#include "stdafx.h" #include "Utilities/Log.h" #include "Emu/Cell/PPULLVMRecompiler.h" #include "Emu/Memory/Memory.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/Host.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/IR/Intrinsics.h" using namespace llvm; PPULLVMRecompiler::PPULLVMRecompiler(PPUThread & ppu) : m_ppu(ppu) , m_decoder(this) , m_ir_builder(m_llvm_context) { InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetDisassembler(); m_module = new Module("Module", m_llvm_context); m_gpr = new GlobalVariable(*m_module, ArrayType::get(Type::getInt64Ty(m_llvm_context), 32), false, GlobalValue::ExternalLinkage, nullptr, "gpr"); m_cr = new GlobalVariable(*m_module, Type::getInt32Ty(m_llvm_context), false, GlobalValue::ExternalLinkage, nullptr, "cr"); m_vpr = new GlobalVariable(*m_module, ArrayType::get(Type::getIntNTy(m_llvm_context, 128), 32), false, GlobalValue::ExternalLinkage, nullptr, "vpr"); m_vscr = new GlobalVariable(*m_module, Type::getInt32Ty(m_llvm_context), false, GlobalValue::ExternalLinkage, nullptr, "vscr"); m_execution_engine = EngineBuilder(m_module).create(); m_execution_engine->addGlobalMapping(m_gpr, m_ppu.GPR); m_execution_engine->addGlobalMapping(m_cr, &m_ppu.CR); m_execution_engine->addGlobalMapping(m_vpr, m_ppu.VPR); m_execution_engine->addGlobalMapping(m_vscr, &m_ppu.VSCR); m_disassembler = LLVMCreateDisasm(sys::getProcessTriple().c_str(), nullptr, 0, nullptr, nullptr); RunAllTests(); } PPULLVMRecompiler::~PPULLVMRecompiler() { LLVMDisasmDispose(m_disassembler); delete m_execution_engine; llvm_shutdown(); } u8 PPULLVMRecompiler::DecodeMemory(const u64 address) { auto function_name = fmt::Format("fn_0x%llx", address); auto function = m_module->getFunction(function_name); if (!function) { function = cast(m_module->getOrInsertFunction(function_name, Type::getVoidTy(m_llvm_context), (Type *)nullptr)); auto block = BasicBlock::Create(m_llvm_context, "start", function); m_ir_builder.SetInsertPoint(block); //m_hit_branch_instruction = false; //while (!m_hit_branch_instruction) //{ // u32 instr = Memory.Read32(address); // m_decoder.Decode(instr); //} VADDSWS(14, 23, 25); // TODO: Add code to set PC m_ir_builder.CreateRetVoid(); std::string s; raw_string_ostream s2(s); s2 << *m_module; } std::vector args; m_execution_engine->runFunction(function, args); return 0; } void PPULLVMRecompiler::NULL_OP() { // UNK("null"); } void PPULLVMRecompiler::NOP() { } void PPULLVMRecompiler::TDI(u32 to, u32 ra, s32 simm16) { s64 a = m_ppu.GPR[ra]; if ((a < (s64)simm16 && (to & 0x10)) || (a >(s64)simm16 && (to & 0x8)) || (a == (s64)simm16 && (to & 0x4)) || ((u64)a < (u64)simm16 && (to & 0x2)) || ((u64)a > (u64)simm16 && (to & 0x1))) { // TODO: Log this // UNK(fmt::Format("Trap! (tdi %x, r%d, %x)", to, ra, simm16)); } } void PPULLVMRecompiler::TWI(u32 to, u32 ra, s32 simm16) { s32 a = (s32)m_ppu.GPR[ra]; if ((a < simm16 && (to & 0x10)) || (a > simm16 && (to & 0x8)) || (a == simm16 && (to & 0x4)) || ((u32)a < (u32)simm16 && (to & 0x2)) || ((u32)a > (u32)simm16 && (to & 0x1))) { // TODO: Log this // UNK(fmt::Format("Trap! (twi %x, r%d, %x)", to, ra, simm16)); } } void PPULLVMRecompiler::MFVSCR(u32 vd) { auto vscr_i32 = m_ir_builder.CreateLoad(m_vscr); auto vscr_i128 = m_ir_builder.CreateZExt(vscr_i32, Type::getIntNTy(m_llvm_context, 128)); SetVr(vd, vscr_i128); } void PPULLVMRecompiler::MTVSCR(u32 vb) { auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto vscr_i32 = m_ir_builder.CreateExtractElement(vb_v4i32, m_ir_builder.getInt32(0)); m_ir_builder.CreateStore(vscr_i32, m_vscr); } void PPULLVMRecompiler::VADDCUW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); u32 not_mask_v4i32[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; va_v4i32 = m_ir_builder.CreateXor(va_v4i32, ConstantDataVector::get(m_llvm_context, not_mask_v4i32)); auto cmpv4i1 = m_ir_builder.CreateICmpULT(va_v4i32, vb_v4i32); auto cmpv4i32 = m_ir_builder.CreateZExt(cmpv4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmpv4i32); // TODO: Implement with overflow intrinsics and check if the generated code is better } void PPULLVMRecompiler::VADDFP(u32 vd, u32 va, u32 vb) { auto va_v4f32 = GetVrAsFloatVec(va); auto vb_v4f32 = GetVrAsFloatVec(vb); auto sum_v4f32 = m_ir_builder.CreateFAdd(va_v4f32, vb_v4f32); SetVr(vd, sum_v4f32); } void PPULLVMRecompiler::VADDSBS(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(vb, 8); auto sum_v16i8 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_padds_b), va_v16i8, vb_v16i8); SetVr(vd, sum_v16i8); // TODO: Set VSCR.SAT } void PPULLVMRecompiler::VADDSHS(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(vb, 16); auto sum_v8i16 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_padds_w), va_v8i16, vb_v8i16); SetVr(vd, sum_v8i16); // TODO: Set VSCR.SAT } void PPULLVMRecompiler::VADDSWS(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); // It looks like x86 does not have an instruction to add 32 bit intergers with singed/unsiged saturation. // To implement add with saturation, we first determine what the result would be if the operation were to cause // an overflow. If two -ve numbers are being added and cause an overflow, the result would be 0x80000000. // If two +ve numbers are being added and cause an overflow, the result would be 0x7FFFFFFF. Addition of a -ve // number and a +ve number cannot cause overflow. So the result in case of an overflow is 0x7FFFFFFF + sign bit // of any one of the operands. u32 tmp1_v4i32[4] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; auto tmp2_v4i32 = m_ir_builder.CreateLShr(va_v4i32, 31); tmp2_v4i32 = m_ir_builder.CreateAdd(tmp2_v4i32, ConstantDataVector::get(m_llvm_context, tmp1_v4i32)); auto tmp2_v16i8 = m_ir_builder.CreateBitCast(tmp2_v4i32, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); // Next, we find if the addition can actually result in an overflow. Since an overflow can only happen if the operands // have the same sign, we bitwise XOR both the operands. If the sign bit of the result is 0 then the operands have the // same sign and so may cause an overflow. We invert the result so that the sign bit is 1 when the operands have the // same sign. auto tmp3_v4i32 = m_ir_builder.CreateXor(va_v4i32, vb_v4i32); u32 not_mask_v4i32[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; tmp3_v4i32 = m_ir_builder.CreateXor(tmp3_v4i32, ConstantDataVector::get(m_llvm_context, not_mask_v4i32)); // Perform the sum. auto sum_v4i32 = m_ir_builder.CreateAdd(va_v4i32, vb_v4i32); auto sum_v16i8 = m_ir_builder.CreateBitCast(sum_v4i32, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); // If an overflow occurs, then the sign of the sum will be different from the sign of the operands. So, we xor the // result with one of the operands. The sign bit of the result will be 1 if the sign bit of the sum and the sign bit of the // result is different. This result is again ANDed with tmp3 (the sign bit of tmp3 is 1 only if the operands have the same // sign and so can cause an overflow). auto tmp4_v4i32 = m_ir_builder.CreateXor(va_v4i32, sum_v4i32); tmp4_v4i32 = m_ir_builder.CreateAnd(tmp3_v4i32, tmp4_v4i32); tmp4_v4i32 = m_ir_builder.CreateAShr(tmp4_v4i32, 31); auto tmp4_v16i8 = m_ir_builder.CreateBitCast(tmp4_v4i32, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); // tmp4 is equal to 0xFFFFFFFF if an overflow occured and 0x00000000 otherwise. auto res_v16i8 = m_ir_builder.CreateCall3(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse41_pblendvb), sum_v16i8, tmp2_v16i8, tmp4_v16i8); SetVr(vd, res_v16i8); // TODO: Set SAT } void PPULLVMRecompiler::VADDUBM(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(vb, 8); auto sum_v16i8 = m_ir_builder.CreateAdd(va_v16i8, vb_v16i8); SetVr(vd, sum_v16i8); } void PPULLVMRecompiler::VADDUBS(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(vb, 8); auto sum_v16i8 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_paddus_b), va_v16i8, vb_v16i8); SetVr(vd, sum_v16i8); // TODO: Set SAT } void PPULLVMRecompiler::VADDUHM(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(vb, 16); auto sum_v8i16 = m_ir_builder.CreateAdd(va_v8i16, vb_v8i16); SetVr(vd, sum_v8i16); } void PPULLVMRecompiler::VADDUHS(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(vb, 16); auto sum_v8i16 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_paddus_w), va_v8i16, vb_v8i16); SetVr(vd, sum_v8i16); // TODO: Set SAT } void PPULLVMRecompiler::VADDUWM(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto sum_v4i32 = m_ir_builder.CreateAdd(va_v4i32, vb_v4i32); SetVr(vd, sum_v4i32); } void PPULLVMRecompiler::VADDUWS(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto sum_v4i32 = m_ir_builder.CreateAdd(va_v4i32, vb_v4i32); auto cmp_v4i1 = m_ir_builder.CreateICmpULT(sum_v4i32, va_v4i32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); auto res_v4i32 = m_ir_builder.CreateOr(sum_v4i32, cmp_v4i32); SetVr(vd, res_v4i32); // TODO: Set SAT } void PPULLVMRecompiler::VAND(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto res_v4i32 = m_ir_builder.CreateAnd(va_v4i32, vb_v4i32); SetVr(vd, res_v4i32); } void PPULLVMRecompiler::VANDC(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); u32 not_mask_v4i32[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; vb_v4i32 = m_ir_builder.CreateXor(vb_v4i32, ConstantDataVector::get(m_llvm_context, not_mask_v4i32)); auto res_v4i32 = m_ir_builder.CreateAnd(va_v4i32, vb_v4i32); SetVr(vd, res_v4i32); } void PPULLVMRecompiler::VAVGSB(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(vb, 8); auto va_v16i16 = m_ir_builder.CreateSExt(va_v16i8, VectorType::get(Type::getInt16Ty(m_llvm_context), 16)); auto vb_v16i16 = m_ir_builder.CreateSExt(vb_v16i8, VectorType::get(Type::getInt16Ty(m_llvm_context), 16)); auto sum_v16i16 = m_ir_builder.CreateAdd(va_v16i16, vb_v16i16); u16 one_v16i16[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; sum_v16i16 = m_ir_builder.CreateAdd(sum_v16i16, ConstantDataVector::get(m_llvm_context, one_v16i16)); auto avg_v16i16 = m_ir_builder.CreateAShr(sum_v16i16, 1); auto avg_v16i8 = m_ir_builder.CreateTrunc(avg_v16i16, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); SetVr(vd, avg_v16i8); } void PPULLVMRecompiler::VAVGSH(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(vb, 16); auto va_v8i32 = m_ir_builder.CreateSExt(va_v8i16, VectorType::get(Type::getInt32Ty(m_llvm_context), 8)); auto vb_v8i32 = m_ir_builder.CreateSExt(vb_v8i16, VectorType::get(Type::getInt32Ty(m_llvm_context), 8)); auto sum_v8i32 = m_ir_builder.CreateAdd(va_v8i32, vb_v8i32); u32 one_v8i32[8] = {1, 1, 1, 1, 1, 1, 1, 1}; sum_v8i32 = m_ir_builder.CreateAdd(sum_v8i32, ConstantDataVector::get(m_llvm_context, one_v8i32)); auto avg_v8i32 = m_ir_builder.CreateAShr(sum_v8i32, 1); auto avg_v8i16 = m_ir_builder.CreateTrunc(avg_v8i32, VectorType::get(Type::getInt16Ty(m_llvm_context), 8)); SetVr(vd, avg_v8i16); } void PPULLVMRecompiler::VAVGSW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto va_v4i64 = m_ir_builder.CreateSExt(va_v4i32, VectorType::get(Type::getInt64Ty(m_llvm_context), 4)); auto vb_v4i64 = m_ir_builder.CreateSExt(vb_v4i32, VectorType::get(Type::getInt64Ty(m_llvm_context), 4)); auto sum_v4i64 = m_ir_builder.CreateAdd(va_v4i64, vb_v4i64); u64 one_v4i64[4] = {1, 1, 1, 1}; sum_v4i64 = m_ir_builder.CreateAdd(sum_v4i64, ConstantDataVector::get(m_llvm_context, one_v4i64)); auto avg_v4i64 = m_ir_builder.CreateAShr(sum_v4i64, 1); auto avg_v4i32 = m_ir_builder.CreateTrunc(avg_v4i64, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, avg_v4i32); } void PPULLVMRecompiler::VAVGUB(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(vb, 8); auto avg_v16i8 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_pavg_b), va_v16i8, vb_v16i8); SetVr(vd, avg_v16i8); } void PPULLVMRecompiler::VAVGUH(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(vb, 16); auto avg_v8i16 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_pavg_w), va_v8i16, vb_v8i16); SetVr(vd, avg_v8i16); } void PPULLVMRecompiler::VAVGUW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto va_v4i64 = m_ir_builder.CreateZExt(va_v4i32, VectorType::get(Type::getInt64Ty(m_llvm_context), 4)); auto vb_v4i64 = m_ir_builder.CreateZExt(vb_v4i32, VectorType::get(Type::getInt64Ty(m_llvm_context), 4)); auto sum_v4i64 = m_ir_builder.CreateAdd(va_v4i64, vb_v4i64); u64 one_v4i64[4] = {1, 1, 1, 1}; sum_v4i64 = m_ir_builder.CreateAdd(sum_v4i64, ConstantDataVector::get(m_llvm_context, one_v4i64)); auto avg_v4i64 = m_ir_builder.CreateLShr(sum_v4i64, 1); auto avg_v4i32 = m_ir_builder.CreateTrunc(avg_v4i64, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, avg_v4i32); } void PPULLVMRecompiler::VCFSX(u32 vd, u32 uimm5, u32 vb) { auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto res_v4f32 = m_ir_builder.CreateSIToFP(vb_v4i32, VectorType::get(Type::getFloatTy(m_llvm_context), 4)); if (uimm5) { float scale = (float)(1 << uimm5); float scale_v4f32[4] = {scale, scale, scale, scale}; res_v4f32 = m_ir_builder.CreateFDiv(res_v4f32, ConstantDataVector::get(m_llvm_context, scale_v4f32)); } SetVr(vd, res_v4f32); } void PPULLVMRecompiler::VCFUX(u32 vd, u32 uimm5, u32 vb) { auto vb_v4i32 = GetVrAsIntVec(vb, 32); auto res_v4f32 = m_ir_builder.CreateUIToFP(vb_v4i32, VectorType::get(Type::getFloatTy(m_llvm_context), 4)); if (uimm5) { float scale = (float)(1 << uimm5); float scale_v4f32[4] = {scale, scale, scale, scale}; res_v4f32 = m_ir_builder.CreateFDiv(res_v4f32, ConstantDataVector::get(m_llvm_context, scale_v4f32)); } SetVr(vd, res_v4f32); } void PPULLVMRecompiler::VCMPBFP(u32 vd, u32 va, u32 vb) { auto va_v4f32 = GetVrAsFloatVec(va); auto vb_v4f32 = GetVrAsFloatVec(vb); auto cmp_gt_v4i1 = m_ir_builder.CreateFCmpOGT(va_v4f32, vb_v4f32); vb_v4f32 = m_ir_builder.CreateFNeg(vb_v4f32); auto cmp_lt_v4i1 = m_ir_builder.CreateFCmpOLT(va_v4f32, vb_v4f32); auto cmp_gt_v4i32 = m_ir_builder.CreateZExt(cmp_gt_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); auto cmp_lt_v4i32 = m_ir_builder.CreateZExt(cmp_lt_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); cmp_gt_v4i32 = m_ir_builder.CreateShl(cmp_gt_v4i32, 31); cmp_lt_v4i32 = m_ir_builder.CreateShl(cmp_lt_v4i32, 30); auto res_v4i32 = m_ir_builder.CreateOr(cmp_gt_v4i32, cmp_lt_v4i32); SetVr(vd, res_v4i32); // TODO: Implement NJ mode } void PPULLVMRecompiler::VCMPBFP_(u32 vd, u32 va, u32 vb) { VCMPBFP(vd, va, vb); auto vd_v16i8 = GetVrAsIntVec(vd, 8); u8 mask_v16i8[16] = {3, 7, 11, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; vd_v16i8 = m_ir_builder.CreateCall2(Intrinsic::getDeclaration(m_module, Intrinsic::x86_ssse3_pshuf_b_128), vd_v16i8, ConstantDataVector::get(m_llvm_context, mask_v16i8)); auto vd_v4i32 = m_ir_builder.CreateBitCast(vd_v16i8, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); auto vd_mask_i32 = m_ir_builder.CreateExtractElement(vd_v4i32, m_ir_builder.getInt32(0)); auto cmp_i1 = m_ir_builder.CreateICmpEQ(vd_mask_i32, m_ir_builder.getInt32(0)); auto cmp_i32 = m_ir_builder.CreateZExt(cmp_i1, Type::getInt32Ty(m_llvm_context)); cmp_i32 = m_ir_builder.CreateShl(cmp_i32, 5); auto cr_i32 = (Value *)m_ir_builder.CreateLoad(m_cr); cr_i32 = m_ir_builder.CreateAnd(cr_i32, 0xFFFFFF0F); cr_i32 = m_ir_builder.CreateOr(cr_i32, cmp_i32); m_ir_builder.CreateStore(cr_i32, m_cr); } void PPULLVMRecompiler::VCMPEQFP(u32 vd, u32 va, u32 vb) { auto va_v4f32 = GetVrAsFloatVec(va); auto vb_v4f32 = GetVrAsFloatVec(vb); auto cmp_v4i1 = m_ir_builder.CreateFCmpOEQ(va_v4f32, vb_v4f32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPEQFP_(u32 vd, u32 va, u32 vb) { VCMPEQFP(vd, va, vb); auto vd_v16i8 = GetVrAsIntVec(vd, 8); auto cr_i32 = (Value *)m_ir_builder.CreateLoad(m_cr); cr_i32 = m_ir_builder.CreateAnd(cr_i32, 0xFFFFFF0F); auto vd_mask_i32 = m_ir_builder.CreateCall(Intrinsic::getDeclaration(m_module, Intrinsic::x86_sse2_pmovmskb_128), vd_v16i8); auto cmp_i1 = m_ir_builder.CreateICmpEQ(vd_mask_i32, m_ir_builder.getInt32(0)); auto cmp_i32 = m_ir_builder.CreateZExt(cmp_i1, Type::getInt32Ty(m_llvm_context)); cmp_i32 = m_ir_builder.CreateShl(cmp_i32, 5); cr_i32 = m_ir_builder.CreateOr(cr_i32, cmp_i32); cmp_i1 = m_ir_builder.CreateICmpEQ(vd_mask_i32, m_ir_builder.getInt32(0xFFFF)); cmp_i32 = m_ir_builder.CreateZExt(cmp_i1, Type::getInt32Ty(m_llvm_context)); cmp_i32 = m_ir_builder.CreateShl(cmp_i32, 7); cr_i32 = m_ir_builder.CreateOr(cr_i32, cmp_i32); m_ir_builder.CreateStore(cr_i32, m_cr); } void PPULLVMRecompiler::VCMPEQUB(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(va, 8); auto cmp_v16i1 = m_ir_builder.CreateICmpEQ(va_v16i8, vb_v16i8); auto cmp_v16i32 = m_ir_builder.CreateSExt(cmp_v16i1, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); SetVr(vd, cmp_v16i32); } void PPULLVMRecompiler::VCMPEQUB_(u32 vd, u32 va, u32 vb) { int all_equal = 0x8; int none_equal = 0x2; for (uint b = 0; b < 16; b++) { if (m_ppu.VPR[va]._u8[b] == m_ppu.VPR[vb]._u8[b]) { m_ppu.VPR[vd]._u8[b] = 0xff; none_equal = 0; } else { m_ppu.VPR[vd]._u8[b] = 0; all_equal = 0; } } m_ppu.CR.cr6 = all_equal | none_equal; } void PPULLVMRecompiler::VCMPEQUH(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(va, 16); auto cmp_v8i1 = m_ir_builder.CreateICmpEQ(va_v8i16, vb_v8i16); auto cmp_v8i16 = m_ir_builder.CreateSExt(cmp_v8i1, VectorType::get(Type::getInt16Ty(m_llvm_context), 8)); SetVr(vd, cmp_v8i16); } void PPULLVMRecompiler::VCMPEQUH_(u32 vd, u32 va, u32 vb) { int all_equal = 0x8; int none_equal = 0x2; for (uint h = 0; h < 8; h++) { if (m_ppu.VPR[va]._u16[h] == m_ppu.VPR[vb]._u16[h]) { m_ppu.VPR[vd]._u16[h] = 0xffff; none_equal = 0; } else { m_ppu.VPR[vd]._u16[h] = 0; all_equal = 0; } } m_ppu.CR.cr6 = all_equal | none_equal; } void PPULLVMRecompiler::VCMPEQUW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(va, 32); auto cmp_v4i1 = m_ir_builder.CreateICmpEQ(va_v4i32, vb_v4i32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPEQUW_(u32 vd, u32 va, u32 vb) { int all_equal = 0x8; int none_equal = 0x2; for (uint w = 0; w < 4; w++) { if (m_ppu.VPR[va]._u32[w] == m_ppu.VPR[vb]._u32[w]) { m_ppu.VPR[vd]._u32[w] = 0xffffffff; none_equal = 0; } else { m_ppu.VPR[vd]._u32[w] = 0; all_equal = 0; } } m_ppu.CR.cr6 = all_equal | none_equal; } void PPULLVMRecompiler::VCMPGEFP(u32 vd, u32 va, u32 vb) { auto va_v4f32 = GetVrAsFloatVec(va); auto vb_v4f32 = GetVrAsFloatVec(vb); auto cmp_v4i1 = m_ir_builder.CreateFCmpOGE(va_v4f32, vb_v4f32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPGEFP_(u32 vd, u32 va, u32 vb) { int all_ge = 0x8; int none_ge = 0x2; for (uint w = 0; w < 4; w++) { if (m_ppu.VPR[va]._f[w] >= m_ppu.VPR[vb]._f[w]) { m_ppu.VPR[vd]._u32[w] = 0xffffffff; none_ge = 0; } else { m_ppu.VPR[vd]._u32[w] = 0; all_ge = 0; } } m_ppu.CR.cr6 = all_ge | none_ge; } void PPULLVMRecompiler::VCMPGTFP(u32 vd, u32 va, u32 vb) { auto va_v4f32 = GetVrAsFloatVec(va); auto vb_v4f32 = GetVrAsFloatVec(vb); auto cmp_v4i1 = m_ir_builder.CreateFCmpOGT(va_v4f32, vb_v4f32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPGTFP_(u32 vd, u32 va, u32 vb) { int all_ge = 0x8; int none_ge = 0x2; for (uint w = 0; w < 4; w++) { if (m_ppu.VPR[va]._f[w] > m_ppu.VPR[vb]._f[w]) { m_ppu.VPR[vd]._u32[w] = 0xffffffff; none_ge = 0; } else { m_ppu.VPR[vd]._u32[w] = 0; all_ge = 0; } } m_ppu.CR.cr6 = all_ge | none_ge; } void PPULLVMRecompiler::VCMPGTSB(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(va, 8); auto cmp_v16i1 = m_ir_builder.CreateICmpSGT(va_v16i8, vb_v16i8); auto cmp_v16i32 = m_ir_builder.CreateSExt(cmp_v16i1, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); SetVr(vd, cmp_v16i32); } void PPULLVMRecompiler::VCMPGTSB_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint b = 0; b < 16; b++) { if (m_ppu.VPR[va]._s8[b] > m_ppu.VPR[vb]._s8[b]) { m_ppu.VPR[vd]._u8[b] = 0xff; none_gt = 0; } else { m_ppu.VPR[vd]._u8[b] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCMPGTSH(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(va, 16); auto cmp_v8i1 = m_ir_builder.CreateICmpSGT(va_v8i16, vb_v8i16); auto cmp_v8i16 = m_ir_builder.CreateSExt(cmp_v8i1, VectorType::get(Type::getInt16Ty(m_llvm_context), 8)); SetVr(vd, cmp_v8i16); } void PPULLVMRecompiler::VCMPGTSH_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint h = 0; h < 8; h++) { if (m_ppu.VPR[va]._s16[h] > m_ppu.VPR[vb]._s16[h]) { m_ppu.VPR[vd]._u16[h] = 0xffff; none_gt = 0; } else { m_ppu.VPR[vd]._u16[h] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCMPGTSW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(va, 32); auto cmp_v4i1 = m_ir_builder.CreateICmpSGT(va_v4i32, vb_v4i32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPGTSW_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint w = 0; w < 4; w++) { if (m_ppu.VPR[va]._s32[w] > m_ppu.VPR[vb]._s32[w]) { m_ppu.VPR[vd]._u32[w] = 0xffffffff; none_gt = 0; } else { m_ppu.VPR[vd]._u32[w] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCMPGTUB(u32 vd, u32 va, u32 vb) { auto va_v16i8 = GetVrAsIntVec(va, 8); auto vb_v16i8 = GetVrAsIntVec(va, 8); auto cmp_v16i1 = m_ir_builder.CreateICmpUGT(va_v16i8, vb_v16i8); auto cmp_v16i32 = m_ir_builder.CreateSExt(cmp_v16i1, VectorType::get(Type::getInt8Ty(m_llvm_context), 16)); SetVr(vd, cmp_v16i32); } void PPULLVMRecompiler::VCMPGTUB_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint b = 0; b < 16; b++) { if (m_ppu.VPR[va]._u8[b] > m_ppu.VPR[vb]._u8[b]) { m_ppu.VPR[vd]._u8[b] = 0xff; none_gt = 0; } else { m_ppu.VPR[vd]._u8[b] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCMPGTUH(u32 vd, u32 va, u32 vb) { auto va_v8i16 = GetVrAsIntVec(va, 16); auto vb_v8i16 = GetVrAsIntVec(va, 16); auto cmp_v8i1 = m_ir_builder.CreateICmpUGT(va_v8i16, vb_v8i16); auto cmp_v8i16 = m_ir_builder.CreateSExt(cmp_v8i1, VectorType::get(Type::getInt16Ty(m_llvm_context), 8)); SetVr(vd, cmp_v8i16); } void PPULLVMRecompiler::VCMPGTUH_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint h = 0; h < 8; h++) { if (m_ppu.VPR[va]._u16[h] > m_ppu.VPR[vb]._u16[h]) { m_ppu.VPR[vd]._u16[h] = 0xffff; none_gt = 0; } else { m_ppu.VPR[vd]._u16[h] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCMPGTUW(u32 vd, u32 va, u32 vb) { auto va_v4i32 = GetVrAsIntVec(va, 32); auto vb_v4i32 = GetVrAsIntVec(va, 32); auto cmp_v4i1 = m_ir_builder.CreateICmpUGT(va_v4i32, vb_v4i32); auto cmp_v4i32 = m_ir_builder.CreateSExt(cmp_v4i1, VectorType::get(Type::getInt32Ty(m_llvm_context), 4)); SetVr(vd, cmp_v4i32); } void PPULLVMRecompiler::VCMPGTUW_(u32 vd, u32 va, u32 vb) { int all_gt = 0x8; int none_gt = 0x2; for (uint w = 0; w < 4; w++) { if (m_ppu.VPR[va]._u32[w] > m_ppu.VPR[vb]._u32[w]) { m_ppu.VPR[vd]._u32[w] = 0xffffffff; none_gt = 0; } else { m_ppu.VPR[vd]._u32[w] = 0; all_gt = 0; } } m_ppu.CR.cr6 = all_gt | none_gt; } void PPULLVMRecompiler::VCTSXS(u32 vd, u32 uimm5, u32 vb) { int nScale = 1 << uimm5; for (uint w = 0; w < 4; w++) { float result = m_ppu.VPR[vb]._f[w] * nScale; if (result > INT_MAX) m_ppu.VPR[vd]._s32[w] = (int)INT_MAX; else if (result < INT_MIN) m_ppu.VPR[vd]._s32[w] = (int)INT_MIN; else // C rounding = Round towards 0 m_ppu.VPR[vd]._s32[w] = (int)result; } } void PPULLVMRecompiler::VCTUXS(u32 vd, u32 uimm5, u32 vb) { int nScale = 1 << uimm5; for (uint w = 0; w < 4; w++) { // C rounding = Round towards 0 s64 result = (s64)(m_ppu.VPR[vb]._f[w] * nScale); if (result > UINT_MAX) m_ppu.VPR[vd]._u32[w] = (u32)UINT_MAX; else if (result < 0) m_ppu.VPR[vd]._u32[w] = 0; else m_ppu.VPR[vd]._u32[w] = (u32)result; } } void PPULLVMRecompiler::VEXPTEFP(u32 vd, u32 vb) { // vd = exp(vb * log(2)) // ISA : Note that the value placed into the element of vD may vary between implementations // and between different executions on the same implementation. for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = exp(m_ppu.VPR[vb]._f[w] * log(2.0f)); } } void PPULLVMRecompiler::VLOGEFP(u32 vd, u32 vb) { // ISA : Note that the value placed into the element of vD may vary between implementations // and between different executions on the same implementation. for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = log(m_ppu.VPR[vb]._f[w]) / log(2.0f); } } void PPULLVMRecompiler::VMADDFP(u32 vd, u32 va, u32 vc, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = m_ppu.VPR[va]._f[w] * m_ppu.VPR[vc]._f[w] + m_ppu.VPR[vb]._f[w]; } } void PPULLVMRecompiler::VMAXFP(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = std::max(m_ppu.VPR[va]._f[w], m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VMAXSB(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 16; b++) m_ppu.VPR[vd]._s8[b] = std::max(m_ppu.VPR[va]._s8[b], m_ppu.VPR[vb]._s8[b]); } void PPULLVMRecompiler::VMAXSH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = std::max(m_ppu.VPR[va]._s16[h], m_ppu.VPR[vb]._s16[h]); } } void PPULLVMRecompiler::VMAXSW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = std::max(m_ppu.VPR[va]._s32[w], m_ppu.VPR[vb]._s32[w]); } } void