_ref.load(); if ((value & s_pointer_mask) != (iptr & s_pointer_mask)) { if ((value & s_waiter_mask) == 0 || (value & s_collision_bit) == 0) { std::abort(); } // Get the number of leading equal bits to determine subslot const u64 eq_bits = utils::cntlz64((((iptr ^ value) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16, true); // Proceed recursively, to deallocate deepest branch first slot_free(iptr, s_slot_list[(value & s_slot_mask) / one_v].branch + eq_bits, eq_bits + 1); } // Actual cleanup in reverse order auto [_old, ok] = loc->addr_ref.fetch_op([&](u64& value) { if (value & s_waiter_mask) { value -= one_v; if (!(value & s_waiter_mask)) { // Reset on last waiter value = 0; return 2; } return 1; } std::abort(); }); if (ok > 1 && _old & s_collision_bit) { // Deallocate slot on last waiter slot_free(_old); } } // Number of search groups (defines max semaphore count as gcount * 64) static constexpr u32 s_sema_gcount = 128; static constexpr u64 s_sema_mask = (s_sema_gcount * 64 - 1); #ifdef USE_POSIX using sema_handle = sem_t; #elif defined(USE_FUTEX) namespace { struct alignas(64) sema_handle { atomic_t sema; }; } #elif defined(_WIN32) using sema_handle = std::uint16_t; #else namespace { struct dumb_sema { u64 count = 0; std::mutex mutex; std::condition_variable cond; }; } using sema_handle = std::unique_ptr; #endif // Array of native semaphores static sema_handle s_sema_list[64 * s_sema_gcount]{}; // Array of associated reference counters static atomic_t s_sema_refs[64 * s_sema_gcount]{}; // Allocation bits (reserve first bit) static atomic_t s_sema_bits[s_sema_gcount]{1}; static u32 sema_alloc() { // Diversify search start points to reduce contention and increase immediate success chance #ifdef _WIN32 const u32 start = GetCurrentProcessorNumber(); #elif __linux__ const u32 start = sched_getcpu(); #else const u32 start = __rdtsc(); #endif for (u32 i = 0; i < s_sema_gcount * 3; i++) { const u32 group = (i + start) % s_sema_gcount; const auto [bits, ok] = s_sema_bits[group].fetch_op([](u64& bits) { if (~bits) { // Set lowest clear bit bits |= bits + 1; return true; } return false; }); if (ok) { // Find lowest clear bit const u32 id = group * 64 + utils::cnttz64(~bits, false); #ifdef USE_POSIX // Initialize semaphore (should be very fast) sem_init(&s_sema_list[id], 0, 0); #elif defined(_WIN32) || defined(USE_FUTEX) // Do nothing #else if (!s_sema_list[id]) { s_sema_list[id] = std::make_unique(); } #endif // Initialize ref counter if (s_sema_refs[id]++) { std::abort(); } return id; } } return 0; } static void sema_free(u32 id) { if (id && id < 64 * s_sema_gcount) { // Dereference first if (--s_sema_refs[id]) { return; } #ifdef USE_POSIX // Destroy semaphore (should be very fast) sem_destroy(&s_sema_list[id]); #else // No action required #endif // Reset allocation bit s_sema_bits[id / 64] &= ~(1ull << (id % 64)); } } static bool sema_get(u32 id) { if (id && id < 64 * s_sema_gcount) { // Increment only if the semaphore is allocated if (s_sema_refs[id].fetch_op([](u64& refs) { if (refs) { // Increase reference from non-zero value refs++; } })) { return true; } } return false; } static inline bool ptr_cmp(const void* data, std::size_t size, u64 old_value, u64 mask) { switch (size) { case 1: return (reinterpret_cast*>(data)->load() & mask) == (old_value & mask); case 2: return (reinterpret_cast*>(data)->load() & mask) == (old_value & mask); case 4: return (reinterpret_cast*>(data)->load() & mask) == (old_value & mask); case 8: return (reinterpret_cast*>(data)->load() & mask) == (old_value & mask); } return false; } // Callback for wait() function, returns false if wait should return static thread_local bool(*s_tls_wait_cb)(const void* data) = [](const void*) { return true; }; void atomic_storage_futex::wait(const void* data, std::size_t size, u64 old_value, u64 timeout, u64 mask) { if (!timeout) { return; } const std::uintptr_t iptr = reinterpret_cast(data); // Allocated slot index u64 slot_a = -1; // Found slot object sync_var* slot = nullptr; auto install_op = [&](u64& value) -> u64 { if ((value & s_waiter_mask) == s_waiter_mask) { // Return immediately on waiter overflow return 0; } if (!value || (value & s_pointer_mask) == (iptr & s_pointer_mask)) { // Store pointer bits value |= (iptr & s_pointer_mask); } else { if ((value & s_collision_bit) == 0) { if (slot_a + 1 == 0) { // Second waiter: allocate slot and install it slot_a = slot_alloc() * one_v; } value |= slot_a; } // Set collision bit value |= s_collision_bit; } // Add waiter value += one_v; return value; }; // Search detail u64 lv = 0; for (sync_var* ptr = &s_hashtable[iptr % s_hashtable_size];;) { auto [_old, ok] = ptr->addr_ref.fetch_op(install_op); if (slot_a + 1) { if ((_old & s_collision_bit) == 0 && (ok & s_collision_bit) && (ok & s_slot_mask) == slot_a) { // Slot set successfully slot_a = -1; } } if (!ok) { // Expected only on top level return; } if (!_old || (_old & s_pointer_mask) == (iptr & s_pointer_mask)) { // Success if (slot_a + 1) { // Cleanup slot if unused slot_free(slot_a); slot_a = -1; } slot = ptr; break; } // Get the number of leading equal bits (between iptr and slot owner) const u64 eq_bits = utils::cntlz64((((iptr ^ ok) & (s_pointer_mask >> lv)) | ~s_pointer_mask) << 16, true); // Collision; need to go deeper ptr = s_slot_list[(ok & s_slot_mask) / one_v].branch + eq_bits; lv = eq_bits + 1; } // Now try to reference a semaphore (allocate it if needed) u32 sema_id = static_cast(slot->sema_var & s_sema_mask); for (u32 loop_count = 0; loop_count < 7; loop_count++) { // Try to allocate a semaphore if (!sema_id) { const u32 sema = sema_alloc(); if (!sema) { break; } sema_id = slot->sema_var.atomic_op([&](u64& value) -> u32 { if (value & s_sema_mask) { return static_cast(value & s_sema_mask); } // Insert allocated semaphore value += s_sema_mask + 1; value |= sema; return 0; }); if (sema_id) { // Drop unnecessary allocation sema_free(sema); } else { sema_id = sema; break; } } if (!sema_get(sema_id)) { sema_id = 0; continue; } // Try to increment sig (check semaphore validity) const auto [_old, _new] = slot->sema_var.fetch_op([&](u64& value) -> u64 { if ((value & ~s_sema_mask) == ~s_sema_mask) { // Signal overflow return 0; } if ((value & s_sema_mask) != sema_id) { return 0; } value += s_sema_mask + 1; return value; }); if (!_new) { sema_free(sema_id); if ((_old & ~s_sema_mask) == ~s_sema_mask) { // Break on signal overflow sema_id = -1; break; } sema_id = _new & s_sema_mask; continue; } break; } bool fallback = false; if (sema_id && ptr_cmp(data, size, old_value, mask) && s_tls_wait_cb(data)) { #ifdef USE_FUTEX struct timespec ts; ts.tv_sec = timeout / 1'000'000'000; ts.tv_nsec = timeout % 1'000'000'000; if (s_sema_list[sema_id].sema.try_dec(0)) { fallback = true; } else { futex(&s_sema_list[sema_id].sema, FUTEX_WAIT_PRIVATE, 0, timeout + 1 ? &ts : nullptr); if (s_sema_list[sema_id].sema.try_dec(0)) { fallback = true; } } #elif defined(_WIN32) && !defined(USE_POSIX) LARGE_INTEGER qw; qw.QuadPart = -static_cast(timeout / 100); if (timeout % 100) { // Round up to closest 100ns unit qw.QuadPart -= 1; } if (!NtWaitForKeyedEvent(nullptr, &s_sema_list[sema_id], false, timeout + 1 ? &qw : nullptr)) { fallback = true; } #elif defined(USE_POSIX) struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts); ts.tv_sec += timeout / 1'000'000'000; ts.tv_nsec += timeout % 1'000'000'000; ts.tv_sec += ts.tv_nsec / 1'000'000'000; ts.tv_nsec %= 1'000'000'000; // It's pretty unreliable because it uses absolute time, which may jump backwards. Sigh. if (timeout + 1) { if (sem_timedwait(&s_sema_list[sema_id], &ts) == 0) { fallback = true; } } else { if (sem_wait(&s_sema_list[sema_id]) == 0) { fallback = true; } } #else dumb_sema& sema = *s_sema_list[sema_id]; std::unique_lock lock(sema.mutex); if (timeout + 1) { sema.cond.wait_for(lock, std::chrono::nanoseconds(timeout), [&] { return sema.count > 0; }); } else { sema.cond.wait(lock, [&] { return sema.count > 0; }); } if (sema.count > 0) { sema.count--; fallback = true; } #endif } if (!sema_id) { fallback = true; } while (true) { // Try to decrement const auto [prev, ok] = slot->sema_var.fetch_op([&](u64& value) { if (value) { // If timeout if (!fallback) { if ((value & ~s_sema_mask) == 0 || (value & s_sema_mask) != sema_id) { // Give up if signaled or semaphore has already changed return false; } value -= s_sema_mask + 1; if ((value & ~s_sema_mask) == 0) { // Remove allocated sema on last waiter value = 0; } } return true; } return false; }); if (ok || fallback) { break; } #ifdef USE_FUTEX if (s_sema_list[sema_id].sema.try_dec(0)) { fallback = true; } #elif defined(_WIN32) && !defined(USE_POSIX) static LARGE_INTEGER instant{}; if (!NtWaitForKeyedEvent(nullptr, &s_sema_list[sema_id], false, &instant)) { fallback = true; } #elif defined(USE_POSIX) if (sem_trywait(&s_sema_list[sema_id]) == 0) { fallback = true; } #else dumb_sema& sema = *s_sema_list[sema_id]; std::unique_lock lock(sema.mutex); if (sema.count > 0) { sema.count--; fallback = true; } #endif } if (sema_id) { sema_free(sema_id); } slot_free(iptr, &s_hashtable[iptr % s_hashtable_size]); s_tls_wait_cb(nullptr); } void atomic_storage_futex::set_wait_callback(bool(*cb)(const void* data)) { if (cb) { s_tls_wait_cb = cb; } } void atomic_storage_futex::raw_notify(const void* data) { if (data) { notify_all(data); } } void atomic_storage_futex::notify_one(const void* data) { const std::uintptr_t iptr = reinterpret_cast(data); const auto slot = slot_get(iptr, &s_hashtable[(iptr) % s_hashtable_size]); if (!slot) { return; } const u64 value = slot->sema_var; if ((value & ~s_sema_mask) == 0 || !(value & s_sema_mask)) { return; } const u32 sema_id = static_cast(value & s_sema_mask); if (!sema_get(sema_id)) { return; } const auto [_, ok] = slot->sema_var.fetch_op([&](u64& value) { if ((value & ~s_sema_mask) == 0 || (value & s_sema_mask) != sema_id) { return false; } value -= s_sema_mask + 1; // Reset allocated semaphore on last waiter if ((value & ~s_sema_mask) == 0) { value = 0; } return true; }); if (ok) { #ifdef USE_POSIX sem_post(&s_sema_list[sema_id]); #elif defined(USE_FUTEX) s_sema_list[sema_id].sema++; futex(&s_sema_list[sema_id].sema, FUTEX_WAKE_PRIVATE, 1); #elif defined(_WIN32) NtReleaseKeyedEvent(nullptr, &s_sema_list[sema_id], 1, nullptr); #else dumb_sema& sema = *s_sema_list[sema_id]; sema.mutex.lock(); sema.count += 1; sema.mutex.unlock(); sema.cond.notify_one(); #endif } sema_free(sema_id); } void atomic_storage_futex::notify_all(const void* data) { const std::uintptr_t iptr = reinterpret_cast(data); const auto slot = slot_get(iptr, &s_hashtable[(iptr) % s_hashtable_size]); if (!slot) { return; } const u64 value = slot->sema_var; if ((value & ~s_sema_mask) == 0 || !(value & s_sema_mask)) { return; } const u32 sema_id = static_cast(value & s_sema_mask); if (!sema_get(sema_id)) { return; } const auto [_, count] = slot->sema_var.fetch_op([&](u64& value) -> u32 { if ((value & ~s_sema_mask) == 0 || (value & s_sema_mask) != sema_id) { return 0; } return (std::exchange(value, 0) & ~s_sema_mask) / (s_sema_mask + 1); }); #ifdef USE_POSIX for (u32 i = 0; i < count; i++) { sem_post(&s_sema_list[sema_id]); } #elif defined(USE_FUTEX) s_sema_list[sema_id].sema += count; futex(&s_sema_list[sema_id].sema, FUTEX_WAKE_PRIVATE, 0x7fff'ffff); #elif defined(_WIN32) for (u32 i = 0; i < count; i++) { NtReleaseKeyedEvent(nullptr, &s_sema_list[sema_id], count, nullptr); } #else if (count) { dumb_sema& sema = *s_sema_list[sema_id]; sema.mutex.lock(); sema.count += count; sema.mutex.unlock(); sema.cond.notify_all(); } #endif sema_free(sema_id); }