PPULLVMRecompiler::VMAXUB(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) m_ppu.VPR[vd]._u8[b] = std::max(m_ppu.VPR[va]._u8[b], m_ppu.VPR[vb]._u8[b]); } void PPULLVMRecompiler::VMAXUH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = std::max(m_ppu.VPR[va]._u16[h], m_ppu.VPR[vb]._u16[h]); } } void PPULLVMRecompiler::VMAXUW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = std::max(m_ppu.VPR[va]._u32[w], m_ppu.VPR[vb]._u32[w]); } } void PPULLVMRecompiler::VMHADDSHS(u32 vd, u32 va, u32 vb, u32 vc) { for (uint h = 0; h < 8; h++) { s32 result = (s32)m_ppu.VPR[va]._s16[h] * (s32)m_ppu.VPR[vb]._s16[h] + (s32)m_ppu.VPR[vc]._s16[h]; if (result > INT16_MAX) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT16_MIN) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s16[h] = (s16)result; } } void PPULLVMRecompiler::VMHRADDSHS(u32 vd, u32 va, u32 vb, u32 vc) { for (uint h = 0; h < 8; h++) { s32 result = (s32)m_ppu.VPR[va]._s16[h] * (s32)m_ppu.VPR[vb]._s16[h] + (s32)m_ppu.VPR[vc]._s16[h] + 0x4000; if (result > INT16_MAX) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT16_MIN) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s16[h] = (s16)result; } } void PPULLVMRecompiler::VMINFP(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = std::min(m_ppu.VPR[va]._f[w], m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VMINSB(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._s8[b] = std::min(m_ppu.VPR[va]._s8[b], m_ppu.VPR[vb]._s8[b]); } } void PPULLVMRecompiler::VMINSH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = std::min(m_ppu.VPR[va]._s16[h], m_ppu.VPR[vb]._s16[h]); } } void PPULLVMRecompiler::VMINSW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = std::min(m_ppu.VPR[va]._s32[w], m_ppu.VPR[vb]._s32[w]); } } void PPULLVMRecompiler::VMINUB(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = std::min(m_ppu.VPR[va]._u8[b], m_ppu.VPR[vb]._u8[b]); } } void PPULLVMRecompiler::VMINUH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = std::min(m_ppu.VPR[va]._u16[h], m_ppu.VPR[vb]._u16[h]); } } void PPULLVMRecompiler::VMINUW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = std::min(m_ppu.VPR[va]._u32[w], m_ppu.VPR[vb]._u32[w]); } } void PPULLVMRecompiler::VMLADDUHM(u32 vd, u32 va, u32 vb, u32 vc) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = m_ppu.VPR[va]._u16[h] * m_ppu.VPR[vb]._u16[h] + m_ppu.VPR[vc]._u16[h]; } } void PPULLVMRecompiler::VMRGHB(u32 vd, u32 va, u32 vb) { VPR_reg VA = m_ppu.VPR[va]; VPR_reg VB = m_ppu.VPR[vb]; for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u8[15 - h * 2] = VA._u8[15 - h]; m_ppu.VPR[vd]._u8[15 - h * 2 - 1] = VB._u8[15 - h]; } } void PPULLVMRecompiler::VMRGHH(u32 vd, u32 va, u32 vb) { VPR_reg VA = m_ppu.VPR[va]; VPR_reg VB = m_ppu.VPR[vb]; for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u16[7 - w * 2] = VA._u16[7 - w]; m_ppu.VPR[vd]._u16[7 - w * 2 - 1] = VB._u16[7 - w]; } } void PPULLVMRecompiler::VMRGHW(u32 vd, u32 va, u32 vb) { VPR_reg VA = m_ppu.VPR[va]; VPR_reg VB = m_ppu.VPR[vb]; for (uint d = 0; d < 2; d++) { m_ppu.VPR[vd]._u32[3 - d * 2] = VA._u32[3 - d]; m_ppu.VPR[vd]._u32[3 - d * 2 - 1] = VB._u32[3 - d]; } } void PPULLVMRecompiler::VMRGLB(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u8[15 - h * 2] = m_ppu.VPR[va]._u8[7 - h]; m_ppu.VPR[vd]._u8[15 - h * 2 - 1] = m_ppu.VPR[vb]._u8[7 - h]; } } void PPULLVMRecompiler::VMRGLH(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u16[7 - w * 2] = m_ppu.VPR[va]._u16[3 - w]; m_ppu.VPR[vd]._u16[7 - w * 2 - 1] = m_ppu.VPR[vb]._u16[3 - w]; } } void PPULLVMRecompiler::VMRGLW(u32 vd, u32 va, u32 vb) { for (uint d = 0; d < 2; d++) { m_ppu.VPR[vd]._u32[3 - d * 2] = m_ppu.VPR[va]._u32[1 - d]; m_ppu.VPR[vd]._u32[3 - d * 2 - 1] = m_ppu.VPR[vb]._u32[1 - d]; } } void PPULLVMRecompiler::VMSUMMBM(u32 vd, u32 va, u32 vb, u32 vc) //nf { for (uint w = 0; w < 4; w++) { s32 result = 0; for (uint b = 0; b < 4; b++) { result += m_ppu.VPR[va]._s8[w * 4 + b] * m_ppu.VPR[vb]._u8[w * 4 + b]; } result += m_ppu.VPR[vc]._s32[w]; m_ppu.VPR[vd]._s32[w] = result; } } void PPULLVMRecompiler::VMSUMSHM(u32 vd, u32 va, u32 vb, u32 vc) //nf { for (uint w = 0; w < 4; w++) { s32 result = 0; for (uint h = 0; h < 2; h++) { result += m_ppu.VPR[va]._s16[w * 2 + h] * m_ppu.VPR[vb]._s16[w * 2 + h]; } result += m_ppu.VPR[vc]._s32[w]; m_ppu.VPR[vd]._s32[w] = result; } } void PPULLVMRecompiler::VMSUMSHS(u32 vd, u32 va, u32 vb, u32 vc) //nf { for (uint w = 0; w < 4; w++) { s64 result = 0; s32 saturated = 0; for (uint h = 0; h < 2; h++) { result += m_ppu.VPR[va]._s16[w * 2 + h] * m_ppu.VPR[vb]._s16[w * 2 + h]; } result += m_ppu.VPR[vc]._s32[w]; if (result > INT_MAX) { saturated = INT_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT_MIN) { saturated = INT_MIN; m_ppu.VSCR.SAT = 1; } else saturated = (s32)result; m_ppu.VPR[vd]._s32[w] = saturated; } } void PPULLVMRecompiler::VMSUMUBM(u32 vd, u32 va, u32 vb, u32 vc) { for (uint w = 0; w < 4; w++) { u32 result = 0; for (uint b = 0; b < 4; b++) { result += m_ppu.VPR[va]._u8[w * 4 + b] * m_ppu.VPR[vb]._u8[w * 4 + b]; } result += m_ppu.VPR[vc]._u32[w]; m_ppu.VPR[vd]._u32[w] = result; } } void PPULLVMRecompiler::VMSUMUHM(u32 vd, u32 va, u32 vb, u32 vc) //nf { for (uint w = 0; w < 4; w++) { u32 result = 0; for (uint h = 0; h < 2; h++) { result += m_ppu.VPR[va]._u16[w * 2 + h] * m_ppu.VPR[vb]._u16[w * 2 + h]; } result += m_ppu.VPR[vc]._u32[w]; m_ppu.VPR[vd]._u32[w] = result; } } void PPULLVMRecompiler::VMSUMUHS(u32 vd, u32 va, u32 vb, u32 vc) //nf { for (uint w = 0; w < 4; w++) { u64 result = 0; u32 saturated = 0; for (uint h = 0; h < 2; h++) { result += m_ppu.VPR[va]._u16[w * 2 + h] * m_ppu.VPR[vb]._u16[w * 2 + h]; } result += m_ppu.VPR[vc]._u32[w]; if (result > UINT_MAX) { saturated = UINT_MAX; m_ppu.VSCR.SAT = 1; } else saturated = (u32)result; m_ppu.VPR[vd]._u32[w] = saturated; } } void PPULLVMRecompiler::VMULESB(u32 vd, u32 va, u32 vb) //nf { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = (s16)m_ppu.VPR[va]._s8[h * 2 + 1] * (s16)m_ppu.VPR[vb]._s8[h * 2 + 1]; } } void PPULLVMRecompiler::VMULESH(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = (s32)m_ppu.VPR[va]._s16[w * 2 + 1] * (s32)m_ppu.VPR[vb]._s16[w * 2 + 1]; } } void PPULLVMRecompiler::VMULEUB(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = (u16)m_ppu.VPR[va]._u8[h * 2 + 1] * (u16)m_ppu.VPR[vb]._u8[h * 2 + 1]; } } void PPULLVMRecompiler::VMULEUH(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = (u32)m_ppu.VPR[va]._u16[w * 2 + 1] * (u32)m_ppu.VPR[vb]._u16[w * 2 + 1]; } } void PPULLVMRecompiler::VMULOSB(u32 vd, u32 va, u32 vb) //nf { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = (s16)m_ppu.VPR[va]._s8[h * 2] * (s16)m_ppu.VPR[vb]._s8[h * 2]; } } void PPULLVMRecompiler::VMULOSH(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = (s32)m_ppu.VPR[va]._s16[w * 2] * (s32)m_ppu.VPR[vb]._s16[w * 2]; } } void PPULLVMRecompiler::VMULOUB(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = (u16)m_ppu.VPR[va]._u8[h * 2] * (u16)m_ppu.VPR[vb]._u8[h * 2]; } } void PPULLVMRecompiler::VMULOUH(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = (u32)m_ppu.VPR[va]._u16[w * 2] * (u32)m_ppu.VPR[vb]._u16[w * 2]; } } void PPULLVMRecompiler::VNMSUBFP(u32 vd, u32 va, u32 vc, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = -(m_ppu.VPR[va]._f[w] * m_ppu.VPR[vc]._f[w] - m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VNOR(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = ~(m_ppu.VPR[va]._u32[w] | m_ppu.VPR[vb]._u32[w]); } } void PPULLVMRecompiler::VOR(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = m_ppu.VPR[va]._u32[w] | m_ppu.VPR[vb]._u32[w]; } } void PPULLVMRecompiler::VPERM(u32 vd, u32 va, u32 vb, u32 vc) { u8 tmpSRC[32]; memcpy(tmpSRC, m_ppu.VPR[vb]._u8, 16); memcpy(tmpSRC + 16, m_ppu.VPR[va]._u8, 16); for (uint b = 0; b < 16; b++) { u8 index = m_ppu.VPR[vc]._u8[b] & 0x1f; m_ppu.VPR[vd]._u8[b] = tmpSRC[0x1f - index]; } } void PPULLVMRecompiler::VPKPX(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 4; h++) { u16 bb7 = m_ppu.VPR[vb]._u8[15 - (h * 4 + 0)] & 0x1; u16 bb8 = m_ppu.VPR[vb]._u8[15 - (h * 4 + 1)] >> 3; u16 bb16 = m_ppu.VPR[vb]._u8[15 - (h * 4 + 2)] >> 3; u16 bb24 = m_ppu.VPR[vb]._u8[15 - (h * 4 + 3)] >> 3; u16 ab7 = m_ppu.VPR[va]._u8[15 - (h * 4 + 0)] & 0x1; u16 ab8 = m_ppu.VPR[va]._u8[15 - (h * 4 + 1)] >> 3; u16 ab16 = m_ppu.VPR[va]._u8[15 - (h * 4 + 2)] >> 3; u16 ab24 = m_ppu.VPR[va]._u8[15 - (h * 4 + 3)] >> 3; m_ppu.VPR[vd]._u16[3 - h] = (bb7 << 15) | (bb8 << 10) | (bb16 << 5) | bb24; m_ppu.VPR[vd]._u16[4 + (3 - h)] = (ab7 << 15) | (ab8 << 10) | (ab16 << 5) | ab24; } } void PPULLVMRecompiler::VPKSHSS(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 8; b++) { s16 result = m_ppu.VPR[va]._s16[b]; if (result > INT8_MAX) { result = INT8_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT8_MIN) { result = INT8_MIN; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._s8[b + 8] = result; result = m_ppu.VPR[vb]._s16[b]; if (result > INT8_MAX) { result = INT8_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT8_MIN) { result = INT8_MIN; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._s8[b] = result; } } void PPULLVMRecompiler::VPKSHUS(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 8; b++) { s16 result = m_ppu.VPR[va]._s16[b]; if (result > UINT8_MAX) { result = UINT8_MAX; m_ppu.VSCR.SAT = 1; } else if (result < 0) { result = 0; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u8[b + 8] = result; result = m_ppu.VPR[vb]._s16[b]; if (result > UINT8_MAX) { result = UINT8_MAX; m_ppu.VSCR.SAT = 1; } else if (result < 0) { result = 0; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u8[b] = result; } } void PPULLVMRecompiler::VPKSWSS(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 4; h++) { s32 result = m_ppu.VPR[va]._s32[h]; if (result > INT16_MAX) { result = INT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT16_MIN) { result = INT16_MIN; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._s16[h + 4] = result; result = m_ppu.VPR[vb]._s32[h]; if (result > INT16_MAX) { result = INT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < INT16_MIN) { result = INT16_MIN; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._s16[h] = result; } } void PPULLVMRecompiler::VPKSWUS(u32 vd, u32 va, u32 vb) //nf { for (uint h = 0; h < 4; h++) { s32 result = m_ppu.VPR[va]._s32[h]; if (result > UINT16_MAX) { result = UINT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < 0) { result = 0; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u16[h + 4] = result; result = m_ppu.VPR[vb]._s32[h]; if (result > UINT16_MAX) { result = UINT16_MAX; m_ppu.VSCR.SAT = 1; } else if (result < 0) { result = 0; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u16[h] = result; } } void PPULLVMRecompiler::VPKUHUM(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 8; b++) { m_ppu.VPR[vd]._u8[b + 8] = m_ppu.VPR[va]._u8[b * 2]; m_ppu.VPR[vd]._u8[b] = m_ppu.VPR[vb]._u8[b * 2]; } } void PPULLVMRecompiler::VPKUHUS(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 8; b++) { u16 result = m_ppu.VPR[va]._u16[b]; if (result > UINT8_MAX) { result = UINT8_MAX; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u8[b + 8] = result; result = m_ppu.VPR[vb]._u16[b]; if (result > UINT8_MAX) { result = UINT8_MAX; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u8[b] = result; } } void PPULLVMRecompiler::VPKUWUM(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 4; h++) { m_ppu.VPR[vd]._u16[h + 4] = m_ppu.VPR[va]._u16[h * 2]; m_ppu.VPR[vd]._u16[h] = m_ppu.VPR[vb]._u16[h * 2]; } } void PPULLVMRecompiler::VPKUWUS(u32 vd, u32 va, u32 vb) //nf { for (uint h = 0; h < 4; h++) { u32 result = m_ppu.VPR[va]._u32[h]; if (result > UINT16_MAX) { result = UINT16_MAX; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u16[h + 4] = result; result = m_ppu.VPR[vb]._u32[h]; if (result > UINT16_MAX) { result = UINT16_MAX; m_ppu.VSCR.SAT = 1; } m_ppu.VPR[vd]._u16[h] = result; } } void PPULLVMRecompiler::VREFP(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = 1.0f / m_ppu.VPR[vb]._f[w]; } } void PPULLVMRecompiler::VRFIM(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = floor(m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VRFIN(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = floor(m_ppu.VPR[vb]._f[w] + 0.5f); } } void PPULLVMRecompiler::VRFIP(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = ceil(m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VRFIZ(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { float f; modff(m_ppu.VPR[vb]._f[w], &f); m_ppu.VPR[vd]._f[w] = f; } } void PPULLVMRecompiler::VRLB(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 16; b++) { int nRot = m_ppu.VPR[vb]._u8[b] & 0x7; m_ppu.VPR[vd]._u8[b] = (m_ppu.VPR[va]._u8[b] << nRot) | (m_ppu.VPR[va]._u8[b] >> (8 - nRot)); } } void PPULLVMRecompiler::VRLH(u32 vd, u32 va, u32 vb) //nf { //for (uint h = 0; h < 8; h++) //{ // m_ppu.VPR[vd]._u16[h] = rotl16(m_ppu.VPR[va]._u16[h], m_ppu.VPR[vb]._u8[h * 2] & 0xf); //} } void PPULLVMRecompiler::VRLW(u32 vd, u32 va, u32 vb) { //for (uint w = 0; w < 4; w++) //{ // m_ppu.VPR[vd]._u32[w] = rotl32(m_ppu.VPR[va]._u32[w], m_ppu.VPR[vb]._u8[w * 4] & 0x1f); //} } void PPULLVMRecompiler::VRSQRTEFP(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { //TODO: accurate div m_ppu.VPR[vd]._f[w] = 1.0f / sqrtf(m_ppu.VPR[vb]._f[w]); } } void PPULLVMRecompiler::VSEL(u32 vd, u32 va, u32 vb, u32 vc) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = (m_ppu.VPR[vb]._u8[b] & m_ppu.VPR[vc]._u8[b]) | (m_ppu.VPR[va]._u8[b] & (~m_ppu.VPR[vc]._u8[b])); } } void PPULLVMRecompiler::VSL(u32 vd, u32 va, u32 vb) //nf { u8 sh = m_ppu.VPR[vb]._u8[0] & 0x7; u32 t = 1; for (uint b = 0; b < 16; b++) { t &= (m_ppu.VPR[vb]._u8[b] & 0x7) == sh; } if (t) { m_ppu.VPR[vd]._u8[0] = m_ppu.VPR[va]._u8[0] << sh; for (uint b = 1; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = (m_ppu.VPR[va]._u8[b] << sh) | (m_ppu.VPR[va]._u8[b - 1] >> (8 - sh)); } } else { //undefined m_ppu.VPR[vd]._u32[0] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[1] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[2] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[3] = 0xCDCDCDCD; } } void PPULLVMRecompiler::VSLB(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = m_ppu.VPR[va]._u8[b] << (m_ppu.VPR[vb]._u8[b] & 0x7); } } void PPULLVMRecompiler::VSLDOI(u32 vd, u32 va, u32 vb, u32 sh) { u8 tmpSRC[32]; memcpy(tmpSRC, m_ppu.VPR[vb]._u8, 16); memcpy(tmpSRC + 16, m_ppu.VPR[va]._u8, 16); for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[15 - b] = tmpSRC[31 - (b + sh)]; } } void PPULLVMRecompiler::VSLH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = m_ppu.VPR[va]._u16[h] << (m_ppu.VPR[vb]._u8[h * 2] & 0xf); } } void PPULLVMRecompiler::VSLO(u32 vd, u32 va, u32 vb) { u8 nShift = (m_ppu.VPR[vb]._u8[0] >> 3) & 0xf; m_ppu.VPR[vd].Clear(); for (u8 b = 0; b < 16 - nShift; b++) { m_ppu.VPR[vd]._u8[15 - b] = m_ppu.VPR[va]._u8[15 - (b + nShift)]; } } void PPULLVMRecompiler::VSLW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = m_ppu.VPR[va]._u32[w] << (m_ppu.VPR[vb]._u32[w] & 0x1f); } } void PPULLVMRecompiler::VSPLTB(u32 vd, u32 uimm5, u32 vb) { u8 byte = m_ppu.VPR[vb]._u8[15 - uimm5]; for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = byte; } } void PPULLVMRecompiler::VSPLTH(u32 vd, u32 uimm5, u32 vb) { assert(uimm5 < 8); u16 hword = m_ppu.VPR[vb]._u16[7 - uimm5]; for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = hword; } } void PPULLVMRecompiler::VSPLTISB(u32 vd, s32 simm5) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = simm5; } } void PPULLVMRecompiler::VSPLTISH(u32 vd, s32 simm5) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = (s16)simm5; } } void PPULLVMRecompiler::VSPLTISW(u32 vd, s32 simm5) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = (s32)simm5; } } void PPULLVMRecompiler::VSPLTW(u32 vd, u32 uimm5, u32 vb) { assert(uimm5 < 4); u32 word = m_ppu.VPR[vb]._u32[3 - uimm5]; for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = word; } } void PPULLVMRecompiler::VSR(u32 vd, u32 va, u32 vb) //nf { u8 sh = m_ppu.VPR[vb]._u8[0] & 0x7; u32 t = 1; for (uint b = 0; b < 16; b++) { t &= (m_ppu.VPR[vb]._u8[b] & 0x7) == sh; } if (t) { m_ppu.VPR[vd]._u8[15] = m_ppu.VPR[va]._u8[15] >> sh; for (uint b = 14; ~b; b--) { m_ppu.VPR[vd]._u8[b] = (m_ppu.VPR[va]._u8[b] >> sh) | (m_ppu.VPR[va]._u8[b + 1] << (8 - sh)); } } else { //undefined m_ppu.VPR[vd]._u32[0] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[1] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[2] = 0xCDCDCDCD; m_ppu.VPR[vd]._u32[3] = 0xCDCDCDCD; } } void PPULLVMRecompiler::VSRAB(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._s8[b] = m_ppu.VPR[va]._s8[b] >> (m_ppu.VPR[vb]._u8[b] & 0x7); } } void PPULLVMRecompiler::VSRAH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = m_ppu.VPR[va]._s16[h] >> (m_ppu.VPR[vb]._u8[h * 2] & 0xf); } } void PPULLVMRecompiler::VSRAW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = m_ppu.VPR[va]._s32[w] >> (m_ppu.VPR[vb]._u8[w * 4] & 0x1f); } } void PPULLVMRecompiler::VSRB(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = m_ppu.VPR[va]._u8[b] >> (m_ppu.VPR[vb]._u8[b] & 0x7); } } void PPULLVMRecompiler::VSRH(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = m_ppu.VPR[va]._u16[h] >> (m_ppu.VPR[vb]._u8[h * 2] & 0xf); } } void PPULLVMRecompiler::VSRO(u32 vd, u32 va, u32 vb) { u8 nShift = (m_ppu.VPR[vb]._u8[0] >> 3) & 0xf; m_ppu.VPR[vd].Clear(); for (u8 b = 0; b < 16 - nShift; b++) { m_ppu.VPR[vd]._u8[b] = m_ppu.VPR[va]._u8[b + nShift]; } } void PPULLVMRecompiler::VSRW(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = m_ppu.VPR[va]._u32[w] >> (m_ppu.VPR[vb]._u8[w * 4] & 0x1f); } } void PPULLVMRecompiler::VSUBCUW(u32 vd, u32 va, u32 vb) //nf { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = m_ppu.VPR[va]._u32[w] < m_ppu.VPR[vb]._u32[w] ? 0 : 1; } } void PPULLVMRecompiler::VSUBFP(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._f[w] = m_ppu.VPR[va]._f[w] - m_ppu.VPR[vb]._f[w]; } } void PPULLVMRecompiler::VSUBSBS(u32 vd, u32 va, u32 vb) //nf { for (uint b = 0; b < 16; b++) { s16 result = (s16)m_ppu.VPR[va]._s8[b] - (s16)m_ppu.VPR[vb]._s8[b]; if (result < INT8_MIN) { m_ppu.VPR[vd]._s8[b] = INT8_MIN; m_ppu.VSCR.SAT = 1; } else if (result > INT8_MAX) { m_ppu.VPR[vd]._s8[b] = INT8_MAX; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s8[b] = (s8)result; } } void PPULLVMRecompiler::VSUBSHS(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { s32 result = (s32)m_ppu.VPR[va]._s16[h] - (s32)m_ppu.VPR[vb]._s16[h]; if (result < INT16_MIN) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MIN; m_ppu.VSCR.SAT = 1; } else if (result > INT16_MAX) { m_ppu.VPR[vd]._s16[h] = (s16)INT16_MAX; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s16[h] = (s16)result; } } void PPULLVMRecompiler::VSUBSWS(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { s64 result = (s64)m_ppu.VPR[va]._s32[w] - (s64)m_ppu.VPR[vb]._s32[w]; if (result < INT32_MIN) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MIN; m_ppu.VSCR.SAT = 1; } else if (result > INT32_MAX) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MAX; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s32[w] = (s32)result; } } void PPULLVMRecompiler::VSUBUBM(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) { m_ppu.VPR[vd]._u8[b] = (u8)((m_ppu.VPR[va]._u8[b] - m_ppu.VPR[vb]._u8[b]) & 0xff); } } void PPULLVMRecompiler::VSUBUBS(u32 vd, u32 va, u32 vb) { for (uint b = 0; b < 16; b++) { s16 result = (s16)m_ppu.VPR[va]._u8[b] - (s16)m_ppu.VPR[vb]._u8[b]; if (result < 0) { m_ppu.VPR[vd]._u8[b] = 0; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._u8[b] = (u8)result; } } void PPULLVMRecompiler::VSUBUHM(u32 vd, u32 va, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._u16[h] = m_ppu.VPR[va]._u16[h] - m_ppu.VPR[vb]._u16[h]; } } void PPULLVMRecompiler::VSUBUHS(u32 vd, u32 va, u32 vb) //nf { for (uint h = 0; h < 8; h++) { s32 result = (s32)m_ppu.VPR[va]._u16[h] - (s32)m_ppu.VPR[vb]._u16[h]; if (result < 0) { m_ppu.VPR[vd]._u16[h] = 0; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._u16[h] = (u16)result; } } void PPULLVMRecompiler::VSUBUWM(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._u32[w] = m_ppu.VPR[va]._u32[w] - m_ppu.VPR[vb]._u32[w]; } } void PPULLVMRecompiler::VSUBUWS(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { s64 result = (s64)m_ppu.VPR[va]._u32[w] - (s64)m_ppu.VPR[vb]._u32[w]; if (result < 0) { m_ppu.VPR[vd]._u32[w] = 0; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._u32[w] = (u32)result; } } void PPULLVMRecompiler::VSUMSWS(u32 vd, u32 va, u32 vb) { m_ppu.VPR[vd].Clear(); s64 sum = m_ppu.VPR[vb]._s32[3]; for (uint w = 0; w < 4; w++) { sum += m_ppu.VPR[va]._s32[w]; } if (sum > INT32_MAX) { m_ppu.VPR[vd]._s32[0] = (s32)INT32_MAX; m_ppu.VSCR.SAT = 1; } else if (sum < INT32_MIN) { m_ppu.VPR[vd]._s32[0] = (s32)INT32_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s32[0] = (s32)sum; } void PPULLVMRecompiler::VSUM2SWS(u32 vd, u32 va, u32 vb) { for (uint n = 0; n < 2; n++) { s64 sum = (s64)m_ppu.VPR[va]._s32[n * 2] + m_ppu.VPR[va]._s32[n * 2 + 1] + m_ppu.VPR[vb]._s32[n * 2]; if (sum > INT32_MAX) { m_ppu.VPR[vd]._s32[n * 2] = (s32)INT32_MAX; m_ppu.VSCR.SAT = 1; } else if (sum < INT32_MIN) { m_ppu.VPR[vd]._s32[n * 2] = (s32)INT32_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s32[n * 2] = (s32)sum; } m_ppu.VPR[vd]._s32[1] = 0; m_ppu.VPR[vd]._s32[3] = 0; } void PPULLVMRecompiler::VSUM4SBS(u32 vd, u32 va, u32 vb) //nf { for (uint w = 0; w < 4; w++) { s64 sum = m_ppu.VPR[vb]._s32[w]; for (uint b = 0; b < 4; b++) { sum += m_ppu.VPR[va]._s8[w * 4 + b]; } if (sum > INT32_MAX) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MAX; m_ppu.VSCR.SAT = 1; } else if (sum < INT32_MIN) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s32[w] = (s32)sum; } } void PPULLVMRecompiler::VSUM4SHS(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { s64 sum = m_ppu.VPR[vb]._s32[w]; for (uint h = 0; h < 2; h++) { sum += m_ppu.VPR[va]._s16[w * 2 + h]; } if (sum > INT32_MAX) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MAX; m_ppu.VSCR.SAT = 1; } else if (sum < INT32_MIN) { m_ppu.VPR[vd]._s32[w] = (s32)INT32_MIN; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._s32[w] = (s32)sum; } } void PPULLVMRecompiler::VSUM4UBS(u32 vd, u32 va, u32 vb) { for (uint w = 0; w < 4; w++) { u64 sum = m_ppu.VPR[vb]._u32[w]; for (uint b = 0; b < 4; b++) { sum += m_ppu.VPR[va]._u8[w * 4 + b]; } if (sum > UINT32_MAX) { m_ppu.VPR[vd]._u32[w] = (u32)UINT32_MAX; m_ppu.VSCR.SAT = 1; } else m_ppu.VPR[vd]._u32[w] = (u32)sum; } } void PPULLVMRecompiler::VUPKHPX(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s8[(3 - w) * 4 + 3] = m_ppu.VPR[vb]._s8[w * 2 + 0] >> 7; // signed shift sign extends m_ppu.VPR[vd]._u8[(3 - w) * 4 + 2] = (m_ppu.VPR[vb]._u8[w * 2 + 0] >> 2) & 0x1f; m_ppu.VPR[vd]._u8[(3 - w) * 4 + 1] = ((m_ppu.VPR[vb]._u8[w * 2 + 0] & 0x3) << 3) | ((m_ppu.VPR[vb]._u8[w * 2 + 1] >> 5) & 0x7); m_ppu.VPR[vd]._u8[(3 - w) * 4 + 0] = m_ppu.VPR[vb]._u8[w * 2 + 1] & 0x1f; } } void PPULLVMRecompiler::VUPKHSB(u32 vd, u32 vb) { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = m_ppu.VPR[vb]._s8[h]; } } void PPULLVMRecompiler::VUPKHSH(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = m_ppu.VPR[vb]._s16[w]; } } void PPULLVMRecompiler::VUPKLPX(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s8[(3 - w) * 4 + 3] = m_ppu.VPR[vb]._s8[8 + w * 2 + 0] >> 7; // signed shift sign extends m_ppu.VPR[vd]._u8[(3 - w) * 4 + 2] = (m_ppu.VPR[vb]._u8[8 + w * 2 + 0] >> 2) & 0x1f; m_ppu.VPR[vd]._u8[(3 - w) * 4 + 1] = ((m_ppu.VPR[vb]._u8[8 + w * 2 + 0] & 0x3) << 3) | ((m_ppu.VPR[vb]._u8[8 + w * 2 + 1] >> 5) & 0x7); m_ppu.VPR[vd]._u8[(3 - w) * 4 + 0] = m_ppu.VPR[vb]._u8[8 + w * 2 + 1] & 0x1f; } } void PPULLVMRecompiler::VUPKLSB(u32 vd, u32 vb) //nf { for (uint h = 0; h < 8; h++) { m_ppu.VPR[vd]._s16[h] = m_ppu.VPR[vb]._s8[8 + h]; } } void PPULLVMRecompiler::VUPKLSH(u32 vd, u32 vb) { for (uint w = 0; w < 4; w++) { m_ppu.VPR[vd]._s32[w] = m_ppu.VPR[vb]._s16[4 + w]; } } void PPULLVMRecompiler::VXOR(u32 vd, u32 va, u32 vb) { m_ppu.VPR[vd]._u32[0] = m_ppu.VPR[va]._u32[0] ^ m_ppu.VPR[vb]._u32[0]; m_ppu.VPR[vd]._u32[1] = m_ppu.VPR[va]._u32[1] ^ m_ppu.VPR[vb]._u32[1]; m_ppu.VPR[vd]._u32[2] = m_ppu.VPR[va]._u32[2] ^ m_ppu.VPR[vb]._u32[2]; m_ppu.VPR[vd]._u32[3] = m_ppu.VPR[va]._u32[3] ^ m_ppu.VPR[vb]._u32[3]; } void PPULLVMRecompiler::MULLI(u32 rd, u32 ra, s32 simm16) { m_ppu.GPR[rd] = (s64)m_ppu.GPR[ra] * simm16; } void PPULLVMRecompiler::SUBFIC(u32 rd, u32 ra, s32 simm16) { const u64 RA = m_ppu.GPR[ra]; const u64 IMM = (s64)simm16; m_ppu.GPR[rd] = ~RA + IMM + 1; m_ppu.XER.CA = m_ppu.IsCarry(~RA, IMM, 1); } void PPULLVMRecompiler::CMPLI(u32 crfd, u32 l, u32 ra, u32 uimm16) { m_ppu.UpdateCRnU(l, crfd, m_ppu.GPR[ra], uimm16); } void PPULLVMRecompiler::CMPI(u32 crfd, u32 l, u32 ra, s32 simm16) { m_ppu.UpdateCRnS(l, crfd, m_ppu.GPR[ra], simm16); } void PPULLVMRecompiler::ADDIC(u32 rd, u32 ra, s32 simm16) { const u64 RA = m_ppu.GPR[ra]; m_ppu.GPR[rd] = RA + simm16; m_ppu.XER.CA = m_ppu.IsCarry(RA, simm16); } void PPULLVMRecompiler::ADDIC_(u32 rd, u32 ra, s32 simm16) { const u64 RA = m_ppu.GPR[ra]; m_ppu.GPR[rd] = RA + simm16; m_ppu.XER.CA = m_ppu.IsCarry(RA, simm16); m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::ADDI(u32 rd, u32 ra, s32 simm16) { auto rd_ptr = m_ir_builder.CreateConstGEP2_32(m_gpr, 0, rd); auto imm_val = m_ir_builder.getInt64((int64_t)simm16); if (ra == 0) { m_ir_builder.CreateStore(imm_val, rd_ptr); } else { auto ra_ptr = m_ir_builder.CreateConstGEP2_32(m_gpr, 0, ra); auto ra_val = m_ir_builder.CreateLoad(ra_ptr); auto sum = m_ir_builder.CreateAdd(ra_val, imm_val); m_ir_builder.CreateStore(sum, rd_ptr); } } void PPULLVMRecompiler::ADDIS(u32 rd, u32 ra, s32 simm16) { m_ppu.GPR[rd] = ra ? ((s64)m_ppu.GPR[ra] + (simm16 << 16)) : (simm16 << 16); } void PPULLVMRecompiler::BC(u32 bo, u32 bi, s32 bd, u32 aa, u32 lk) { //if (CheckCondition(bo, bi)) //{ // const u64 nextLR = m_ppu.PC + 4; // m_ppu.SetBranch(branchTarget((aa ? 0 : m_ppu.PC), bd), lk); // if (lk) m_ppu.LR = nextLR; //} } void PPULLVMRecompiler::SC(u32 sc_code) { //switch (sc_code) //{ //case 0x1: UNK(fmt::Format("HyperCall %d", m_ppu.GPR[0])); break; //case 0x2: SysCall(); break; //case 0x3: // Emu.GetSFuncManager().StaticExecute(m_ppu.GPR[11]); // if (Ini.HLELogging.GetValue()) // { // LOG_NOTICE(PPU, "'%s' done with code[0x%llx]! #pc: 0x%llx", // Emu.GetSFuncManager()[m_ppu.GPR[11]]->name, m_ppu.GPR[3], m_ppu.PC); // } // break; //case 0x4: m_ppu.FastStop(); break; //case 0x22: UNK("HyperCall LV1"); break; //default: UNK(fmt::Format("Unknown sc: %x", sc_code)); //} } void PPULLVMRecompiler::B(s32 ll, u32 aa, u32 lk) { const u64 nextLR = m_ppu.PC + 4; m_ppu.SetBranch(branchTarget(aa ? 0 : m_ppu.PC, ll), lk); if (lk) m_ppu.LR = nextLR; } void PPULLVMRecompiler::MCRF(u32 crfd, u32 crfs) { m_ppu.SetCR(crfd, m_ppu.GetCR(crfs)); } void PPULLVMRecompiler::BCLR(u32 bo, u32 bi, u32 bh, u32 lk) { //if (CheckCondition(bo, bi)) //{ // const u64 nextLR = m_ppu.PC + 4; // m_ppu.SetBranch(branchTarget(0, m_ppu.LR), true); // if (lk) m_ppu.LR = nextLR; //} } void PPULLVMRecompiler::CRNOR(u32 crbd, u32 crba, u32 crbb) { const u8 v = 1 ^ (m_ppu.IsCR(crba) | m_ppu.IsCR(crbb)); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CRANDC(u32 crbd, u32 crba, u32 crbb) { const u8 v = m_ppu.IsCR(crba) & (1 ^ m_ppu.IsCR(crbb)); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::ISYNC() { _mm_mfence(); } void PPULLVMRecompiler::CRXOR(u32 crbd, u32 crba, u32 crbb) { const u8 v = m_ppu.IsCR(crba) ^ m_ppu.IsCR(crbb); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CRNAND(u32 crbd, u32 crba, u32 crbb) { const u8 v = 1 ^ (m_ppu.IsCR(crba) & m_ppu.IsCR(crbb)); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CRAND(u32 crbd, u32 crba, u32 crbb) { const u8 v = m_ppu.IsCR(crba) & m_ppu.IsCR(crbb); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CREQV(u32 crbd, u32 crba, u32 crbb) { const u8 v = 1 ^ (m_ppu.IsCR(crba) ^ m_ppu.IsCR(crbb)); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CRORC(u32 crbd, u32 crba, u32 crbb) { const u8 v = m_ppu.IsCR(crba) | (1 ^ m_ppu.IsCR(crbb)); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::CROR(u32 crbd, u32 crba, u32 crbb) { const u8 v = m_ppu.IsCR(crba) | m_ppu.IsCR(crbb); m_ppu.SetCRBit2(crbd, v & 0x1); } void PPULLVMRecompiler::BCCTR(u32 bo, u32 bi, u32 bh, u32 lk) { if (bo & 0x10 || m_ppu.IsCR(bi) == (bo & 0x8)) { const u64 nextLR = m_ppu.PC + 4; m_ppu.SetBranch(branchTarget(0, m_ppu.CTR), true); if (lk) m_ppu.LR = nextLR; } } void PPULLVMRecompiler::RLWIMI(u32 ra, u32 rs, u32 sh, u32 mb, u32 me, bool rc) { //const u64 mask = rotate_mask[32 + mb][32 + me]; //m_ppu.GPR[ra] = (m_ppu.GPR[ra] & ~mask) | (rotl32(m_ppu.GPR[rs], sh) & mask); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLWINM(u32 ra, u32 rs, u32 sh, u32 mb, u32 me, bool rc) { //m_ppu.GPR[ra] = rotl32(m_ppu.GPR[rs], sh) & rotate_mask[32 + mb][32 + me]; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLWNM(u32 ra, u32 rs, u32 rb, u32 mb, u32 me, bool rc) { //m_ppu.GPR[ra] = rotl32(m_ppu.GPR[rs], m_ppu.GPR[rb] & 0x1f) & rotate_mask[32 + mb][32 + me]; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::ORI(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] | uimm16; } void PPULLVMRecompiler::ORIS(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] | (uimm16 << 16); } void PPULLVMRecompiler::XORI(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] ^ uimm16; } void PPULLVMRecompiler::XORIS(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] ^ (uimm16 << 16); } void PPULLVMRecompiler::ANDI_(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] & uimm16; m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::ANDIS_(u32 ra, u32 rs, u32 uimm16) { m_ppu.GPR[ra] = m_ppu.GPR[rs] & (uimm16 << 16); m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLDICL(u32 ra, u32 rs, u32 sh, u32 mb, bool rc) { //m_ppu.GPR[ra] = rotl64(m_ppu.GPR[rs], sh) & rotate_mask[mb][63]; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLDICR(u32 ra, u32 rs, u32 sh, u32 me, bool rc) { //m_ppu.GPR[ra] = rotl64(m_ppu.GPR[rs], sh) & rotate_mask[0][me]; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLDIC(u32 ra, u32 rs, u32 sh, u32 mb, bool rc) { //m_ppu.GPR[ra] = rotl64(m_ppu.GPR[rs], sh) & rotate_mask[mb][63 - sh]; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLDIMI(u32 ra, u32 rs, u32 sh, u32 mb, bool rc) { //const u64 mask = rotate_mask[mb][63 - sh]; //m_ppu.GPR[ra] = (m_ppu.GPR[ra] & ~mask) | (rotl64(m_ppu.GPR[rs], sh) & mask); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::RLDC_LR(u32 ra, u32 rs, u32 rb, u32 m_eb, bool is_r, bool rc) { if (is_r) // rldcr { RLDICR(ra, rs, m_ppu.GPR[rb], m_eb, rc); } else // rldcl { RLDICL(ra, rs, m_ppu.GPR[rb], m_eb, rc); } } void PPULLVMRecompiler::CMP(u32 crfd, u32 l, u32 ra, u32 rb) { m_ppu.UpdateCRnS(l, crfd, m_ppu.GPR[ra], m_ppu.GPR[rb]); } void PPULLVMRecompiler::TW(u32 to, u32 ra, u32 rb) { //s32 a = m_ppu.GPR[ra]; //s32 b = m_ppu.GPR[rb]; //if ((a < b && (to & 0x10)) || // (a > b && (to & 0x8)) || // (a == b && (to & 0x4)) || // ((u32)a < (u32)b && (to & 0x2)) || // ((u32)a >(u32)b && (to & 0x1))) //{ // UNK(fmt::Format("Trap! (tw %x, r%d, r%d)", to, ra, rb)); //} } void PPULLVMRecompiler::LVSL(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; static const u64 lvsl_values[0x10][2] = { {0x08090A0B0C0D0E0F, 0x0001020304050607}, {0x090A0B0C0D0E0F10, 0x0102030405060708}, {0x0A0B0C0D0E0F1011, 0x0203040506070809}, {0x0B0C0D0E0F101112, 0x030405060708090A}, {0x0C0D0E0F10111213, 0x0405060708090A0B}, {0x0D0E0F1011121314, 0x05060708090A0B0C}, {0x0E0F101112131415, 0x060708090A0B0C0D}, {0x0F10111213141516, 0x0708090A0B0C0D0E}, {0x1011121314151617, 0x08090A0B0C0D0E0F}, {0x1112131415161718, 0x090A0B0C0D0E0F10}, {0x1213141516171819, 0x0A0B0C0D0E0F1011}, {0x131415161718191A, 0x0B0C0D0E0F101112}, {0x1415161718191A1B, 0x0C0D0E0F10111213}, {0x15161718191A1B1C, 0x0D0E0F1011121314}, {0x161718191A1B1C1D, 0x0E0F101112131415}, {0x1718191A1B1C1D1E, 0x0F10111213141516}, }; m_ppu.VPR[vd]._u64[0] = lvsl_values[addr & 0xf][0]; m_ppu.VPR[vd]._u64[1] = lvsl_values[addr & 0xf][1]; } void PPULLVMRecompiler::LVEBX(u32 vd, u32 ra, u32 rb) { //const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; //m_ppu.VPR[vd].Clear(); //m_ppu.VPR[vd]._u8[addr & 0xf] = Memory.Read8(addr); m_ppu.VPR[vd]._u128 = Memory.Read128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL); } void PPULLVMRecompiler::SUBFC(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //const u64 RB = m_ppu.GPR[rb]; //m_ppu.GPR[rd] = ~RA + RB + 1; //m_ppu.XER.CA = m_ppu.IsCarry(~RA, RB, 1); //if (oe) UNK("subfco"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::ADDC(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const s64 RA = m_ppu.GPR[ra]; //const s64 RB = m_ppu.GPR[rb]; //m_ppu.GPR[rd] = RA + RB; //m_ppu.XER.CA = m_ppu.IsCarry(RA, RB); //if (oe) UNK("addco"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MULHDU(u32 rd, u32 ra, u32 rb, bool rc) { m_ppu.GPR[rd] = __umulh(m_ppu.GPR[ra], m_ppu.GPR[rb]); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MULHWU(u32 rd, u32 ra, u32 rb, bool rc) { u32 a = m_ppu.GPR[ra]; u32 b = m_ppu.GPR[rb]; m_ppu.GPR[rd] = ((u64)a * (u64)b) >> 32; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MFOCRF(u32 a, u32 rd, u32 crm) { /* if(a) { u32 n = 0, count = 0; for(u32 i = 0; i < 8; ++i) { if(crm & (1 << i)) { n = i; count++; } } if(count == 1) { //RD[32+4*n : 32+4*n+3] = CR[4*n : 4*n+3]; u8 offset = n * 4; m_ppu.GPR[rd] = (m_ppu.GPR[rd] & ~(0xf << offset)) | ((u32)m_ppu.GetCR(7 - n) << offset); } else m_ppu.GPR[rd] = 0; } else { */ m_ppu.GPR[rd] = m_ppu.CR.CR; //} } void PPULLVMRecompiler::LWARX(u32 rd, u32 ra, u32 rb) { m_ppu.R_ADDR = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; m_ppu.R_VALUE = (u32&)Memory[m_ppu.R_ADDR]; m_ppu.GPR[rd] = re32((u32)m_ppu.R_VALUE); } void PPULLVMRecompiler::LDX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = Memory.Read64(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::LWZX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = Memory.Read32(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::SLW(u32 ra, u32 rs, u32 rb, bool rc) { //u32 n = m_ppu.GPR[rb] & 0x1f; //u32 r = rotl32((u32)m_ppu.GPR[rs], n); //u32 m = (m_ppu.GPR[rb] & 0x20) ? 0 : rotate_mask[32][63 - n]; //m_ppu.GPR[ra] = r & m; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::CNTLZW(u32 ra, u32 rs, bool rc) { u32 i; for (i = 0; i < 32; i++) { if (m_ppu.GPR[rs] & (1ULL << (31 - i))) break; } m_ppu.GPR[ra] = i; if (rc) m_ppu.SetCRBit(CR_LT, false); } void PPULLVMRecompiler::SLD(u32 ra, u32 rs, u32 rb, bool rc) { //u32 n = m_ppu.GPR[rb] & 0x3f; //u64 r = rotl64(m_ppu.GPR[rs], n); //u64 m = (m_ppu.GPR[rb] & 0x40) ? 0 : rotate_mask[0][63 - n]; //m_ppu.GPR[ra] = r & m; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::AND(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = m_ppu.GPR[rs] & m_ppu.GPR[rb]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::CMPL(u32 crfd, u32 l, u32 ra, u32 rb) { m_ppu.UpdateCRnU(l, crfd, m_ppu.GPR[ra], m_ppu.GPR[rb]); } void PPULLVMRecompiler::LVSR(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; static const u64 lvsr_values[0x10][2] = { {0x18191A1B1C1D1E1F, 0x1011121314151617}, {0x1718191A1B1C1D1E, 0x0F10111213141516}, {0x161718191A1B1C1D, 0x0E0F101112131415}, {0x15161718191A1B1C, 0x0D0E0F1011121314}, {0x1415161718191A1B, 0x0C0D0E0F10111213}, {0x131415161718191A, 0x0B0C0D0E0F101112}, {0x1213141516171819, 0x0A0B0C0D0E0F1011}, {0x1112131415161718, 0x090A0B0C0D0E0F10}, {0x1011121314151617, 0x08090A0B0C0D0E0F}, {0x0F10111213141516, 0x0708090A0B0C0D0E}, {0x0E0F101112131415, 0x060708090A0B0C0D}, {0x0D0E0F1011121314, 0x05060708090A0B0C}, {0x0C0D0E0F10111213, 0x0405060708090A0B}, {0x0B0C0D0E0F101112, 0x030405060708090A}, {0x0A0B0C0D0E0F1011, 0x0203040506070809}, {0x090A0B0C0D0E0F10, 0x0102030405060708}, }; m_ppu.VPR[vd]._u64[0] = lvsr_values[addr & 0xf][0]; m_ppu.VPR[vd]._u64[1] = lvsr_values[addr & 0xf][1]; } void PPULLVMRecompiler::LVEHX(u32 vd, u32 ra, u32 rb) { //const u64 addr = (ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~1ULL; //m_ppu.VPR[vd].Clear(); //(u16&)m_ppu.VPR[vd]._u8[addr & 0xf] = Memory.Read16(addr); m_ppu.VPR[vd]._u128 = Memory.Read128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL); } void PPULLVMRecompiler::SUBF(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //m_ppu.GPR[rd] = m_ppu.GPR[rb] - m_ppu.GPR[ra]; //if (oe) UNK("subfo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::LDUX(u32 rd, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; m_ppu.GPR[rd] = Memory.Read64(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::DCBST(u32 ra, u32 rb) { //UNK("dcbst", false); _mm_mfence(); } void PPULLVMRecompiler::LWZUX(u32 rd, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; m_ppu.GPR[rd] = Memory.Read32(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::CNTLZD(u32 ra, u32 rs, bool rc) { u32 i; for (i = 0; i < 64; i++) { if (m_ppu.GPR[rs] & (1ULL << (63 - i))) break; } m_ppu.GPR[ra] = i; if (rc) m_ppu.SetCRBit(CR_LT, false); } void PPULLVMRecompiler::ANDC(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = m_ppu.GPR[rs] & ~m_ppu.GPR[rb]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::TD(u32 to, u32 ra, u32 rb) { //UNK("td"); } void PPULLVMRecompiler::LVEWX(u32 vd, u32 ra, u32 rb) { //const u64 addr = (ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~3ULL; //m_ppu.VPR[vd].Clear(); //(u32&)m_ppu.VPR[vd]._u8[addr & 0xf] = Memory.Read32(addr); m_ppu.VPR[vd]._u128 = Memory.Read128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL); } void PPULLVMRecompiler::MULHD(u32 rd, u32 ra, u32 rb, bool rc) { m_ppu.GPR[rd] = __mulh(m_ppu.GPR[ra], m_ppu.GPR[rb]); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MULHW(u32 rd, u32 ra, u32 rb, bool rc) { s32 a = m_ppu.GPR[ra]; s32 b = m_ppu.GPR[rb]; m_ppu.GPR[rd] = ((s64)a * (s64)b) >> 32; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::LDARX(u32 rd, u32 ra, u32 rb) { m_ppu.R_ADDR = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; m_ppu.R_VALUE = (u64&)Memory[m_ppu.R_ADDR]; m_ppu.GPR[rd] = re64(m_ppu.R_VALUE); } void PPULLVMRecompiler::DCBF(u32 ra, u32 rb) { //UNK("dcbf", false); _mm_mfence(); } void PPULLVMRecompiler::LBZX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = Memory.Read8(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::LVX(u32 vd, u32 ra, u32 rb) { m_ppu.VPR[vd]._u128 = Memory.Read128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL); } void PPULLVMRecompiler::NEG(u32 rd, u32 ra, u32 oe, bool rc) { //m_ppu.GPR[rd] = 0 - m_ppu.GPR[ra]; //if (oe) UNK("nego"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::LBZUX(u32 rd, u32 ra, u32 rb) { //if(ra == 0 || ra == rd) throw "Bad instruction [LBZUX]"; const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; m_ppu.GPR[rd] = Memory.Read8(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::NOR(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = ~(m_ppu.GPR[rs] | m_ppu.GPR[rb]); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::STVEBX(u32 vs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.Write8(addr, m_ppu.VPR[vs]._u8[15 - eb]); } void PPULLVMRecompiler::SUBFE(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //const u64 RB = m_ppu.GPR[rb]; //m_ppu.GPR[rd] = ~RA + RB + m_ppu.XER.CA; //m_ppu.XER.CA = m_ppu.IsCarry(~RA, RB, m_ppu.XER.CA); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); //if (oe) UNK("subfeo"); } void PPULLVMRecompiler::ADDE(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //const u64 RB = m_ppu.GPR[rb]; //if (m_ppu.XER.CA) //{ // if (RA == ~0ULL) //-1 // { // m_ppu.GPR[rd] = RB; // m_ppu.XER.CA = 1; // } // else // { // m_ppu.GPR[rd] = RA + 1 + RB; // m_ppu.XER.CA = m_ppu.IsCarry(RA + 1, RB); // } //} //else //{ // m_ppu.GPR[rd] = RA + RB; // m_ppu.XER.CA = m_ppu.IsCarry(RA, RB); //} //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); //if (oe) UNK("addeo"); } void PPULLVMRecompiler::MTOCRF(u32 l, u32 crm, u32 rs) { if (l) { u32 n = 0, count = 0; for (u32 i = 0; i < 8; ++i) { if (crm & (1 << i)) { n = i; count++; } } if (count == 1) { //CR[4*n : 4*n+3] = RS[32+4*n : 32+4*n+3]; m_ppu.SetCR(7 - n, (m_ppu.GPR[rs] >> (4 * n)) & 0xf); } else m_ppu.CR.CR = 0; } else { for (u32 i = 0; i < 8; ++i) { if (crm & (1 << i)) { m_ppu.SetCR(7 - i, m_ppu.GPR[rs] & (0xf << (i * 4))); } } } } void PPULLVMRecompiler::STDX(u32 rs, u32 ra, u32 rb) { Memory.Write64((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), m_ppu.GPR[rs]); } void PPULLVMRecompiler::STWCX_(u32 rs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; if (m_ppu.R_ADDR == addr) { m_ppu.SetCR_EQ(0, InterlockedCompareExchange((volatile u32*)(Memory + addr), re32((u32)m_ppu.GPR[rs]), (u32)m_ppu.R_VALUE) == (u32)m_ppu.R_VALUE); } else { m_ppu.SetCR_EQ(0, false); } } void PPULLVMRecompiler::STWX(u32 rs, u32 ra, u32 rb) { Memory.Write32((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), m_ppu.GPR[rs]); } void PPULLVMRecompiler::STVEHX(u32 vs, u32 ra, u32 rb) { const u64 addr = (ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~1ULL; const u8 eb = (addr & 0xf) >> 1; Memory.Write16(addr, m_ppu.VPR[vs]._u16[7 - eb]); } void PPULLVMRecompiler::STDUX(u32 rs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write64(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STWUX(u32 rs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write32(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STVEWX(u32 vs, u32 ra, u32 rb) { const u64 addr = (ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~3ULL; const u8 eb = (addr & 0xf) >> 2; Memory.Write32(addr, m_ppu.VPR[vs]._u32[3 - eb]); } void PPULLVMRecompiler::ADDZE(u32 rd, u32 ra, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //m_ppu.GPR[rd] = RA + m_ppu.XER.CA; //m_ppu.XER.CA = m_ppu.IsCarry(RA, m_ppu.XER.CA); //if (oe) LOG_WARNING(PPU, "addzeo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::SUBFZE(u32 rd, u32 ra, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //m_ppu.GPR[rd] = ~RA + m_ppu.XER.CA; //m_ppu.XER.CA = m_ppu.IsCarry(~RA, m_ppu.XER.CA); //if (oe) LOG_WARNING(PPU, "subfzeo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::STDCX_(u32 rs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; if (m_ppu.R_ADDR == addr) { m_ppu.SetCR_EQ(0, InterlockedCompareExchange((volatile u64*)(Memory + addr), re64(m_ppu.GPR[rs]), m_ppu.R_VALUE) == m_ppu.R_VALUE); } else { m_ppu.SetCR_EQ(0, false); } } void PPULLVMRecompiler::STBX(u32 rs, u32 ra, u32 rb) { Memory.Write8((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), m_ppu.GPR[rs]); } void PPULLVMRecompiler::STVX(u32 vs, u32 ra, u32 rb) { Memory.Write128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL, m_ppu.VPR[vs]._u128); } void PPULLVMRecompiler::SUBFME(u32 rd, u32 ra, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //m_ppu.GPR[rd] = ~RA + m_ppu.XER.CA + ~0ULL; //m_ppu.XER.CA = m_ppu.IsCarry(~RA, m_ppu.XER.CA, ~0ULL); //if (oe) LOG_WARNING(PPU, "subfmeo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MULLD(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //m_ppu.GPR[rd] = (s64)((s64)m_ppu.GPR[ra] * (s64)m_ppu.GPR[rb]); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); //if (oe) UNK("mulldo"); } void PPULLVMRecompiler::ADDME(u32 rd, u32 ra, u32 oe, bool rc) { //const s64 RA = m_ppu.GPR[ra]; //m_ppu.GPR[rd] = RA + m_ppu.XER.CA - 1; //m_ppu.XER.CA |= RA != 0; //if (oe) UNK("addmeo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MULLW(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //m_ppu.GPR[rd] = (s64)((s64)(s32)m_ppu.GPR[ra] * (s64)(s32)m_ppu.GPR[rb]); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); //if (oe) UNK("mullwo"); } void PPULLVMRecompiler::DCBTST(u32 ra, u32 rb, u32 th) { //UNK("dcbtst", false); _mm_mfence(); } void PPULLVMRecompiler::STBUX(u32 rs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write8(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::ADD(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //const u64 RB = m_ppu.GPR[rb]; //m_ppu.GPR[rd] = RA + RB; //if (oe) UNK("addo"); //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::DCBT(u32 ra, u32 rb, u32 th) { //UNK("dcbt", false); _mm_mfence(); } void PPULLVMRecompiler::LHZX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = Memory.Read16(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::EQV(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = ~(m_ppu.GPR[rs] ^ m_ppu.GPR[rb]); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::ECIWX(u32 rd, u32 ra, u32 rb) { //HACK! m_ppu.GPR[rd] = Memory.Read32(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::LHZUX(u32 rd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; m_ppu.GPR[rd] = Memory.Read16(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::XOR(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = m_ppu.GPR[rs] ^ m_ppu.GPR[rb]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::MFSPR(u32 rd, u32 spr) { //m_ppu.GPR[rd] = GetRegBySPR(spr); } void PPULLVMRecompiler::LWAX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = (s64)(s32)Memory.Read32(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::DST(u32 ra, u32 rb, u32 strm, u32 t) { _mm_mfence(); } void PPULLVMRecompiler::LHAX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = (s64)(s16)Memory.Read16(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::LVXL(u32 vd, u32 ra, u32 rb) { m_ppu.VPR[vd]._u128 = Memory.Read128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL); } void PPULLVMRecompiler::MFTB(u32 rd, u32 spr) { //const u32 n = (spr >> 5) | ((spr & 0x1f) << 5); //switch (n) //{ //case 0x10C: m_ppu.GPR[rd] = m_ppu.TB; break; //case 0x10D: m_ppu.GPR[rd] = m_ppu.TBH; break; //default: UNK(fmt::Format("mftb r%d, %d", rd, spr)); break; //} } void PPULLVMRecompiler::LWAUX(u32 rd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; m_ppu.GPR[rd] = (s64)(s32)Memory.Read32(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::DSTST(u32 ra, u32 rb, u32 strm, u32 t) { _mm_mfence(); } void PPULLVMRecompiler::LHAUX(u32 rd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; m_ppu.GPR[rd] = (s64)(s16)Memory.Read16(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STHX(u32 rs, u32 ra, u32 rb) { Memory.Write16(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb], m_ppu.GPR[rs]); } void PPULLVMRecompiler::ORC(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = m_ppu.GPR[rs] | ~m_ppu.GPR[rb]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::ECOWX(u32 rs, u32 ra, u32 rb) { //HACK! Memory.Write32((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), m_ppu.GPR[rs]); } void PPULLVMRecompiler::STHUX(u32 rs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write16(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::OR(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = m_ppu.GPR[rs] | m_ppu.GPR[rb]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::DIVDU(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u64 RA = m_ppu.GPR[ra]; //const u64 RB = m_ppu.GPR[rb]; //if (RB == 0) //{ // if (oe) UNK("divduo"); // m_ppu.GPR[rd] = 0; //} //else //{ // m_ppu.GPR[rd] = RA / RB; //} //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::DIVWU(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const u32 RA = m_ppu.GPR[ra]; //const u32 RB = m_ppu.GPR[rb]; //if (RB == 0) //{ // if (oe) UNK("divwuo"); // m_ppu.GPR[rd] = 0; //} //else //{ // m_ppu.GPR[rd] = RA / RB; //} //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::MTSPR(u32 spr, u32 rs) { //GetRegBySPR(spr) = m_ppu.GPR[rs]; } /*0x1d6*///DCBI void PPULLVMRecompiler::NAND(u32 ra, u32 rs, u32 rb, bool rc) { m_ppu.GPR[ra] = ~(m_ppu.GPR[rs] & m_ppu.GPR[rb]); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::STVXL(u32 vs, u32 ra, u32 rb) { Memory.Write128((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]) & ~0xfULL, m_ppu.VPR[vs]._u128); } void PPULLVMRecompiler::DIVD(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const s64 RA = m_ppu.GPR[ra]; //const s64 RB = m_ppu.GPR[rb]; //if (RB == 0 || ((u64)RA == (1ULL << 63) && RB == -1)) //{ // if (oe) UNK("divdo"); // m_ppu.GPR[rd] = /*(((u64)RA & (1ULL << 63)) && RB == 0) ? -1 :*/ 0; //} //else //{ // m_ppu.GPR[rd] = RA / RB; //} //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::DIVW(u32 rd, u32 ra, u32 rb, u32 oe, bool rc) { //const s32 RA = m_ppu.GPR[ra]; //const s32 RB = m_ppu.GPR[rb]; //if (RB == 0 || ((u32)RA == (1 << 31) && RB == -1)) //{ // if (oe) UNK("divwo"); // m_ppu.GPR[rd] = /*(((u32)RA & (1 << 31)) && RB == 0) ? -1 :*/ 0; //} //else //{ // m_ppu.GPR[rd] = (u32)(RA / RB); //} //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[rd]); } void PPULLVMRecompiler::LVLX(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.ReadLeft(m_ppu.VPR[vd]._u8 + eb, addr, 16 - eb); } void PPULLVMRecompiler::LDBRX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = (u64&)Memory[ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]]; } void PPULLVMRecompiler::LSWX(u32 rd, u32 ra, u32 rb) { //UNK("lswx"); } void PPULLVMRecompiler::LWBRX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = (u32&)Memory[ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]]; } void PPULLVMRecompiler::LFSX(u32 frd, u32 ra, u32 rb) { (u32&)m_ppu.FPR[frd] = Memory.Read32(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); m_ppu.FPR[frd] = (float&)m_ppu.FPR[frd]; } void PPULLVMRecompiler::SRW(u32 ra, u32 rs, u32 rb, bool rc) { //u32 n = m_ppu.GPR[rb] & 0x1f; //u32 r = rotl32((u32)m_ppu.GPR[rs], 64 - n); //u32 m = (m_ppu.GPR[rb] & 0x20) ? 0 : rotate_mask[32 + n][63]; //m_ppu.GPR[ra] = r & m; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::SRD(u32 ra, u32 rs, u32 rb, bool rc) { //u32 n = m_ppu.GPR[rb] & 0x3f; //u64 r = rotl64(m_ppu.GPR[rs], 64 - n); //u64 m = (m_ppu.GPR[rb] & 0x40) ? 0 : rotate_mask[n][63]; //m_ppu.GPR[ra] = r & m; //if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::LVRX(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.ReadRight(m_ppu.VPR[vd]._u8, addr & ~0xf, eb); } void PPULLVMRecompiler::LSWI(u32 rd, u32 ra, u32 nb) { u64 EA = ra ? m_ppu.GPR[ra] : 0; u64 N = nb ? nb : 32; u8 reg = m_ppu.GPR[rd]; while (N > 0) { if (N > 3) { m_ppu.GPR[reg] = Memory.Read32(EA); EA += 4; N -= 4; } else { u32 buf = 0; while (N > 0) { N = N - 1; buf |= Memory.Read8(EA) << (N * 8); EA = EA + 1; } m_ppu.GPR[reg] = buf; } reg = (reg + 1) % 32; } } void PPULLVMRecompiler::LFSUX(u32 frd, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; (u64&)m_ppu.FPR[frd] = Memory.Read32(addr); m_ppu.FPR[frd] = (float&)m_ppu.FPR[frd]; m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::SYNC(u32 l) { _mm_mfence(); } void PPULLVMRecompiler::LFDX(u32 frd, u32 ra, u32 rb) { (u64&)m_ppu.FPR[frd] = Memory.Read64(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]); } void PPULLVMRecompiler::LFDUX(u32 frd, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; (u64&)m_ppu.FPR[frd] = Memory.Read64(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STVLX(u32 vs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.WriteLeft(addr, 16 - eb, m_ppu.VPR[vs]._u8 + eb); } void PPULLVMRecompiler::STSWX(u32 rs, u32 ra, u32 rb) { //UNK("stwsx"); } void PPULLVMRecompiler::STWBRX(u32 rs, u32 ra, u32 rb) { (u32&)Memory[ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]] = m_ppu.GPR[rs]; } void PPULLVMRecompiler::STFSX(u32 frs, u32 ra, u32 rb) { Memory.Write32((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), m_ppu.FPR[frs].To32()); } void PPULLVMRecompiler::STVRX(u32 vs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.WriteRight(addr - eb, eb, m_ppu.VPR[vs]._u8); } void PPULLVMRecompiler::STFSUX(u32 frs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write32(addr, m_ppu.FPR[frs].To32()); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STSWI(u32 rd, u32 ra, u32 nb) { u64 EA = ra ? m_ppu.GPR[ra] : 0; u64 N = nb ? nb : 32; u8 reg = m_ppu.GPR[rd]; while (N > 0) { if (N > 3) { Memory.Write32(EA, m_ppu.GPR[reg]); EA += 4; N -= 4; } else { u32 buf = m_ppu.GPR[reg]; while (N > 0) { N = N - 1; Memory.Write8(EA, (0xFF000000 & buf) >> 24); buf <<= 8; EA = EA + 1; } } reg = (reg + 1) % 32; } } void PPULLVMRecompiler::STFDX(u32 frs, u32 ra, u32 rb) { Memory.Write64((ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]), (u64&)m_ppu.FPR[frs]); } void PPULLVMRecompiler::STFDUX(u32 frs, u32 ra, u32 rb) { const u64 addr = m_ppu.GPR[ra] + m_ppu.GPR[rb]; Memory.Write64(addr, (u64&)m_ppu.FPR[frs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LVLXL(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.ReadLeft(m_ppu.VPR[vd]._u8 + eb, addr, 16 - eb); } void PPULLVMRecompiler::LHBRX(u32 rd, u32 ra, u32 rb) { m_ppu.GPR[rd] = (u16&)Memory[ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]]; } void PPULLVMRecompiler::SRAW(u32 ra, u32 rs, u32 rb, bool rc) { s32 RS = m_ppu.GPR[rs]; u8 shift = m_ppu.GPR[rb] & 63; if (shift > 31) { m_ppu.GPR[ra] = 0 - (RS < 0); m_ppu.XER.CA = (RS < 0); } else { m_ppu.GPR[ra] = RS >> shift; m_ppu.XER.CA = (RS < 0) & ((m_ppu.GPR[ra] << shift) != RS); } if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::SRAD(u32 ra, u32 rs, u32 rb, bool rc) { s64 RS = m_ppu.GPR[rs]; u8 shift = m_ppu.GPR[rb] & 127; if (shift > 63) { m_ppu.GPR[ra] = 0 - (RS < 0); m_ppu.XER.CA = (RS < 0); } else { m_ppu.GPR[ra] = RS >> shift; m_ppu.XER.CA = (RS < 0) & ((m_ppu.GPR[ra] << shift) != RS); } if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::LVRXL(u32 vd, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.ReadRight(m_ppu.VPR[vd]._u8, addr & ~0xf, eb); } void PPULLVMRecompiler::DSS(u32 strm, u32 a) { _mm_mfence(); } void PPULLVMRecompiler::SRAWI(u32 ra, u32 rs, u32 sh, bool rc) { s32 RS = (u32)m_ppu.GPR[rs]; m_ppu.GPR[ra] = RS >> sh; m_ppu.XER.CA = (RS < 0) & ((u32)(m_ppu.GPR[ra] << sh) != RS); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::SRADI1(u32 ra, u32 rs, u32 sh, bool rc) { s64 RS = m_ppu.GPR[rs]; m_ppu.GPR[ra] = RS >> sh; m_ppu.XER.CA = (RS < 0) & ((m_ppu.GPR[ra] << sh) != RS); if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::SRADI2(u32 ra, u32 rs, u32 sh, bool rc) { SRADI1(ra, rs, sh, rc); } void PPULLVMRecompiler::EIEIO() { _mm_mfence(); } void PPULLVMRecompiler::STVLXL(u32 vs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.WriteLeft(addr, 16 - eb, m_ppu.VPR[vs]._u8 + eb); } void PPULLVMRecompiler::STHBRX(u32 rs, u32 ra, u32 rb) { (u16&)Memory[ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]] = m_ppu.GPR[rs]; } void PPULLVMRecompiler::EXTSH(u32 ra, u32 rs, bool rc) { m_ppu.GPR[ra] = (s64)(s16)m_ppu.GPR[rs]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::STVRXL(u32 vs, u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; const u8 eb = addr & 0xf; Memory.WriteRight(addr - eb, eb, m_ppu.VPR[vs]._u8); } void PPULLVMRecompiler::EXTSB(u32 ra, u32 rs, bool rc) { m_ppu.GPR[ra] = (s64)(s8)m_ppu.GPR[rs]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::STFIWX(u32 frs, u32 ra, u32 rb) { Memory.Write32(ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb], (u32&)m_ppu.FPR[frs]); } void PPULLVMRecompiler::EXTSW(u32 ra, u32 rs, bool rc) { m_ppu.GPR[ra] = (s64)(s32)m_ppu.GPR[rs]; if (rc) m_ppu.UpdateCR0(m_ppu.GPR[ra]); } void PPULLVMRecompiler::ICBI(u32 ra, u32 rs) { // Clear jit for the specified block? Nothing to do in the interpreter. } void PPULLVMRecompiler::DCBZ(u32 ra, u32 rb) { const u64 addr = ra ? m_ppu.GPR[ra] + m_ppu.GPR[rb] : m_ppu.GPR[rb]; u8 *const cache_line = Memory.GetMemFromAddr(addr & ~127); if (cache_line) memset(cache_line, 0, 128); _mm_mfence(); } void PPULLVMRecompiler::LWZ(u32 rd, u32 ra, s32 d) { m_ppu.GPR[rd] = Memory.Read32(ra ? m_ppu.GPR[ra] + d : d); } void PPULLVMRecompiler::LWZU(u32 rd, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; m_ppu.GPR[rd] = Memory.Read32(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LBZ(u32 rd, u32 ra, s32 d) { m_ppu.GPR[rd] = Memory.Read8(ra ? m_ppu.GPR[ra] + d : d); } void PPULLVMRecompiler::LBZU(u32 rd, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; m_ppu.GPR[rd] = Memory.Read8(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STW(u32 rs, u32 ra, s32 d) { Memory.Write32(ra ? m_ppu.GPR[ra] + d : d, m_ppu.GPR[rs]); } void PPULLVMRecompiler::STWU(u32 rs, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; Memory.Write32(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STB(u32 rs, u32 ra, s32 d) { Memory.Write8(ra ? m_ppu.GPR[ra] + d : d, m_ppu.GPR[rs]); } void PPULLVMRecompiler::STBU(u32 rs, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; Memory.Write8(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LHZ(u32 rd, u32 ra, s32 d) { m_ppu.GPR[rd] = Memory.Read16(ra ? m_ppu.GPR[ra] + d : d); } void PPULLVMRecompiler::LHZU(u32 rd, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; m_ppu.GPR[rd] = Memory.Read16(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LHA(u32 rd, u32 ra, s32 d) { m_ppu.GPR[rd] = (s64)(s16)Memory.Read16(ra ? m_ppu.GPR[ra] + d : d); } void PPULLVMRecompiler::LHAU(u32 rd, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; m_ppu.GPR[rd] = (s64)(s16)Memory.Read16(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STH(u32 rs, u32 ra, s32 d) { Memory.Write16(ra ? m_ppu.GPR[ra] + d : d, m_ppu.GPR[rs]); } void PPULLVMRecompiler::STHU(u32 rs, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; Memory.Write16(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LMW(u32 rd, u32 ra, s32 d) { u64 addr = ra ? m_ppu.GPR[ra] + d : d; for (u32 i = rd; i < 32; ++i, addr += 4) { m_ppu.GPR[i] = Memory.Read32(addr); } } void PPULLVMRecompiler::STMW(u32 rs, u32 ra, s32 d) { u64 addr = ra ? m_ppu.GPR[ra] + d : d; for (u32 i = rs; i < 32; ++i, addr += 4) { Memory.Write32(addr, m_ppu.GPR[i]); } } void PPULLVMRecompiler::LFS(u32 frd, u32 ra, s32 d) { const u32 v = Memory.Read32(ra ? m_ppu.GPR[ra] + d : d); m_ppu.FPR[frd] = (float&)v; } void PPULLVMRecompiler::LFSU(u32 frd, u32 ra, s32 ds) { const u64 addr = m_ppu.GPR[ra] + ds; const u32 v = Memory.Read32(addr); m_ppu.FPR[frd] = (float&)v; m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LFD(u32 frd, u32 ra, s32 d) { (u64&)m_ppu.FPR[frd] = Memory.Read64(ra ? m_ppu.GPR[ra] + d : d); } void PPULLVMRecompiler::LFDU(u32 frd, u32 ra, s32 ds) { const u64 addr = m_ppu.GPR[ra] + ds; (u64&)m_ppu.FPR[frd] = Memory.Read64(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STFS(u32 frs, u32 ra, s32 d) { Memory.Write32(ra ? m_ppu.GPR[ra] + d : d, m_ppu.FPR[frs].To32()); } void PPULLVMRecompiler::STFSU(u32 frs, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; Memory.Write32(addr, m_ppu.FPR[frs].To32()); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::STFD(u32 frs, u32 ra, s32 d) { Memory.Write64(ra ? m_ppu.GPR[ra] + d : d, (u64&)m_ppu.FPR[frs]); } void PPULLVMRecompiler::STFDU(u32 frs, u32 ra, s32 d) { const u64 addr = m_ppu.GPR[ra] + d; Memory.Write64(addr, (u64&)m_ppu.FPR[frs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LD(u32 rd, u32 ra, s32 ds) { m_ppu.GPR[rd] = Memory.Read64(ra ? m_ppu.GPR[ra] + ds : ds); } void PPULLVMRecompiler::LDU(u32 rd, u32 ra, s32 ds) { //if(ra == 0 || rt == ra) return; const u64 addr = m_ppu.GPR[ra] + ds; m_ppu.GPR[rd] = Memory.Read64(addr); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::LWA(u32 rd, u32 ra, s32 ds) { m_ppu.GPR[rd] = (s64)(s32)Memory.Read32(ra ? m_ppu.GPR[ra] + ds : ds); } void PPULLVMRecompiler::FDIVS(u32 frd, u32 fra, u32 frb, bool rc) { //if (FPRdouble::IsNaN(m_ppu.FPR[fra])) //{ // m_ppu.FPR[frd] = m_ppu.FPR[fra]; //} //else if (FPRdouble::IsNaN(m_ppu.FPR[frb])) //{ // m_ppu.FPR[frd] = m_ppu.FPR[frb]; //} //else //{ // if (m_ppu.FPR[frb] == 0.0) // { // if (m_ppu.FPR[fra] == 0.0) // { // m_ppu.FPSCR.VXZDZ = true; // m_ppu.FPR[frd] = FPR_NAN; // } // else // { // m_ppu.FPR[frd] = (float)(m_ppu.FPR[fra] / m_ppu.FPR[frb]); // } // m_ppu.FPSCR.ZX = true; // } // else if (FPRdouble::IsINF(m_ppu.FPR[fra]) && FPRdouble::IsINF(m_ppu.FPR[frb])) // { // m_ppu.FPSCR.VXIDI = true; // m_ppu.FPR[frd] = FPR_NAN; // } // else // { // m_ppu.FPR[frd] = (float)(m_ppu.FPR[fra] / m_ppu.FPR[frb]); // } //} //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fdivs.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FSUBS(u32 frd, u32 fra, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(m_ppu.FPR[fra] - m_ppu.FPR[frb]); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fsubs.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FADDS(u32 frd, u32 fra, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(m_ppu.FPR[fra] + m_ppu.FPR[frb]); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fadds.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FSQRTS(u32 frd, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(sqrt(m_ppu.FPR[frb])); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fsqrts.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FRES(u32 frd, u32 frb, bool rc) { //if (m_ppu.FPR[frb] == 0.0) //{ // m_ppu.SetFPSCRException(FPSCR_ZX); //} //m_ppu.FPR[frd] = static_cast(1.0 / m_ppu.FPR[frb]); //if (rc) UNK("fres.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMULS(u32 frd, u32 fra, u32 frc, bool rc) { //m_ppu.FPR[frd] = static_cast(m_ppu.FPR[fra] * m_ppu.FPR[frc]); //m_ppu.FPSCR.FI = 0; //m_ppu.FPSCR.FR = 0; //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fmuls.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMADDS(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(m_ppu.FPR[fra] * m_ppu.FPR[frc] + m_ppu.FPR[frb]); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fmadds.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMSUBS(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(m_ppu.FPR[fra] * m_ppu.FPR[frc] - m_ppu.FPR[frb]); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fmsubs.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FNMSUBS(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(-(m_ppu.FPR[fra] * m_ppu.FPR[frc] - m_ppu.FPR[frb])); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fnmsubs.");////m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FNMADDS(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { //m_ppu.FPR[frd] = static_cast(-(m_ppu.FPR[fra] * m_ppu.FPR[frc] + m_ppu.FPR[frb])); //m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fnmadds.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::STD(u32 rs, u32 ra, s32 d) { Memory.Write64(ra ? m_ppu.GPR[ra] + d : d, m_ppu.GPR[rs]); } void PPULLVMRecompiler::STDU(u32 rs, u32 ra, s32 ds) { //if(ra == 0 || rs == ra) return; const u64 addr = m_ppu.GPR[ra] + ds; Memory.Write64(addr, m_ppu.GPR[rs]); m_ppu.GPR[ra] = addr; } void PPULLVMRecompiler::MTFSB1(u32 crbd, bool rc) { //u64 mask = (1ULL << crbd); //if ((crbd == 29) && !m_ppu.FPSCR.NI) LOG_WARNING(PPU, "Non-IEEE mode enabled"); //m_ppu.FPSCR.FPSCR |= mask; //if (rc) UNIMPLEMENTED(); } void PPULLVMRecompiler::MCRFS(u32 crbd, u32 crbs) { u64 mask = (1ULL << crbd); m_ppu.CR.CR &= ~mask; m_ppu.CR.CR |= m_ppu.FPSCR.FPSCR & mask; } void PPULLVMRecompiler::MTFSB0(u32 crbd, bool rc) { //u64 mask = (1ULL << crbd); //if ((crbd == 29) && !m_ppu.FPSCR.NI) LOG_WARNING(PPU, "Non-IEEE mode disabled"); //m_ppu.FPSCR.FPSCR &= ~mask; //if (rc) UNIMPLEMENTED(); } void PPULLVMRecompiler::MTFSFI(u32 crfd, u32 i, bool rc) { //u64 mask = (0x1ULL << crfd); //if (i) //{ // if ((crfd == 29) && !m_ppu.FPSCR.NI) LOG_WARNING(PPU, "Non-IEEE mode enabled"); // m_ppu.FPSCR.FPSCR |= mask; //} //else //{ // if ((crfd == 29) && m_ppu.FPSCR.NI) LOG_WARNING(PPU, "Non-IEEE mode disabled"); // m_ppu.FPSCR.FPSCR &= ~mask; //} //if (rc) UNIMPLEMENTED(); } void PPULLVMRecompiler::MFFS(u32 frd, bool rc) { //(u64&)m_ppu.FPR[frd] = m_ppu.FPSCR.FPSCR; //if (rc) UNIMPLEMENTED(); } void PPULLVMRecompiler::MTFSF(u32 flm, u32 frb, bool rc) { //u32 mask = 0; //for (u32 i = 0; i<8; ++i) //{ // if (flm & (1 << i)) mask |= 0xf << (i * 4); //} //const u32 oldNI = m_ppu.FPSCR.NI; //m_ppu.FPSCR.FPSCR = (m_ppu.FPSCR.FPSCR & ~mask) | ((u32&)m_ppu.FPR[frb] & mask); //if (m_ppu.FPSCR.NI != oldNI) //{ // if (oldNI) // LOG_WARNING(PPU, "Non-IEEE mode disabled"); // else // LOG_WARNING(PPU, "Non-IEEE mode enabled"); //} //if (rc) UNK("mtfsf."); } void PPULLVMRecompiler::FCMPU(u32 crfd, u32 fra, u32 frb) { int cmp_res = FPRdouble::Cmp(m_ppu.FPR[fra], m_ppu.FPR[frb]); if (cmp_res == CR_SO) { if (FPRdouble::IsSNaN(m_ppu.FPR[fra]) || FPRdouble::IsSNaN(m_ppu.FPR[frb])) { m_ppu.SetFPSCRException(FPSCR_VXSNAN); } } m_ppu.FPSCR.FPRF = cmp_res; m_ppu.SetCR(crfd, cmp_res); } void PPULLVMRecompiler::FRSP(u32 frd, u32 frb, bool rc) { const double b = m_ppu.FPR[frb]; double b0 = b; if (m_ppu.FPSCR.NI) { if (((u64&)b0 & DOUBLE_EXP) < 0x3800000000000000ULL) (u64&)b0 &= DOUBLE_SIGN; } const double r = static_cast(b0); m_ppu.FPSCR.FR = fabs(r) > fabs(b); m_ppu.SetFPSCR_FI(b != r); m_ppu.FPSCR.FPRF = PPCdouble(r).GetType(); m_ppu.FPR[frd] = r; } void PPULLVMRecompiler::FCTIW(u32 frd, u32 frb, bool rc) { //const double b = m_ppu.FPR[frb]; //u32 r; //if (b > (double)0x7fffffff) //{ // r = 0x7fffffff; // m_ppu.SetFPSCRException(FPSCR_VXCVI); // m_ppu.FPSCR.FI = 0; // m_ppu.FPSCR.FR = 0; //} //else if (b < -(double)0x80000000) //{ // r = 0x80000000; // m_ppu.SetFPSCRException(FPSCR_VXCVI); // m_ppu.FPSCR.FI = 0; // m_ppu.FPSCR.FR = 0; //} //else //{ // s32 i = 0; // switch (m_ppu.FPSCR.RN) // { // case FPSCR_RN_NEAR: // { // double t = b + 0.5; // i = (s32)t; // if (t - i < 0 || (t - i == 0 && b > 0)) i--; // break; // } // case FPSCR_RN_ZERO: // i = (s32)b; // break; // case FPSCR_RN_PINF: // i = (s32)b; // if (b - i > 0) i++; // break; // case FPSCR_RN_MINF: // i = (s32)b; // if (b - i < 0) i--; // break; // } // r = (u32)i; // double di = i; // if (di == b) // { // m_ppu.SetFPSCR_FI(0); // m_ppu.FPSCR.FR = 0; // } // else // { // m_ppu.SetFPSCR_FI(1); // m_ppu.FPSCR.FR = fabs(di) > fabs(b); // } //} //(u64&)m_ppu.FPR[frd] = 0xfff8000000000000ull | r; //if (r == 0 && ((u64&)b & DOUBLE_SIGN)) (u64&)m_ppu.FPR[frd] |= 0x100000000ull; //if (rc) UNK("fctiw."); } void PPULLVMRecompiler::FCTIWZ(u32 frd, u32 frb, bool rc) { const double b = m_ppu.FPR[frb]; u32 value; if (b > (double)0x7fffffff) { value = 0x7fffffff; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else if (b < -(double)0x80000000) { value = 0x80000000; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else { s32 i = (s32)b; double di = i; if (di == b) { m_ppu.SetFPSCR_FI(0); m_ppu.FPSCR.FR = 0; } else { m_ppu.SetFPSCR_FI(1); m_ppu.FPSCR.FR = fabs(di) > fabs(b); } value = (u32)i; } (u64&)m_ppu.FPR[frd] = 0xfff8000000000000ull | value; if (value == 0 && ((u64&)b & DOUBLE_SIGN)) (u64&)m_ppu.FPR[frd] |= 0x100000000ull; //if (rc) UNK("fctiwz."); } void PPULLVMRecompiler::FDIV(u32 frd, u32 fra, u32 frb, bool rc) { double res; if (FPRdouble::IsNaN(m_ppu.FPR[fra])) { res = m_ppu.FPR[fra]; } else if (FPRdouble::IsNaN(m_ppu.FPR[frb])) { res = m_ppu.FPR[frb]; } else { if (m_ppu.FPR[frb] == 0.0) { if (m_ppu.FPR[fra] == 0.0) { m_ppu.FPSCR.VXZDZ = 1; res = FPR_NAN; } else { res = m_ppu.FPR[fra] / m_ppu.FPR[frb]; } m_ppu.SetFPSCRException(FPSCR_ZX); } else if (FPRdouble::IsINF(m_ppu.FPR[fra]) && FPRdouble::IsINF(m_ppu.FPR[frb])) { m_ppu.FPSCR.VXIDI = 1; res = FPR_NAN; } else { res = m_ppu.FPR[fra] / m_ppu.FPR[frb]; } } m_ppu.FPR[frd] = res; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fdiv.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FSUB(u32 frd, u32 fra, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[fra] - m_ppu.FPR[frb]; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fsub.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FADD(u32 frd, u32 fra, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[fra] + m_ppu.FPR[frb]; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fadd.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FSQRT(u32 frd, u32 frb, bool rc) { m_ppu.FPR[frd] = sqrt(m_ppu.FPR[frb]); m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fsqrt.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FSEL(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[fra] >= 0.0 ? m_ppu.FPR[frc] : m_ppu.FPR[frb]; //if (rc) UNK("fsel.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMUL(u32 frd, u32 fra, u32 frc, bool rc) { if ((FPRdouble::IsINF(m_ppu.FPR[fra]) && m_ppu.FPR[frc] == 0.0) || (FPRdouble::IsINF(m_ppu.FPR[frc]) && m_ppu.FPR[fra] == 0.0)) { m_ppu.SetFPSCRException(FPSCR_VXIMZ); m_ppu.FPR[frd] = FPR_NAN; m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; m_ppu.FPSCR.FPRF = FPR_QNAN; } else { if (FPRdouble::IsSNaN(m_ppu.FPR[fra]) || FPRdouble::IsSNaN(m_ppu.FPR[frc])) { m_ppu.SetFPSCRException(FPSCR_VXSNAN); } m_ppu.FPR[frd] = m_ppu.FPR[fra] * m_ppu.FPR[frc]; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); } //if (rc) UNK("fmul.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FRSQRTE(u32 frd, u32 frb, bool rc) { if (m_ppu.FPR[frb] == 0.0) { m_ppu.SetFPSCRException(FPSCR_ZX); } m_ppu.FPR[frd] = static_cast(1.0 / sqrt(m_ppu.FPR[frb])); //if (rc) UNK("frsqrte.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMSUB(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[fra] * m_ppu.FPR[frc] - m_ppu.FPR[frb]; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fmsub.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMADD(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[fra] * m_ppu.FPR[frc] + m_ppu.FPR[frb]; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fmadd.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FNMSUB(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { m_ppu.FPR[frd] = -(m_ppu.FPR[fra] * m_ppu.FPR[frc] - m_ppu.FPR[frb]); m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fnmsub.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FNMADD(u32 frd, u32 fra, u32 frc, u32 frb, bool rc) { m_ppu.FPR[frd] = -(m_ppu.FPR[fra] * m_ppu.FPR[frc] + m_ppu.FPR[frb]); m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fnmadd.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FCMPO(u32 crfd, u32 fra, u32 frb) { int cmp_res = FPRdouble::Cmp(m_ppu.FPR[fra], m_ppu.FPR[frb]); if (cmp_res == CR_SO) { if (FPRdouble::IsSNaN(m_ppu.FPR[fra]) || FPRdouble::IsSNaN(m_ppu.FPR[frb])) { m_ppu.SetFPSCRException(FPSCR_VXSNAN); if (!m_ppu.FPSCR.VE) m_ppu.SetFPSCRException(FPSCR_VXVC); } else { m_ppu.SetFPSCRException(FPSCR_VXVC); } m_ppu.FPSCR.FX = 1; } m_ppu.FPSCR.FPRF = cmp_res; m_ppu.SetCR(crfd, cmp_res); } void PPULLVMRecompiler::FNEG(u32 frd, u32 frb, bool rc) { m_ppu.FPR[frd] = -m_ppu.FPR[frb]; //if (rc) UNK("fneg.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FMR(u32 frd, u32 frb, bool rc) { m_ppu.FPR[frd] = m_ppu.FPR[frb]; //if (rc) UNK("fmr.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FNABS(u32 frd, u32 frb, bool rc) { m_ppu.FPR[frd] = -fabs(m_ppu.FPR[frb]); //if (rc) UNK("fnabs.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FABS(u32 frd, u32 frb, bool rc) { m_ppu.FPR[frd] = fabs(m_ppu.FPR[frb]); //if (rc) UNK("fabs.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::FCTID(u32 frd, u32 frb, bool rc) { const double b = m_ppu.FPR[frb]; u64 r; if (b > (double)0x7fffffffffffffff) { r = 0x7fffffffffffffff; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else if (b < -(double)0x8000000000000000) { r = 0x8000000000000000; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else { s64 i = 0; switch (m_ppu.FPSCR.RN) { case FPSCR_RN_NEAR: { double t = b + 0.5; i = (s64)t; if (t - i < 0 || (t - i == 0 && b > 0)) i--; break; } case FPSCR_RN_ZERO: i = (s64)b; break; case FPSCR_RN_PINF: i = (s64)b; if (b - i > 0) i++; break; case FPSCR_RN_MINF: i = (s64)b; if (b - i < 0) i--; break; } r = (u64)i; double di = i; if (di == b) { m_ppu.SetFPSCR_FI(0); m_ppu.FPSCR.FR = 0; } else { m_ppu.SetFPSCR_FI(1); m_ppu.FPSCR.FR = fabs(di) > fabs(b); } } (u64&)m_ppu.FPR[frd] = 0xfff8000000000000ull | r; if (r == 0 && ((u64&)b & DOUBLE_SIGN)) (u64&)m_ppu.FPR[frd] |= 0x100000000ull; //if (rc) UNK("fctid."); } void PPULLVMRecompiler::FCTIDZ(u32 frd, u32 frb, bool rc) { const double b = m_ppu.FPR[frb]; u64 r; if (b > (double)0x7fffffffffffffff) { r = 0x7fffffffffffffff; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else if (b < -(double)0x8000000000000000) { r = 0x8000000000000000; m_ppu.SetFPSCRException(FPSCR_VXCVI); m_ppu.FPSCR.FI = 0; m_ppu.FPSCR.FR = 0; } else { s64 i = (s64)b; double di = i; if (di == b) { m_ppu.SetFPSCR_FI(0); m_ppu.FPSCR.FR = 0; } else { m_ppu.SetFPSCR_FI(1); m_ppu.FPSCR.FR = fabs(di) > fabs(b); } r = (u64)i; } (u64&)m_ppu.FPR[frd] = 0xfff8000000000000ull | r; if (r == 0 && ((u64&)b & DOUBLE_SIGN)) (u64&)m_ppu.FPR[frd] |= 0x100000000ull; //if (rc) UNK("fctidz."); } void PPULLVMRecompiler::FCFID(u32 frd, u32 frb, bool rc) { s64 bi = (s64&)m_ppu.FPR[frb]; double bf = (double)bi; s64 bfi = (s64)bf; if (bi == bfi) { m_ppu.SetFPSCR_FI(0); m_ppu.FPSCR.FR = 0; } else { m_ppu.SetFPSCR_FI(1); m_ppu.FPSCR.FR = abs(bfi) > abs(bi); } m_ppu.FPR[frd] = bf; m_ppu.FPSCR.FPRF = m_ppu.FPR[frd].GetType(); //if (rc) UNK("fcfid.");//m_ppu.UpdateCR1(m_ppu.FPR[frd]); } void PPULLVMRecompiler::UNK(const u32 code, const u32 opcode, const u32 gcode) { //UNK(fmt::Format("Unknown/Illegal opcode! (0x%08x : 0x%x : 0x%x)", code, opcode, gcode)); } Value * PPULLVMRecompiler::GetVrAsIntVec(u32 vr, u32 vec_elt_num_bits) { auto vr_i128_ptr = m_ir_builder.CreateConstGEP2_32(m_vpr, 0, vr); auto vr_vec_ptr = m_ir_builder.CreateBitCast(vr_i128_ptr, VectorType::get(Type::getIntNTy(m_llvm_context, vec_elt_num_bits), 128 / vec_elt_num_bits)->getPointerTo()); return m_ir_builder.CreateLoad(vr_vec_ptr); } Value * PPULLVMRecompiler::GetVrAsFloatVec(u32 vr) { auto vr_i128_ptr = m_ir_builder.CreateConstGEP2_32(m_vpr, 0, vr); auto vr_v4f32_ptr = m_ir_builder.CreateBitCast(vr_i128_ptr, VectorType::get(Type::getFloatTy(m_llvm_context), 4)->getPointerTo()); return m_ir_builder.CreateLoad(vr_v4f32_ptr); } Value * PPULLVMRecompiler::GetVrAsDoubleVec(u32 vr) { auto vr_i128_ptr = m_ir_builder.CreateConstGEP2_32(m_vpr, 0, vr); auto vr_v2f64_ptr = m_ir_builder.CreateBitCast(vr_i128_ptr, VectorType::get(Type::getDoubleTy(m_llvm_context), 2)->getPointerTo()); return m_ir_builder.CreateLoad(vr_v2f64_ptr); } void PPULLVMRecompiler::SetVr(u32 vr, Value * val) { auto vr_i128_ptr = m_ir_builder.CreateConstGEP2_32(m_vpr, 0, vr); auto val_i128 = m_ir_builder.CreateBitCast(val, Type::getIntNTy(m_llvm_context, 128)); m_ir_builder.CreateStore(val_i128, vr_i128_ptr); }